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Convergent cross-mapping

Granger causality1 is an idea emerging from economics as a means to extract information from two time
series beyond their (instantaneous) correlation. The original method, which was unrelated to attractors of
dynamical systems, involved comparing the power spectra of two time series and constructing expressions
for the causal strength and causal lag of variable A and variable B based on their respective spectra. Here
the invocation of “causality” is related to the ability to forecast the state of B, given the state of A. The
causal strength of A on B represents the correlation between a prediction of the state of B, only given
information about A, and the actual value of B at the time point being forecasted. This is therefore a
non-symmetric relationship: A may have causal strength over B while at the same time B has no causal
strength over A. The causal lag represents the difference between the point in the time series of A where
a forecast is being constructed for B, and the actual time point in the B time series where this forecast
has the greatest causal strength. The idea of convergent cross-mapping is to extend Granger’s original
construction to a new context: that of variables that are explicitly coupled in an underlying system of
nonlinear differential equations with deterministic components.

If some part of the time trajectory of a system is the flow of a deterministic equation, a useful
object of study is a manifold towards which the majority of initial conditions will evolve asymptotically
in time (the system’s attractor). Understanding the attracting manifold M requires that the attractor be
properly embedded in some higher-dimensional space N. If the embedding is improper (either because the
derivative of the embedding map F : M → N is not injective or not smooth, or fails to be a topological
embedding), information about “nearness” of trajectories over time will be inaccurate and forecasting
the future behaviour of the system based on the current position on the attractor will fail. Convergent
cross-mapping relies on two theorems central to the embedding of attractors: Whitney’s theorem2 and
Takens’ theorem.3 Whitney’s theorem guarantees that the maximal dimension of N for which a proper
embedding of M will exist is dim(N) 󰃑 2 dim(M). To properly embed the attractor, one must find a
space of proper embedding dimension in which each orthogonal subspace contains observations of the
attractor, M. To properly resolve the attractor, in some cases, M is a sufficient number of “obvious”
observation functions, whether spatial or otherwise. The insight of Takens’ theorem is to take delays of
a trajectory on the attractor as independent observation functions. Given a single observation function
φ(t) for the attractor that obeys certain generic properties, an embedding can be constructed using
ν ≡ dim(N) lags of (generic) length τ , creating a ν-dimensional vector at each time point t in the
trajectory: (φ(t− τ),φ(t− 2τ), ...φ(t− ντ)).

The principle of convergent cross-mapping arises from the consideration of two observation functions
φ(t), ψ(t) that are somehow connected by an underlying nonlinear dynamical system. This connection is
such that some information about the attractor of φ(t) is contained in the attractor of ψ(t) (or vice-versa),
or both observation functions contain some (possibly unequal) amount of information about each other.
Hence the concept of Granger causality in the context of attractor cross-mapping — if the attractor un-
derlying φ(t) contains some information about the attractor underlying ψ(t), thereby reflecting coupled
dynamics in some nonlinear system, then to remove the information φ(t) from the Universe would inher-
ently diminish our ability to forecast the future of ψ(t). The ability of φ(t) to accurately forecast ψ(t)
given the number of observations L for both observation functions is here given by a function called the
cross-mapping skill S of φ to ψ:

Sφ→ψ(L) ∈ [−1, 1], (S1)

where generically speaking Sφ→ψ ∕= Sψ→φ. This function is constructed as follows.
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1. The attractors of φ(t) and ψ(t) are both reconstructed according to Takens’ theorem with embed-
ding dimension E. In principle, E can be as large as L, the number of observations; the optimal
embedding dimension is defined simply as the value of E for which the value of the cross-mapping
skill function S is maximized.

2. For each time point T = 1, 2, . . . , L− E in the delay-reconstructed manifold from φ(t), the nearest
E + 1 neighbours in the L2 norm of the point corresponding to time T in the high-dimensional
manifold are recorded. E + 1 is the smallest requisite number of neighbours to ensure a generic
E-dimensional simplex.

3. For a given point φE(T ), each neighbour in this E + 1 neighbour-set is assigned a weight that
exponentially decreases based on its distance from φE(T ).

4. These neighbours (which are each an integer between 1 and L, their index in the time series φ(t))
are now used to “predict” the value ψ(T ). The predicted value, called ψ∗(T ), is simply the sum of
the value of ψ(t) at the neighbours’ indices weighted by the weights they were assigned when they
were indices for neighbours of φ(T ).

5. The cross-mapping skill is taken to be the Pearson correlation between the predicted value of ψ(T )
based on φ(T ) and the actual value: Sφ→ψ(L) = ρ(ψ∗(T ),ψ(T )).

The cross-mapping is said to be convergent if the cross-mapping skill increases with increasing number
of available data points, L, indicating that the predictive power of φ(t) on ψ(t) is increasing with increasing
data thus confirming that some information about the attractor of φ(t) is reflected in the attractor of
ψ(t).

Network properties of causal relations determined by convergent cross-
mapping

Here we include several relevant measures of the network induced on cytokines by convergent cross-
mapping. Note that in the theory of convergent cross-mapping, a cross-mapping with skill less than a
certain threshold is not necessarily insignificant, as the strength of an interaction could be obscured by
noise in measurement. The critical observation is the convergence with increasing amounts of available
data, L. We impose our cutoffs arbitrarily to manage the network size, both for the purpose of visualization
and computation, and also to keep only the results that tend to have the highest confidence.

We depict several important measures here graphically, as well as tabulating the cytokines with the
highest scores by certain metrics. In Fig. S1 we plot the in-degree and out-degree distributions. Other
critical graph-theoretic properties are tabulated in Table S1. We paid particular interest to betweenness-
centrality,4 highlighting cytokines that are likely to receive and then transmit information and may
therefore represent important mediators in the cytokine hierarchy. The strongest nodes by this measure
are also tabulated in Table S2 and mainly including interferons, growth factors, and cytokines related to
necrosis. Other metrics examined included out-closeness-centrality5 (Table S3), HITS authority6 (Table
S4), and HITS hub-ranking6 (Table S5). All of these metrics attempt to gauge the importance of a node
for transmitting information to others, and are therefore based on the distribution of edges between the
node of interest and its neighbors, next-neighbors, etc. Each measure differs from the others based on
the feature of interest — for instance, between-closeness may be said to focus on the role of a node as a
mediator of information (receiving and then forwarding information from other nodes) while out-closeness
might be said to focus on the role of a node as a generator or forwarder of information only. It is therefore
noteworthy that some of the most important cytokines by these differing metrics are the same — for
instance, VEGF appears as one of the top ten cytokines by all metrics employed.
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Property Value

Clustering coefficient 0.541
Average path length 3.437
Diameter 7
Density 0.124
Modularity 0.590

Table S1. Additional graph properties of the cross-mapping network at cutoff strength S > 0.8.

Cytokine Scaled between-centrality

IFNG 1.0000
IL18 0.9843
IFNA 0.8405
SCF 0.7728
CD40L 0.7401
IL5 0.6989
VEGF 0.5770
IL12P40 0.5047
TRAIL 0.4883
NGF 0.4860

Table S2. Between-centrality ranking in the S > 0.8 network.

Cytokine Scaled out-closeness-centrality

CD40L 1.0000
IL17F 0.9918
GROA 0.9758
MIP1A 0.9528
VEGF 0.9528
TRAIL 0.9453
SDF1A 0.9380
IL15 0.9380
IL1RA 0.9308
TGFB 0.9237

Table S3. Out-closeness-centrality ranking in the S > 0.8 network.
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Cytokine Scaled authority

IFNA 1.0000
VEGF 0.9038
IL17F 0.8573
EGF 0.8149
HGF 0.8041
IL1A 0.7983
IL17A 0.7971
TNFA 0.7864
IL15 0.7368
MIP1B 0.7260

Table S4. HITS authority ranking in the S > 0.8 network.

Cytokine Scaled hub factor

IL1RA 1.0000
MIP1B 0.9611
LIF 0.9565
VEGF 0.9373
IL1A 0.9248
TNFA 0.9094
IL15 0.8947
GCSF 0.8768
TGFA 0.8628
TGFB 0.7518

Table S5. HITS hub ranking in the S > 0.8 network.
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Comparison with the literature

In the main text, we provided a rationale for considering CCM to be at least, in part, an advance over
traditional techniques for inferring interactions — whereas older approaches, such as simply measuring the
Pearson correlation coefficient, give roughly 50% to 60% “accuracy” (meaning 50% to 60% of its inferred
relationships can be substantiated from other experiments), CCM in this case has given nearly 80%-90%
accuracy by the same metric. Here we begin to agglomerate references to the literature to support our
claim. The references to pairs identified by CCM that might be less well-known in the literature are
collected in Table S6.

Cytokine 1 Cytokine 2 Reference Cytokine 1 Cytokine 2 Reference

MIP1B VEGF [7] FASL GMCSF [8]

TGFA GCSF [9] TGFA IL1A [10]

IL8 FGFB [11,12] TGFA LIF [13]

BDNF IL5 [14] TPO IL7 [15]

SCF IL8 [16] IFNG IL8 [17]

MCSF FGFB [18] IL7 PDGFB [19]

RANTES PDGFB [20] SDF1A CD40L [21]

IL18 IL31 [22] IL12P40 SCF [23]

IL2 RANTES [24] IL7 RANTES [25]

MIP1A IFNG [26] NGF IFNG [27]

LIF IFNA [28] MIP1B IFNA [29]

NGF IL9 [30] IL15 TRAIL [31]

IL17f IL1A [32] MIP1B IL15 [33]

IL6 FGFB [34] SCF FGFB [35]

GCSF LIF [36] TPO IL2 [37]

ICAM1 IL2 [38] SCF IL6 [39]

FGFB IL6 [40] IL7 PLTs [41]

FASL IFNG [42] FASL IL27 [43]

ICAM1 PLTs [44] IL18 FASL [45]

IL1A IL15 [46] IL1A IL17F [47]

IL5 TPO [48] RANTES PLTs [49]

Table S6. Known relationships in Fig. S2 from the literature. Fig. S2 illustrates Fig. 1 with
edges re-colored according to their status in the literature. When we considered a relationship to be less
well-known, we sought out corroboration in the literature, provided in the citations here.

Difficulty for CCM in identifying causation in series versus in parallel

CCM, as a novel tool in causative analysis, is an exciting and promising avenue to extract networks of
interactions from data on dynamical systems. However, it is possible for it to mis-identify relationships
in certain settings. It has been demonstrated that CCM can correctly identify settings in which two
variables are both strongly forced by a third, external variable.50–53 However, it is possible for CCM to
erroneously identify relationships as in parallel when in fact they are in serial, mitigated by other variables
(see Fig. S3) — in fact, this is a common issue in causal inference, no matter the technique.54–56 Since a
large number of our “novel” cytokine interactions in Table 1 could easily be understood instead as strong
forcings via only one intervening cytokine, along known pathways, it is very important to keep this fact
in mind.
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The network induced by Pearson correlation and its accuracy

In the previous sections, we established the network of interactions found by CCM, assessed its accuracy
and discussed possible mechanisms by which a number of the “novel” interactions it found could in fact
be false positives. However, we still maintain that it is a major improvement upon alternative techniques.
In order to support that claim, we constructed a similar network by simply keeping all cytokine pairs
whose Pearson correlation exceeded 0.8 (in analogy with the CCM network in which we required the
predictive strength to exceed 0.8). That network is plotted in Figure S4. Whereas roughly 10%-20%
of CCM’s edges were unsubstantiated by the literature, 40%-50% of the Pearson network’s edges are
unsubstantiated. Those that were found have citations in Table S7.

Cytokines Reference Cytokines Ref Cytokines Ref Cytokines Ref

IL17F-LIF [57] IL17F-IFNB [58] IL17F-TNFA [59] IL17F-MIP1B [60]

IL17F-TGFB [61] IL17F-GCSF [62] IL17F-IL15 [63] IL17F-MIG [64]

IL17F-IL21 [65] FASL-IL31 [66] TGFA-IL1RA [67] TGFA-TNFA [67]

TGFA-HGF [68] TGFA-TGFB † TGFA-EGF [69] TGFA-BDNF [70]

TGFA-IL15 [71] MIP1A-IFNB [72] MIP1A-IL1RA [73] MIP1A-TNFA [74]

MIP1A-GCSF [75] MIP1A-IL15 [76] MIP1A-MIG [77] MIP1A-IL21 [78]

MIP1A-CD40L [79] SDF1A-ICAM1 † IL27-IL10 [80] LIF-TNFA [81]

LIF-HGF [82] LIF-IL15 [83] LIF-CD40L [84] IL1B-IL2 †
IL4-IFNA [85] IL4-NGF [86] IL6-IL9 [87] IL8-IL10 [88]

IL8-NGF [89] IL8-IL18 [90] IFNB-IL1RA [91] IFNB-HGF [92]

IFNB-EGF [93] IFNB-TRAIL [94] IFNB-MIG [95] IFNB-IL21 [96]

EOTAXIN-TNFA [97] EOTAXIN-GCSF [98] EOTAXIN-IL15 [99] EOTAXIN-IL21 [100]

IL13-SCF [101] IL1RA-HGF [102] IL1RA-EGF [103] IL1RA-BDNF [104]

IL1RA-TRAIL [105] IL1RA-GCSF [106] IL1RA-IL15 [107] IL1RA-VEGF [108]

SCF-IL18 [109] IFNG-NGF [110] TNFA-TGFB [111] TNFA-TRAIL †
TNFA-GCSF [112] TNFA-MIG [113] TNFA-IL21 [114] TNFA-VEGF [115]

TNFA-CD40L [116] HGF-TGFB [117] HGF-GCSF [118] HGF-VEGF [119]

MIP1B-TGFB [120] TGFB-BDNF [121] TGFB-IL15 [122] VEGFD-VCAM1 [123]

VEGFD-CD40L [124] EGF-GCSF [125] EGF-IL15 [126] BDNF-GCSF [127]

TRAIL-IL21 [128] TRAIL-CD40L [129] GCSF-IL21 [130] GCSF-CD40L [131]

IL15-MIG [132] IL15-IL21 [133] IL15-VCAM1 [134] MIG-IL21 [135]

MIG-CD40L [136] IL21-VCAM1 [137] VCAM1-CD40L [138]

Table S7. Citations for pairs identified by Pearson correlation In order to compare the accuracy
of the graphs induced by keeping pairs with CCM strength greater than 0.8 and Pearson correlation greater
than 0.8, we had to construct both networks and see what fraction of edges in each were corroborated by
external experiments. This table contains the citations found for less commonly-known pairs picked up
by direct Pearson correlation.

The null hypothesis for relationships between cytokines

To define a baseline “accuracy” to compare Pearson correlations and CCM, we selected 100 cytokine
pairs uniformly-at-random (ignoring duplicates and pairs that were a cytokine interacting with itself)
from all possible pairs, and sought out experimental literature confirming that they had an explicit effect
on one another (in either direction). The pairs chosen, and references to the literature when they were
corroborated, can be found in Table S8.
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Cytokines Ref Cytokines Ref Cytokines Ref Cytokines Ref

RESISTIN-TRAIL X FASL-SCF X TGFB-RANTES [139] TRAIL-EGF X

PLTs-PAI1 [140] IL2-SDF1A X IL31-IL5 X HGF-IL13 [141]

VEGF-IL22 [142] FASL-IL12P40 [143] IL8-RANTES X MCP1-VEGF [144]

RANTES-PAI1 X IFNB-IL1A X TRAIL-TGFB [145] GROA-TRAIL †
IL4-LIF [146] CD40L-IL2 [147] IL17F-IL9 [148] VCAM1-GCSF [149]

IL4-IL31 [150] TNFA-PAI1 [151] IL1B-IL21 [152] BDNF-IL31 X

IL5-RANTES † HGF-IL27 X TNFB-IL6 † IL1RA-VEGFD X

IL7-IFNB X NGF-IL8 [89] MIG-PAI1 X IL12P40-IL13 X

VEGFD-SDF1A X IL22-VCAM1 X MIG-IL8 X TNFB-TPO X

RANTES-EOTAXIN X IL2-IL4 X RANTES-MIP1A X RANTES-BDNF [153]

GROA-IL1A X MIP1A-IL8 X MCP3-TPO X PDGFBB-IL12P40 X

HGF-VEGFD [154] IL6-GMCSF † LEPTIN-MCP1 X IFNA-IL6 X

HGF-EGF X GCSF-IL1RA [106] IL31-CD40L [155] IL17F-VCAM1 X

FGFB-IL13 † TPO-IL12P40 X NGF-ICAM1 [156] TRAIL-IFNA [157]

PAI1-BDNF [158] IFNG-MIG [159] IL2-IL1RA X MIP1A-LIF X

TGFB-TRAIL [160] TGFB-IL12P70 [161] IL1B-IL10 [162] GMCSF-VCAM1 X

IFNA-VEGF [163] GCSF-PLTs [164] TNFB-IL1RA X IL22-PLTs [165]

GROA-TGFA X IL4-IL23 [166] TNFA-IL1B [167] IL13-NGF [168]

BDNF-IL17F X TGFA-IL12P70 X SCF-MIG X IL23-PAI1 X

SDF1A-NGF X MCSF-RANTES X MIP1A-IL8 X BDNF-LEPTIN X

IL7-GCSF X IFNB-GCSF X IL13-MCSF X TNFA-RANTES X

TNFA-IL18 X IL12P70-MCSF X IL5-IL12P40 X IL7-IL22 X

IL4-IFNB X MIP1A-VEGFD X GROA-MCP1 X SDF1A-TRAIL X

IL13-GCSF X LIF-IL23 X MIP1B-MCSF X IL23-FGFB X

FGFB-NGF X MCP3-VEGFD X IL4-IL7 X HGF-IL2 X

Table S8. Citations for pairs identified by the random null In order to compare the accuracy of
the graphs induced by keeping pairs with CCM strength greater than 0.8 and Pearson correlation greater
than 0.8, we also had to compare this with a null hypothesis in which pairs were selected completely at
random. These are those pairs and all substantiating literature references, when they can be found (a
mark of X indicates no such literature was found, while a mark of † indicates that this relationship was
considered to be commonly known in the immunology literature). 37 of the randomly chosen pairs had
some basis in fact.
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Figure S1. Degree distributions for cytokines in network induced by convergent cross-
mapping. A larger network of cytokines induced by convergent cross-mapping which is still statistically
meaningful, but difficult to visualize, is that in which all edges with maximum skill above 0.8 are main-
tained. Degree distributions are shown for this network. No meaningful power law is observed in the
distribution.
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Figure S2. What is known in the literature from Fig. 1. This is the equivalent of Figure 1, but
with edges re-colored according to their status in the literature. Gray edges indicate relationships that
we considered standard, that is, the interaction is so well-known in the immunology field that no citation
is needed. Black edges are supported by citations given in Table S6. Red edges indicate pairs identified
by CCM for which we could find no corroborating experiments in the literature.
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Figure S3. An example of spurious links identified by CCM Depending on the relative strength
of interactions, CCM will either correctly ignore this edge or spuriously indicate it with positive cross-
mapping.
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Figure S4. The equivalent of Figure 1 when correlation is employed Instead of drawing edges
between cytokines when their CCM predictive strength at maximum library exceeds 0.8, we could do the
equivalent process where an (undirected) edge is drawn between two cytokines if their Pearson correlation
coefficient exceeds 0.8. While both procedures create graphs with similar numbers of edges, 57% of these
edges are represented in the literature, versus the 87% of undirected edges found via CCM. Here, black
edges represent known interactions from the literature, listed in Tables S6 and S7. Red edges indicate
pairs for which we could find no corroborating evidence in the literature.
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