Article title:

Genome-wide analysis of drug resistant Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in Russia

Author information:

Ekaterina Chernyaeva, PhD *
Theodosius Dobzhansky Center for Genome Bioinformatics St. Petersburg State University, St. Petersburg, Russia

St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg

Mikhail Rotkevich
Theodosius Dobzhansky Center for Genome Bioinformatics St. Petersburg State University, St. Petersburg, Russia

Ksenia Krasheninnikova
Theodosius Dobzhansky Center for Genome Bioinformatics St. Petersburg State University, St. Petersburg, Russia

Alla Lapidus, PhD
Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia

Dmitriy E. Polev, PhD
Resource Center «Biobank», Research park of St. Petersburg State University, St. Petersburg, Russia

Natalia Solovieva, PhD
St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg

Viacheslav Zhuravlev, PhD
St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg

Piotr Yablonsky, MD, PhD
St. Petersburg Research Institute of Phthisiopulmonology, St. Petersburg

St. Petersburg State University, St. Petersburg, Russia
Keywords: *Mycobacterium tuberculosis*, *pulmonary tuberculosis*, *extrapulmonary tuberculosis*, *whole-genome sequencing*

Summary

This paper gives genome-wide characteristics of *Mycobacterium tuberculosis* strains collected from pulmonary and extrapulmonary tuberculosis patients:

- *M. tuberculosis* genetic strains associated with TB tissue localization,
- influence of HIV co-infection on TB dissemination;
- mutations associated with *M. tuberculosis* drug resistance.
Abstract

Mycobacterium tuberculosis is a highly studied pathogen due to public health importance. Despite progress in *M. tuberculosis* genome diversity analysis there remain insufficient data on genome analysis of *M. tuberculosis* strains associated with pulmonary vs. extrapulmonary TB (PTB or XPTB respectively) tissue localization. Here we conduct comparative analysis of whole-genome sequence (WGS) for clinical *M. tuberculosis* strains collected from patients with PTB (n=72) and XPTB (n=73) localization. We further analyze the incidence of point mutations widely used for drug resistance detection in laboratory practice.

M. tuberculosis isolates were collected from patients with varying clinical status from 2007 to 2014 in Russia. Bacterial DNA was extracted and sequenced using MiSeq platform (Illumina).

WGS data allowed identifying *M. tuberculosis* substrains associated with distinctions in the occurrence in PTB vs. XPTB cases. There occurred little statistically significant specific DNA variants or genotypes diagnostic of tissue distribution, however phylogenetic analyses did reveal *M. tuberculosis* genetic substrains associated with TB localization. XPTB was associated with Beijing CAO, A and 4.8 groups, while PTB localization was associated with group LAM (4.3). Further, XPTB strain in some cases showed elevated drug resistance patterns relative to PTB isolates. HIV is significantly associated with the development of XPTB in the Beijing B0/W148 group and among unclustered Beijing isolates.

This research analysis pinpointed genomic markers identified in XPTB and PTB with detailed characterization of drug-resistance markers of Russian *M. tuberculosis* isolates. We suggest that further comprehensive analysis of bacterial and human biological signatures might allow for better understanding consistent pattern of XPTB development.
Introduction

Mycobacterium tuberculosis is one of the most widespread and studied pathogens across the globe. According to WHO estimation Russia had about 94,000 new TB cases (case rate 66 per 100 000) and 13700 TB deaths in 2016 with 27% of new TB cases displaying multiple drug resistance or resistance to rifampicin (MDR/RR-TB) (1). The main clinical form of tuberculosis (TB), pulmonary tuberculosis (PTB) is considered to be the most epidemically dangerous localization of the disease. For many years the proportion of patients with XPTB has remained constant with variation < 3% in Russia (2). Relatively low rate of XPTB in Russia could be explained by fact that TB of intrathoracic lymph nodes and tuberculous pleurisy are generally not counted in XPTB statistics. Delayed detection of XPTB leads to a high proportion of chronic TB forms and to a high level of disability among patients. The most common localization of XPTB is an osteoarticular localization, which is detected in 35.7% cases of all XPTB cases (2). TB localization differential may be influenced by differences of the host the immune status and genome features, as well as with the biological or genetic differences of the pathogen. In this study we compare the genomic landscape of clinical *M. tuberculosis* strains collected from patients with PTB and XPTB localization based on whole-genome sequencing data. XPTB *M. tuberculosis* WGS data were previously described by our team (3).

Methods

A total of 72 PTB and 73 XPTB isolates were collected between 2007 to 2014 from 40 different regions of the Russia (fig. 1, supplementary table 1). Isolates were selected randomly from the *M. tuberculosis* strains collection of St. Petersburg Research Institute of Phthisiopulmonology. Eighteen isolates received from XPTB localization were collected from patient with generalized TB (disseminated form of TB). All TB patients in Russia are tested for HIV. The majority of studies isolates (n=120) were obtained from HIV-negative patients and 25 – from HIV-infected patients.
Bacterial isolates were cultured from pulmonary and extrapulmonary clinical material. The susceptibility of *M. tuberculosis* cultures to isoniazid (INH), rifampicin (RIF), streptomycin (SM), ethambutol (EMB), pyrazinamide (PZA), ethionamide (ETH), ofloxacin (OFL), kanamycin (KM), amikacin (AM), cycloserine (CS), capreomycin (CM) and para-aminosalicylic acid (PAS) was detected using WHO recommendations (4). *M. tuberculosis* DNA was extracted using lysis with proteinase K and CTAB with further phenol/chloroform extraction and alcohol precipitation (5). Bacterial DNA was subjected to whole-genome sequencing (WGS) using MiSeq platform (Illumina). *M. tuberculosis* WGS data were deposited in the NCBI SRA (PRJNA352769). The quality of *M. tuberculosis* sequence reads was evaluated using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence reads were processed using Trimmomatic (6). We aligned sequenced reads to the reference genome and called variants (single-nucleotide polymorphisms [SNPs] and short insertions/deletions) by using bioinformatics software: bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml); SAMtools (http://samtools.sourceforge.net); VCFtools (http://vcftools.sourceforge.net); and FreeBayes (https://github.com/ekg/freebayes). We used mutations that had q-scores ≥20 for comprehensive analysis. We used concatenated SNPs for phylogenetic analysis by using the GTRCAT (general time-reversible model with rate heterogeneity accommodated by using discrete rate categories) maximum-likelihood algorithm from the RAxML software package (7) to calculate an approximation model and 100 bootstrap replications. To avoid misalignments, we annotated SNPs in repetitive genome regions and in genes encoding proteins that contain proline-glutamate or proline-proline-glutamate motifs and filtered them from analysis. We used PhyTB (8) and SpoTyping tools (9) for phylogenetic classification of *M. tuberculosis* genomes. R commander package for R (https://socialsciences.mcmaster.ca/jfox/Misc/Rcmdr/) and Python scripts were used for statistical analysis using Fisher exact tests (FET) for significant statistical association.
Results

M. tuberculosis SNVs, genotypes and strains association with TB localization

Phylogenetic analysis discriminated two large lineages among sequenced *M. tuberculosis* isolates – 2 and 4 (fig. 2). Lineage 4 was represented by four monophyletic clusters which belonged to phylogenetic groups 4.1, 4.2, 4.3 and 4.8 based on PhyTB classification (9) and one isolate belonged to 4.4 phylogenetic groups. Major lineage 2 (Beijing) was represented by isolates belonged to 2.2.1 group based on PhyTB classification. Phylogenetic analysis based on 8673 SNVs allowed distinguishing several sub-clusters in lineage 2. Analysis of DNA markers such as regions of difference RD105, RD207, RD181 and mutT2 and mutT4 genes (10) allowed to classify “ancient” and “modern” sub-lineages within Beijing genotype (fig. 2). The largest sub-group within Beijing clade was a group of strains that belonged to B0/W148 genetic lineage (fig. 2). B0/W148 genetic cluster is characterized by a specific IS6110 insertion in genome position 2,982,598 in the *Rv2664-Rv2665* intergenic region (11). Besides Beijing B0/W148 sublineage we identified clusters belonging to Beijing sublineages Central Asia (Beijing CAO) and Central Asia Clade A (Beijing A) based on SNV classification published by Shitikov et al. (12).

The Beijing genetic group was predominant among both pulmonary and extrapulmonary isolates (Table 1), however, Beijing isolates were significantly more frequent among XPTB patients (82.19%, n=60) than among PTB patients (66.67%, n=48, p=0.03721). A large proportion of *M. tuberculosis* Beijing isolates (45.37%, n=59) belonged to B0/W148 sub-cluster. The Beijing B0/W148 group was equally represented in PTB vs. XPTB groups of bacterial isolates, while the frequency of Beijing sublineages CAO and Clade A was much higher among XPTB isolates. Beijing CAO strains was identified among 4.19% (n=3) PTB and 10.96% (n=8) XPTB cases; Beijing Clade A was detected among 4.19% (n=3) PTB and 19.18% (n=14) XPTB cases. Comparative analysis of XPTB cases caused by bacterial isolates from 4.8 and 4.3 genetic groups revealed significant differences in these clusters: *M. tuberculosis* isolates from 4.8
subcluster caused XPTB more often than isolates from 4.3 subcluster (p=0.02171).

M. tuberculosis isolates from phylogenetic subcluster 4.3 was more often detected among PTB cases. The Beijing Clade A is associated with XPTB, while 4.3 sublineage is associated with PTB cases (FET Beijing A vs. 4.3: p = 0.0005944). A similar positive association was observed for XPTB with *M. tuberculosis* sublineages Beijing CAO and 4.3, while subclade 4.3 was strongly associated with PTB (Beijing CAO vs. 4.3: p=0.01109).

Phylogenetic analysis (fig. 2) allowed to discriminate *M. tuberculosis* genetic clusters and to screen for synapomorphic SNVs, Indels that were specific for more than 95% of samples from a particular cluster. Using this approach to statistical analysis did not identify specific SNVs, InDels signatures associated with TB tissue localization across different *M. tuberculosis* phylogenetic groups (Supplementary figure1).

M. tuberculosis drug susceptibility testing allowed the recognition of five clinical groups of isolates: (a) susceptible; (b) mono-resistant, i.e., resistant to one drug; (c) poly-resistant – resistant to more than one drug, but not MDR; (d) multidrug-resistant (MDR) and (e) extensively drug- resistant (XDR), according to WHO definition (13,14) (Table 2). Among 73 extrapulmonary *M. tuberculosis* isolates 12 (16.44%) were susceptible to all drugs; 3 (4.11%) were mono-resistant; 9 (12.33%) were poly-resistant; 44 (60.27%) were MDR and 5 (6.85%) were XDR. Seven out of 72 pulmonary isolates (9.72%) were susceptible to all drugs; 2 (2.7%) were mono-resistant; 9 – resistant to several drugs, but not MDR; 30 isolates (41.67%) – MDR and 24 (33.33%) were XDR. The prevalence of XDR phenotype was almost 5-fold higher in PTB than was observed in XPTB cases (33% XDR in PTB vs. 6.8% XDR in XPTB; p=6.133*10^-05; Table 2). The majority of bacterial isolates in Beijing cluster were resistant to at least one drug.

Over 80% of *M. tuberculosis* isolates in Beijing cluster had MDR (n=62) and XDR (n=25). Only 9 out of 108 isolates were susceptible to all drugs (Table 3). Statistical analysis
showed an association of Beijing cluster with drug resistance ($p=0.008542$) and especially with M/XDR ($p=3.007\times10^{-5}$) compared to non-Beijing clades.

Mutations associated with drug resistance

WGS data were screened for previously published mutations associated with resistance to TB drugs (15): SM, INH, RIF, OFL, PZA, EMB, ETH, KM, AM and CS (ST2, ST3).

INH-resistance has been associated with mutation S315T in *katG* gene, and 95.87% of INH-resistant strains in this study carried mutations in these regions. RIF-resistance was associated with mutations in *rpoB* 81-bp core region, 96.15% of resistant isolates carried mutations in this genome region. Over 98% of SM-resistant isolates had mutations in *rpsL*, *rrs* and *gid* genes. Mutations in promoter region of *eis* gene were identified in 18 KM-resistant and 13 KM-susceptible isolates. It was previously shown that mutations in regulatory region of *whiB7* gene can indirectly influence KM-resistance, however more likely are associated with SM-resistance (16). We identified only two KM-resistant and 3 susceptible isolates with mutations in the region upstream *whiB7* and all of these mutants were resistant to SM.

The majority of OFL-resistant isolates (90.48%) carried mutations in *gyrA* or *gyrB* quinolone resistance-determining regions. Mutations in *embB* gene between codones 296 and 497 (17) were detected in 63 resistant and 27 susceptible to EMB isolates. Mutations in *embC-embA* intergenic region (8-16 nucleotides upstream *embA* gene) were detected in 16 EMB-resistant and 7 EMB-susceptible isolates. Point mutations were detected in *pncA* and *rpsA* genes in 31 PZA-resistant isolates (67.39%).

A list of SNVs that might be associated with PZA-resistance in *pncA* gene published by Yadon A. et al., 2017 (18) were subjects for discovery in *M.tuberculosis* WGS data. We identified 41 mutations leading to amino acid substitutions in 62 *M.tuberculosis* isolates. Twenty-nine PZA-resistant isolates (63.04%) carried mutations in *pncA* gene, however three of these mutations were previously identified as associated with PZA-susceptibility and six mutations were not related to susceptibility or resistance. Nine PZA-susceptible isolates had
SNVs in *pncA* gene; six of these mutations were associated with *in vivo* or *in vitro* resistance to PZA and three did not have association with PZA-susceptibility or resistance, according to Yadon et al. (18). Among *M.tuberculosis* isolates with unknown PZA-resistance status (n=24), 14 mutations associated with PZA resistance in 16 *M.tuberculosis* isolates were detected, one mutation in associated with PZA-susceptibility and 6 mutations in 8 genomes with unknown association with resistance or susceptibility to PZA (ST3).

ETH-resistant isolates are known to have mutations located in *ethA/R* locus, *inhA* gene and its promoter (15). Forty-eight sequenced isolates were known to be resistant to ETH. In our dataset, ETH-resistant isolates did not have mutations in *ethA* gene; mutations in *fabG–inhA* operon (-15 and -34 nt) were detected in 9 ETH-resistant and 5 ETH-susceptible isolates. Mutations in *inhA* gene were relatively rare and were detected in 2 resistant and 4 susceptible isolates. Mutations in *ethA* gene were identified in 8 ETH-resistant, 25 ETH-susceptible and 3 isolates with unknown ETH susceptibility data. Mutation in *ethR* gene (A70T) was detected only in one ETH-resistant isolate, while mutations in *ethA-ethR* intergenic region (7 bp upstream *ethA* or 69 bp upstream *ethR* start-codons) was detected in 9 isolates and only three of them were ETH-resistant.

We compared mutations, associated with *M.tuberculosis* drug resistance, detected in our study with a list of mutations that are widely used in molecular-genetic tests for *M.tuberculosis* identification and drug resistance prediction: HAIN GenoType MTBDRplus and GenoType MTBDRsl v 1.0 and v 2.0. The majority of mutations associated with INH-resistance that were detected in our study could be detected by HAIN assay, however mutation in -34 position upstream *fabG-inhA* operon is not included in HAIN catalogue may be due to relatively rare occurrence (2 isolates in our dataset). Detection of mutations associated with RIF-resistance using HAIN assay would also allow to identify most of RIF-resistant isolates in our dataset, however Q432K mutation in *rpoB* gene detected in one RIF-resistant strain and might be related with RIF-resistance. Mutations associated with EMB-resistance detected by HAIN diagnostic
assay are represented by M306V and M306I substitutions only. In our study M306V was the most frequent mutation (n=20), M306I substitution were identified in 5 genomes, while 38

M.tuberculosis isolates that had mutations in *embB* region between codons 296 and 497 that could not be detected by HAIN system. Mutations in *embA* promoter region that are not represented in HAIN test-system were detected in 14 EMB-resistant isolates. It should be noted that mutations in *embB* gene and *embA* promoter associated with EMB-resistance often detected among EMB-susceptible isolates. For instance, mutation M306V in *embB* gene was detected in 20 EMB-resistant and 9 EMB-susceptible isolates. Mutations associated with resistance to aminoglycosides and peptide antibiotics are represented in HAIN test by 3 mutations in *rrs* gene, associated with KM/AM/CM/viomycin resistance, and *eis* promoter mutations, associated with KM resistance. We did not find mutations in *rrs* positions 1401, 1402 and 1484, but identified mutation in 1490 position in one CM-resistant isolate. Three out of four SNVs identified in *eis* promoter could be detected by HAIN assay (10, 12 and 14 bp upstream *eis* start codon) however in our study these mutations were detected in 18 KM-resistant and 12 KM-susceptible isolates.

GenoType MTBDRsl assay allows to detect mutations in *gyrA* 90, 91 and 94 codons and in *gyrB* 538 and 540 codons, associated with OFL-resistance. In our dataset most of OFL-resistance mutations were detected in *gyrA* gene and correspond to the variety of mutations presented in the HAIN system, though mutations in *gyrB* gene that were detected in several OFL-resistant strains were not covered by HAIN line-probe assay.

TB/HIV co-infection

Bacterial isolates were collected from 120 HIV-negative patients and 25 HIV-infected patients. We observed a higher rate of generalized TB among HIV-infected individuals (Table 4) (p= 6.579*10^-5). XPTB was significantly more frequent among HIV-positive patients compared to patients with PTB (Table 4; p=0.000998). Thus, HIV-infection increases the probability of TB generalization or development of active XPTB. XPTB development was significantly higher
among patients infected with HIV carrying the Beijing-unclustered strain of *M. tuberculosis* (p=0.068) (Table 5). A similar XPTB excess was apparent among patients carrying the Beijing B0/W148 strain (p=0.0013) (Table 5). Other genetic groups with HIV co-infection did not make a significant impact on pulmonary or extrapulmonary TB development (Table 5).

Discussion

Our study is devoted to the comparative analysis of *M. tuberculosis* isolates obtained from patients with different clinical features of the disease – pulmonary and extrapulmonary TB. Our previous analysis of *M. tuberculosis* isolates from patients with tuberculous spondylitis showed that this group of bacterial strains is characterized by low genetic diversity and high prevalence of Beijing isolates (82% of strains belonged to Beijing clade) (3). Prevalence of Beijing genetic group among extrapulmonary *M. tuberculosis* isolates compared to pulmonary ones was also reported in a recent study, which identified Beijing in 75% of the extrapulmonary *M. tuberculosis* cases (19). Our current study showed that extrapulmonary *M. tuberculosis* isolates belong to Beijing genetic group (82.2%) more often than pulmonary (66.7%). Despite there was a higher prevalence of Beijing strains among extrapulmonary *M. tuberculosis* samples (82.19% vs 66.67%), in our study pulmonary strains were frequently associated with XDR (p=6.133*10⁻⁰⁵). It was previously shown that *M. tuberculosis* strains from Beijing genetic group are highly associated with M/XDR (20-22). Our results confirm this statement: the frequency of drug resistance among *M. tuberculosis* Beijing isolates was higher compared to other genetic groups in both pulmonary and extrapulmonary strains (Table 1) . *M. tuberculosis* genetic lineage 4 identified in our study was also previously detected in Russia: Ural family (4.2) identified in many regions in Eurasia (23), and heterogeneous sublineage 4.1 and sublineage 4.3 were observed in many countries across the world (23). Like 4.2 sublineage 4.4 occurred in high proportions among isolates from particular countries in Asia and Africa, but were largely absent from the Americas. Sublineage 4.8 was identified as a part of the 4.10 genetic group, the latter was previously mentioned as one of the most widely spread sub-clades of the lineage 4. (24).
It was shown that Beijing A and CAO isolates are significantly more often identified in extrapulmonary TB cases, while isolates from principal genetic lineage 4.3 were mostly identified in patients with pulmonary TB (Table 1). Association of specific genetic clades and sub-clades of *M. tuberculosis* strains with TB diagnosis, shown on our dataset, is an interesting fact which suggests some specific molecular signatures in different *M. tuberculosis* genetic groups that can make an impact on active TB disease localization at least in Russian population of TB patients.

Analysis of mutations, associated with susceptibility to first and second line TB drugs arevealed that relatively high proportion of INH-, RIF-, SM- and OFL-resistant isolates had standard SNVs predictive of drug-resistance. However, some SNVs, associated with resistance to TB drugs cannot be unequivocally interpreted. For example, the proportion of EMB-resistant isolates with mutations in *embB* gene between codones 296 and 497 and *embC-embA* intergenic region were identified in 94.29% of EMB-resistant isolates, however over 40% of EMB susceptible isolates carried the same mutations. Similar situation was revealed with mutations, associated with KM-resistance in *eis* and *whiB7* promoter regions – 42.5% of KM-resistant and 22.4% of KM-susceptible isolates carried mutations in these regions (ST3). This observation might be related with the fact that mutations can be responsible for the development of high and low levels of drug resistance, while in our study we did not have data on minimum inhibitory concentration. *M. tuberculosis* isolates from our dataset were checked for mutations in *pncA* and *rpsA* genes that were known to be involved in development of resistance to PZA (17, 25). Only 4 PZA-resistant isolates carried mutations in *rpsA* gene, but the majority of PZA-resistant isolates had mutations in *pncA* gene mentioned in previously published catalog of mutations associated with susceptibility to PZA (17). Despite most of obtained data were consistent with previously published data, in PZA-resistant strains we detected few mutations, that were mentioned as associated with susceptibility to PZA and there were several PZA-susceptible isolates, that carried mutations associated with PZA-resistance according to Yadon et al. data. This fact may
indicate either that these mutations are not involved into the development of PZA resistance, or

their influence on resistance to higher doses of the drug that were analyzed in our research.

Detection of mutations associated with drug resistance among susceptible isolates may indicate

the presence of low number of drug resistant clones in *M. tuberculosis* population and might be a

signal for correction of TB therapy in case it was developed based on phenotypic data.

Comparative analysis of *M. tuberculosis* isolates obtained from HIV-positive and HIV-

negative patients would suggest that HIV co-infection increases the probability of TB
generalization or development of XPTB. Previous epidemiological studies showed similar results
– a number of studies have identified a relationship between HIV and the development of XPTB
(26-28). Results of the recent research showed that HIV infection is one of risk factors for XPTB
in the US (29). The majority of *M. tuberculosis* strains included in our study (both pulmonary and
extrapulmonary) belonged to Beijing genetic group widely spread in the Russia. Comparative
analysis of XPTB and PTB cases in HIV-positive and HIV-negative patients infected with
M. tuberculosis strains from various genetic groups allowed to obtain produced different results.
For example, the HIV correlates with XPTB in patients infected with Beijing B0/W148 and
unclustered Beijing strains. However, HIV co-infection is not associated with XPTB in patients
infected with bacterial strains related to genetic clades Beijing CAO, A and 4.8 (associated with
XPTB) and strains from 4.3 clade (associated with PTB). Thus, according to our data, it may be
possible to assess the risk of XPTB or generalized TB, depending on the pathogen strain and the
presence of HIV co-infection. A limitation of our study was a relatively low number of
M. tuberculosis isolates obtained from HIV-infected individuals. We suggest that further analysis
of TB/HIV co-infection with attention on *M. tuberculosis* phylogeny could help better
understanding processes leading to active XPTB and generalized TB development.

XPTB development is a multifactorial process that can depend on many factors,
including the biology of the pathogen and the host. Understanding of these factors can help in
assessing the risks of developing complicated forms of TB, optimizing diagnosis and treatment.
Our research allowed making a snapshot of genomic markers identified in \textit{M. tuberculosis} strains obtained from patients with PTB and XPTB in Russia. Further comprehensive analysis of bacterial and human biological signatures might allow for better understanding consistent pattern of XPTB development.

\textbf{Funding}

This work was supported by Russian Foundation for Basic Research Grant 16-34-60163. SJO, MR and KK were supported by St. Petersburg State University Grant 1.52.1647.2016. AL was partially supported by Russian Science Foundation Grant 14-50-00069. NS, VZ and PY were partially supported by Russian Ministry of Education Grant 2019-14-588-0001-001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

\textbf{Acknowledgements}

Scientific research was performed using equipment of the Resource Center «Biobank», Research park of St. Petersburg State University.

\textbf{References:}

Figure legends and figures

Fig.1
Figure Legends

Fig 1. Geographical regions of Russia where *M. tuberculosis* patients were originated are highlighted with green color. The number of isolates collected in each region corresponds to the level of color saturation.

Fig 2. Phylogenetic analysis of *M. tuberculosis* isolates obtained from patients with PTB and XPTB. Phylogenetic groups were identified using maximum-likelihood approach. Isolates obtained from patients with PTB are marked using pink square symbol and from XPTB – with black square symbol. Beijing genetic group (lineage 2), colored with the blue, could be discriminated on 3 subclusters (B0/W148, Clades A and CAO marked with different shades of green) and a group of unclustered genotypes. Lineage 4 is represented by Ural (red), LAM (pink color) and T genetic families, one isolate belongs to genetic group 4.4, spoligotype family S. Detailed information on *M. tuberculosis* genetic lineages, microbiological and clinical data are available in Supplementary table 1.
TABLES

Table 1. Genetic clades, identified among *M. tuberculosis* isolates from different localizations (see fig. 2)

<table>
<thead>
<tr>
<th>Genotype</th>
<th>PTB N</th>
<th>PTB %</th>
<th>XPTB N</th>
<th>XPTB %</th>
<th>Total N</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing:</td>
<td>48</td>
<td>66.67</td>
<td>60</td>
<td>82.19</td>
<td>108</td>
<td>74.48</td>
</tr>
<tr>
<td>Beijing unclustered</td>
<td>16</td>
<td>22.22</td>
<td>15</td>
<td>20.55</td>
<td>31</td>
<td>21.38</td>
</tr>
<tr>
<td>Beijing B0/W148</td>
<td>26</td>
<td>36.11</td>
<td>23</td>
<td>31.51</td>
<td>49</td>
<td>33.79</td>
</tr>
<tr>
<td>Beijing Clade A</td>
<td>3</td>
<td>4.17</td>
<td>14</td>
<td>19.18</td>
<td>17</td>
<td>11.72</td>
</tr>
<tr>
<td>Beijing CAO</td>
<td>3</td>
<td>4.17</td>
<td>8</td>
<td>10.96</td>
<td>11</td>
<td>7.59</td>
</tr>
<tr>
<td>4.1</td>
<td>5</td>
<td>6.94</td>
<td>3</td>
<td>4.11</td>
<td>8</td>
<td>5.52</td>
</tr>
<tr>
<td>4.2</td>
<td>6</td>
<td>8.33</td>
<td>4</td>
<td>5.48</td>
<td>10</td>
<td>6.9</td>
</tr>
<tr>
<td>4.3</td>
<td>11</td>
<td>15.27</td>
<td>2</td>
<td>2.74</td>
<td>13</td>
<td>8.97</td>
</tr>
<tr>
<td>4.4</td>
<td>1</td>
<td>1.39</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.69</td>
</tr>
<tr>
<td>4.8</td>
<td>1</td>
<td>1.39</td>
<td>4</td>
<td>5.48</td>
<td>5</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Table 2. Characterization of drug susceptibility of *M. tuberculosis* from different localizations, n (%)

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Susceptible</th>
<th>Mono-resistant</th>
<th>Poly-resistant</th>
<th>MDR</th>
<th>XDR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrapulmonary</td>
<td>12 (16.44)</td>
<td>3 (4.11)</td>
<td>9 (12.33)</td>
<td>44 (60.27)</td>
<td>5 (6.85)</td>
<td>73</td>
</tr>
<tr>
<td>Pulmonary</td>
<td>7 (9.72)</td>
<td>2 (2.78)</td>
<td>9 (12.5)</td>
<td>30 (41.67)</td>
<td>24 (33.33)</td>
<td>72</td>
</tr>
<tr>
<td>Total number</td>
<td>19 (13.10)</td>
<td>5 (3.45)</td>
<td>18 (12.41)</td>
<td>74 (51.03)</td>
<td>29 (20.00)</td>
<td>145</td>
</tr>
</tbody>
</table>
Table 3. Characterization of drug susceptibility in different *M. tuberculosis* genetic clades (n).

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Susceptible</th>
<th>Mono-resistant</th>
<th>Poly-resistant</th>
<th>MDR</th>
<th>XDR</th>
<th>Total Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beijing:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>11</td>
<td>62</td>
<td>25</td>
<td>108</td>
</tr>
<tr>
<td>Beijing unclustered</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td>Beijing B0/W148</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>31</td>
<td>14</td>
<td>49</td>
</tr>
<tr>
<td>Beijing A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Beijing CAO</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>HIV+</th>
<th>HIV-</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB</td>
<td>3</td>
<td>69</td>
<td>72</td>
</tr>
<tr>
<td>XPTB</td>
<td>14</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>Generalized TB</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
</tbody>
</table>
Table 5. Number of *M. tuberculosis* isolates obtained from patients with different TB localization and HIV-status

<table>
<thead>
<tr>
<th>Geneinc clage</th>
<th>HIV co-infection</th>
<th>Diagnosis</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PTB</td>
<td>XPTB</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>+</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclustered</td>
<td>+</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>16</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0/W148</td>
<td>+</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>25</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAO</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>+</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>72</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>