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Materials and methods14

Reconstruction of biosphere-level metabolic network. Biosphere-level metabolism was reconstructed from the KEGG database15

(1) according to protocol described previously (2). We modified the network in several ways to model primitive thioester-based16

metabolic network without nitrogen or phosphate. First, to simulate the availability of thiols capable of forming thioesters, we17

included Coenzyme A, Acyl-Carrier Protein and Glutathione into the seed set. However, to enforce the constraint that these18

metabolites could only be used in reactions as coenzymes (and not products or substrates), we prevented the degradation by19

removing KEGG reactions R10747, R02973 and R02972.20

We next assigned standard molar free energies to reactions using eQuilibriator at a predefined pH (3). Next we substituted21

NAD, NADP and FAD-coupled reactions with an arbitrary redox couple. For example, if the redox reaction Xox + NADH →22

Xred + NAD+ was swapped with electron donor with a redox potential of E+
0 mV, we would use the following formula to23

adjust the standard molar free energy for the new reaction r′:24

∆r′G
′◦ = ∆rG

′◦ + nF (E+
0 − E0)25

where n are the number of electrons transferred in reaction r and F = 96.485 kJ/V. Note that if we assumed that the26

electron donor/acceptor substitute was a two electron donor/acceptor, we did not change the stoichiometry in the reaction27

equation. However, in the case where the electron donor/acceptor substitute was a single electron donor/acceptor, we change28

the stoichiometric coefficients to scj = 2 for all reactions j, where c represents metabolites NAD(H), NADP(H) and FAD(H2).29

For this work, we systematically varied the reduction potential E+
0 and stoichiometry of the primitive redox coenzyme.30

Thermodynamically-constrained network expansion. We performed network expansion using thermodynamic constraints in31

a different way than performed previously (2) Previously, we removed reactions above a predefined free energy threshold32

of τ = 30kJ/mol (2). For this work, we computed the lowest reaction free energy possible using estimates for upper and33

lower bounds on metabolite concentrations, ui and li, and removed reactions with a positive reaction free energy. For a given34

biochemical reaction at fixed temperature and pressure, ∆rG
′ is defined as:35

∆rG
′ = ∆rG

′◦ +RT ln
∏
i

asir
i36

where the ∆rG
′◦ is the free energy change of the reaction at standard molar conditions, R is the ideal gas constant, T is37

temperature, ai is the activity of metabolite i and sir is the stoichiometric coefficient for metabolite i in reaction r. We fixed38

ai for each reactions according to the following rules:39

ai =
{
ui, if sir < 0,
li, if sir > 0.

[1]40

We then removed reactions with a ∆rG
′ ≥ 0. For all simulations we assumed that ui = 10−1 M and li = 10−6 M. Note that41

because we model each reaction independently, metabolite concentrations could be inconsistent . For instance, if metabolite i is42

the substrate for reaction a and a product for reaction b, then xi = ui for reaction a and xi = li for reaction b.43

Using this procedure to systematically remove reactions that were considered to be thermodynamically infeasible, we44

performed network expansion (4–6) using the computational procedure described in (2).45

Parameters for network expansion. We systematically studied the size and composition of networks under precise environmental46

conditions by varying (a) the reduction potential from the environment, (b) pH, (c) temperature, (d) the presence or absence47

thiols, (e) the inclusion of fixed carbon into the seed set and (f) the inclusion of fixed nitrogen into the seed set. We now48

discuss each of these parameters in more detail:49

• Reduction potential and stoichiometry. A wide range of environmental conditions could have provided electron donors50

at various potentials: high potential redox pairs, with strong oxidants like Fe(III), may have been present in oceans at51

high concentrations, while strong reductants like H2, disulfides, proto-ferredoxin, or reductive carboxylation of thioesters52

have been produced via serpentinization or geochemical analogues of primitive metabolic pathways (7). We substituted53

reactions coupled to NAD, NADP and FAD with a generic single or double electron donor and acceptor pair at a fixed54

potential. To prevent unbalanced electron transfer, we removed the following transhydrogenase reactions: R10159, R01195,55

R00112, R09520, R09748, R05705, R05706, R09662, R09750. We then created a single or double electron donor/acceptor56

pair with a fixed reduction potential, E+
0 , ranging from -600 to 600 mV.57

• pH We modified the pH by setting reaction free energies at various pH’s (5.0-9.0) using eQuilibriator (3) which relies on58

the component contribution method (8).59

• Temperature. Temperatures were assumed to have been within a range of 50-150 ◦C, spanning estimates of ocean seawater60

temperature in the Archean (9), up to some alkaline hydrothermal vent systems (10).61
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• Thiols. In our model we provided thiols that serve as substitutes for coenzymes that form thioester bonds in extant62

metabolic networks. To this end, we provided Coenzyme A, acyl-carrier protein and Glutathione in the seed set, but63

removed key degradation reactions to ensure these compounds only served as coenzymes, rather than material sources,64

during network expansion (2).65

• Fixed nitrogen. To study the consequences of adding or removing a source of fixed nitrogen as a seed compounds for66

network expansion, we either added or removed ammonia from the seed set prior to expansion.67

In addition to parameters we varied, we kept constant two additional parameters that could be studied in future work:68

• Metabolite concentrations. Metabolite concentrations were assumed to be within 1 µM - 100 mM. The upper bound69

estimate is consistent with recent experimental data showing that key metabolites (formate, methanol, acetate and70

pyruvate) can be produced near 100 mM (11). Although we do not have empirical evidence to suggest a reasonable lower71

bound on metabolite concentrations in ancient metabolic networks, we assumed that 1 µM, the estimated lower bound in72

today’s cells (12), was also the lower bound in our model of ancient metabolism.73

• Reactions with no free energy estimate. 53 % of the biosphere-level metabolic network reactions have no free energy74

estimate (4851 of 9074). For all simulations presented in this paper, we assumed these reactions were blocked and did not75

include them in the network.76

Generalized linear modeling of network expansion results. To access the effects of various parameters on the outcome of77

network expansion, we used generalized linear models to construct logistic regression classifiers to predict whether or not78

the network expanded beyond 100 metabolites using a combination of predictors, including categorical variables encoding79

whether or not ammonia, thiols or fixed carbon was provided in the seed set, and continuous variables encoding the reduction80

potential, pH and temperature used in each simulation. We first define the response variable for simulation i as yi where yi = 181

if the simulation resulted in a network that expanded beyond 100 metabolites, and zero otherwise. For the set of simulations82

performed in Fig. 1 in the main text, we constructed a design matrix consisting of categorical variables representing the83

following scenarios:84

1. xN,i ∈ {0, 1}: 1 if ammonia was included in the seed set, and 0 otherwise.85

2. xS,i ∈ {0, 1}: 1 if thiols were included in the seed set, and 0 otherwise.86

3. xC,i ∈ {0, 1}: 1 if fixed carbon (acetate/formate) was included in the seed set, and 0 otherwise.87

4. xH,i ∈ R>0: A continuous variable representing the pH. Note for our simulations, we only explored acidic (pH=5), neutral88

(pH=7) and alkaline (pH=9) regimes.89

5. xE,i ∈ R: A continuous variable representing the reduction potential at standard molar conditions (a the specified pH90

listed above). For our simulations, we explored a wide range of standard molar reduction potentials (from -600 mV to91

+600 mV).92

6. xT,i ∈ R: A continuous variable representing the temperature. For our simulations, we explored two temperatures: a93

high temperature regime (T = 150 ◦C), and a low temperature regime (T = 50 ◦C).94

We next constructed the following generalized linear model to model whether the network expanded beyond metabolites:95

logit(yi) = β0 + βNxN,i + βSxS,i + βCxC,i + βHxH,i + βExE,i + βTxT,i [2]96

We fit the parameters (β) using the fitglm.m function in MATLAB 2015a, and a receiver operating curve (ROC) was97

generated using the perfcurve.m function. For results presented in Fig. 2C in the main text, individual predictors were removed98

in the generalized linear model presented above. To access whether the trained logistic model served as an accurate classifier,99

we performed leave-one out cross-validation by removing individual samples from the training set an testing the accuracy of100

the trained classifier on the removed sample. This procedure resulted in an cross-validation accuracy of 0.89.101

Constraint-based modeling. We constructed a model of a autocatalytic network at steady state using a variant of constraint-102

based modeling of cellular metabolism called thermodynamic-based metabolic flux analysis (TMFA) (13). TMFA transforms103

the non-linear constraints induced by imposing thermodynamic consistency into mixed-integer linear constraints. In this104

section, we first describe (a) the construction of primitive biomass composition for a model of an ancient proto-cell and (b) the105

formulation of TMFA used in this analysis.106
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Prebiotic biomass equation. We constructed a simple model for the macromolecular composition of primitive proto-cells, using107

empirical knowledge of extant cellular life. Since our metabolic model of proto-metabolism does not included macromolecular108

production of nucleotides (and thus a nucleic acid based genetic system), we assume that the primary role of proto-cellular109

metabolism was to initially produce components for a cellular membrane and catalysts. Building off of Christian de Duve’s110

multimer hypothesis (14), we first propose that the biomass can be constructed using a simple two parameter model consisting111

of the mass fraction of lipids φL and the average length of each catalytic multimer n.112

• Lipid mass fraction. The lipid content in modern cells is roughly 10% of the total dry mass (Bionumbers ID: 111209)113

(15), primarily composed of the fatty acid palmitate. For our analysis, we assume that palmitate represents the sole114

component of lipids. Future models could incorporate glycerol, which enables the production of glycerolipids. While115

phosphate is used in cellular membranes as a polar head group to produce amphiphilic molecules, primitive processes may116

have conjugated negatively charged organic acids (e.g. oxalate) to glycerol via a thioester-mediated synthesis mechanism117

to create ampiphilic lipid molecules resembling modern phospholipids. For our initial model, we simply propose that118

palmitate was the initial amphiphilic component of primitive membranes, where the negatively charged polar carboxylate119

ion was sufficient for forming a membrane, and assumed that proto-cells consisted of a lipid mass fraction of φL.120

• Catalytic multimer mass fraction. We propose that ancient catalysts were composed of inorganic molecules (e.g. iron-sulfur121

clusters, metal ions, mineral surfaces) chelated with multimers of α-hydroxy-acids (see Fig. 4A in main text). For our122

model, we assume that the eight keto acid precursors producible from our network were the dominate monomers of123

ancient multimeric catalysts. We assume that the total mass fraction of these catalysts are 1− φL = φC =
∑

k
φk, where124

φk is the mass fraction of polymerized monomer k. For our analysis, we assumed that each monomers is uniformly125

distributed, so that φk = constant for all k. Additionally, since each monomer must be reduced to α-hydroxy acids,126

there is linear relationship between the electron demand, se, and the number of molecules of monomers produced. The127

stoichiometric equivalents of electron donors are thus:128

se = 2
∑
k

φk
Mk

129

where Mk is the molar mass of monomer k.130

• Average size of catalytic multimers. The average size of mulimeric catalysts sets the number of thioester bonds required131

for synthesis of catalytic multimers. For each polymer of size n, there are n− 1 thioester bonds required. In our model,132

the total number of monomers are fixed to be:
∑

k

φk
Mk

, where Mk is the molecular weight for monomer k. Thus for a133

fixed monomer length n, we can compute the number polymers using the following formula:134

P (n) = 1
n

∑
k

φk
Mk

135

The thioester demand is thus st(n) = (n− 1)P (n), or:136

st(n) = n− 1
n

∑
k

φk
Mk

137

For our analysis we assumed a fixed polymer length of size n = 10 monomers.138

Using these two parameters, we constructed the biomass equation for the proto-cellular model.139

Thermodynamic Metabolic Flux Analysis (TMFA). To simulate a thermodynamically-feasible steady-state behavior of this metabolic140

network, we used thermodynamic metabolic flux analysis (TMFA) (13). Briefly, TMFA transforms the non-linear constraints141

induced by imposing thermodynamic consistency into mixed-integer linear constraints. We first converted the model into an142

irreversible model by modeling each reaction as both forward and backward half reactions. We then constructed the following143

mixed-integer linear program (MILP) to find a flux vector, v (with elements vr for each reaction r), log-transformed metabolite144

concentrations (ln(x)) and binary variables indicating whether a reaction is feasible (z) given a specific objective function was145

satisfied. The objective function used in this work was to maximize biomass yield, similar to the objectives frequently used in146

FBA model of microbial metabolism. Thus, the optimization problem was constructed according the following MILP:147

maximize
ln(x),v,z,e

vbiomass

subject to Sv = 0
0 < vr ≤ zrubr, ∀r ∈ R
zrK −K + ∆rG

′ < 0, ∀r ∈ R

∆rG
′o +RT

∑
i

sirln(xi) + σrer = ∆rG
′

ln(10−6) ≤ ln(xi) ≤ ln(10−1), ∀i ∈M
− σm ≤ er ≤ σm ∀r ∈ R

[3]148
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where R andM are the sets of all reactions and metabolites, respectively. As discussed in detail elsewhere (13), the first149

equation in the constraint set ensures that intracellular metabolite concentrations are at steady-state, and are simply mass150

balance constraints for each metabolite. The second equation sets the bound on individual reaction fluxes, where the maximum151

flux through reaction r is ubr. Note that when zr = 0, the flux through reaction r is constrained to 0. The third equation152

sets ensures that zr = 1 if and only if ∆rG
′ < 0, and zr = 0 otherwise. Note that K is a large number (K > maxr{∆rG

′})153

ensuring that this constraint is not violated with zr = 0. The fourth equation is the free energy of each reaction as a function154

of log-metabolite concentrations. Note that we also add slack variables, er, to account for the possible error in the estimating155

standard molar reaction free energies for each reaction (where σr is the standard error for each reaction r), which are bounded156

by a global error tolerance σm = 2 (set in equation 6). Lastly, equation 5 simply constrains the log-metabolite concentrations to157

be bounded between 1µM and 100 mM. After each simulation, we performed a secondary optimization to find the minimal set158

of reactions that achieve the optimal growth rate by minimizing the l1-norm of the flux distribution subject to the constraint159

that vbiomass = v∗biomass160

Numerical simulations were performed using the COBRA toolbox (16) and the Gurobi optimizer (Version 7.0.1). All source161

code is provided in the following github repository: http://www.github.com/jgoldford/protometabolic_modeling.162

Calculation of coenzyme and sequence-level features within enzymes. To determine which reactions were associated with163

specific coenzymes (for results presented in Fig. S1B,D) we downloaded information for each Enzyme Commission number164

(E.C.) in the KEGG ENZYME database (http://www.genome.jp/kegg/annotation/enzyme.html). We downloaded each page and165

parsed the "comment" field for each E.C. and performed a text-based search to identify coenzymes associated with each E.C.166

number. We searched for text indicating that the enzyme mechanisms used one of the following coenzymes, cofactors and iron167

sulfur clusters: biotin, heme, PLP, TPP, pterin, molybdopterin, flavin, Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg, FeS, FeFe, Fe2S2,168

Fe3S4 and Fe4S4, respectively. We also searched E.C. numbers indicating that the reaction mechanisms are non-enzymatic.169

Text-based searches were pruned manually to remove mis-annotated enzyme-coenzyme relationships.170

For results presented in S1B, we computed the fraction of reaction E.C. numbers that were associated with one of the171

following coenzymes: Fe, Co, Ni, Cu, Mn, W, Zn, Mo, Mg, FeS, FeFe, Fe2S2, Fe3S4 and Fe4S4, or was marked as non-enzymatic.172

For results presented in S1D, we computed the fraction of reaction E.C. numbers that were associated with one of the following173

coenzymes: biotin, heme, PLP, TPP, pterin, molybdopterin, and flavin.174

For results presented in Fig. S1E, we obtained a database of known enzyme active site residues (17). We first mapped the175

network reactions to E.C. numbers listed in KEGG, then identified active sites corresponding to E.C. numbers within the the176

expanded network. We next computed the fraction of active site residues containing nitrogenous side-chains, derived from the177

following amino acids: Arginine (R), Lysine (K), Glutamine (Q), Asparagine (N), Histidine (H), and Tryptophan (W).178
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Supporting Information Text179

Network enzymes retain features of nitrogen-free catalysts. In order for the expanded networks presented in the main text to180

have operated in prebiotic conditions, reactions would have been catalyzed non-enzymatically by inorganic or simple organic181

catalysts available in prebiotic environments. Prior work has suggested that reactions in metabolic networks that proceed182

spontaneously or depend on enzymes with inorganic coenzymes, such as iron-sulfur or transition metal cofactors, may have183

operated in prebiotic conditions (11, 18–20). We identified reactions in KEGG that could proceed spontaneously or are184

dependent on one of several inorganic coenzymes (Methods), and defined this set of reactions as plausibly pre-enzymatic, or185

“PPE”-reactions (Fig. S1A). For each proposed prebiotic scenario that lead to expansion of at-least 100 metabolites (n = 144,186

Fig S1A), we partitioned reactions added to the network before the inclusion of ammonia into the seed set (herein called187

“pre-ammonia” reactions) and reactions added to the network after ammonia was added to the seed set (or “post-ammonia”188

reactions). We then computed the fraction pre- and post-ammonia reactions that were classified as PPE reactions, and found189

that pre-ammonia reactions contained a higher proportion of PPE-reactions relative to post-ammonia reactions (one-tailed190

Wilcoxon sign-rank test: P < 10−19), suggesting that the pre-ammonia reactions may have been more readily catalyzed by191

simple inorganic catalysts in prebiotic environments. We next hypothesized that if these enzymes evolved from a thioester-driven192

proto-metabolism without nitrogen, then enzymes in these networks should be depleted in enzyme-bound nitrogen-containing193

coenzymes. We thusly computed the fraction of pre- and post-ammonia reactions dependent on enzymes containing TPP,194

PLP, heme, biotin, flavin, pterin, and cobalamin (Fig. S1C, Methods). We found that the proportion of pre-ammonia195

reactions associated with these coenzymes were significantly less than the proportion of post-ammonia reactions dependent on196

these coenzymes (Fig. S1D, one-tailed Wilcoxon sign-rank test: P < 10−24), which is primarily due to the large number of197

PLP-dependent reactions added to the network after the inclusion of ammonia.198

Since only a minority of reactions in this network were categorized as PPE, simple organic or organosulfur catalysts may have199

been necessary in order for this network to function in prebiotic environments. Christian de Duve suggested that thioester-based200

polymers may have provided the necessary catalytic components of ancient metabolism in addition to inorganic catalysts (14).201

In modern living systems, monomers of keto acids are converted into amino acids, which are then polymerized into polypeptides202

either with or without the aid of the ribosome and mRNA. If prebiotic environments were severely nitrogen limited, keto acids203

may have been reduced to hydroxy acids, and polymerized into polyesters using thioesters as a condensing agent. Notably, in204

such a scenario only the polymer backbone is altered, leaving the side chains (R-groups) within today’s amino acids intact.205

Recent work has demonstrated that polyesters may aid in the polymerization of amino acids during dry-wet cycles (21), and206

that the peptidyl-transferase domain on the ribosome can polymerize hydroxyacylated tRNAs to form polyesters (22, 23),207

suggesting that ester bond formation may have proceeded amide bond formation in living systems.208

It has been proposed that enzymes retain features of early catalysts before the emergence of the genetic code and protein209

translation systems, and that enzyme active sites may bear resemblance to ancient catalysts. Thus, if this network represents210

a relic of an ancient metabolism before the biological incorporation of nitrogen, then the active sites of enzymes catalyzing211

reactions within the network should be depleted in amino acids with side chains containing nitrogen (Fig. S1E). To see if the212

catalytic residues of the enzymes in the pre-ammonia network were depleted in amino acids with nitrogenous side chains, we213

first obtained a database of catalytic site residues inferred from protein structures (17). After removing entries with interactions214

mediated by the peptide backbone, this dataset consisted of 18,721 entries, 1,304 of which were associated with active sites215

of enzymes in the nitrogen-free network in a representative network. For each putative prebiotic scenario resulting in an216

expansion with more than 100 metabolites, we computed the fraction of active site residues that contained nitrogen in enzymes217

associated with both pre- and post-ammonia reactions (Fig. S1E). We found that the proportion of nitrogenous catalytic218

residues associated with pre-ammonia reactions was significantly lower than the proportion of nitrogenous catalytic residues219

associated with post-ammonia reactions (Fig. S1F, Wilcoxon sign-rank test: P < 10−24).220

One potential alternative explanation for these biases in amino acid composition within the active sites of extant enzymes221

may be the outcome of evolutionary selection: nitrogen limitation in the environment may have favored mutations that lead to222

less nitrogen within these enzymes. However, evidence for selection for less nitrogen usage would manifest within the entire223

protein sequence, rather than just the active sites. Thus, we computed the fraction of amino acids with nitrogenous side chains224

across the entire coding sequences, rather than specifically the active sites, for enzymes associated with pre- and post-ammonia225

reactions (see Methods). We found no evidence that enzymes in the pre-ammonia network had a decreased usage of amino226

acids with nitrogenous side chains side chains relative to enzymes added to the network after ammonia was included in the seed227

set (one-tailed Wilcoxon sign rank test: P = 1) , suggesting that the biases within the active sites are not merely a consequence228

evolutionary selection (see Fig. S4).229
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Fig. S4. Enzymes catalyzing reactions before the addition of ammonia are not depleted in nitrogen containing amino acids relative to enzymes added after
ammonia To see if the amino acid biases in active sites of enzymes catalyzing reactions added to the network without ammonia (see Fig. S1E-F) is confounded due to
evolutionary selection for reduced nitrogen in these enzymes, we computed the fraction of nitrogen side chains in enzymes in pre-ammonia reactions (x−axis) and in enzymes
in post-ammonia reactions y-axis. We found that enzymes in the pre-ammonia networks did not have significantly less nitrogen usage compared to enzymes in post-ammonia
reactions (one-tailed Wilxocon sign-rank test: P = 1).
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Additional data table S1 (scenario_results.csv)230

Results of the systematic exploration of 672 prebiotic scenarios. Columns labeled with KEGG compounds IDs denote231

whether a compound appeared after expansion (1) or not (0).232
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