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Abstract 

Metastasis is the major cause of death in cancer patients and migration of cancer cells from 

the primary tumor to distant sites is the prerequisite of metastasis formation. Here we applied 

an imaging-based RNAi phenotypic cell migration screen using two highly migratory basal 

breast cancer cell lines (Hs578T and MDA-MB-231) to provide a repository for signaling 

determinants that functionally drive cancer cell migration. We screened ~4,200 individual target 

genes covering most cell signaling components and discovered 133 and 113 migratory 

modulators of Hs578T and MDA-MB-231, respectively, of which 43 genes were common 

denominators of cell migration. Interaction networks of candidate migratory modulators were 

in common with networks of different clinical breast cancer prognostic and metastasis 

classifiers. The splicing factors PRPF4B and BUD31 and the transcription factor BPTF were 

amplified in human primary breast tumors and the expression was associated with metastasis-

free survival. Depletion of PRPF4B, BUD31 and BPTF caused primarily down-regulation of 

genes involved in focal adhesion and ECM-interaction pathways. PRPF4B was essential for 

triple negative breast cancer cell migration and critical for breast cancer metastasis formation 

in vivo, making PRPF4B a candidate for further drug development. Our systematic phenotypic 

screen provides an important repository of candidate metastasis drug targets.  
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Introduction 

Metastasis is the underlying cause of death for the majority of breast cancer (BC) patients. 

Cancer cell invasion and dissemination, one of the hallmarks of cancer, is driven by aberrant 

regulation of cell migration (1–3). Cell migration is involved in different steps of the metastatic 

cascade, including local invasion, intravasation, extravasation, and colonization of secondary 

sites (4). Although surgery and radiation therapy are generally effective at the primary site, the 

development of metastatic disease signals a poor prognosis. Therefore, understanding the 

fundamental mechanisms of cell migration is critical for our comprehension of disease 

progression. 

Cell migration is a highly integrated multistep process initiated by protrusion of the cell 

membrane in response to migratory or chemotactic stimuli. Cells display several different 

migration modes, including amoeboid and mesenchymal (also called lamellipodial) migration, 

as well as multicellular or collective cell migration (5–7). Recent reports have shown that tumor 

cells display adaptive switching between migration modes, in response to micro-environmental 

changes (8) or molecular targeting (9, 10). This switching, also referred to as cellular plasticity, 

makes the metastatic process difficult to target therapeutically, as tumor cells rapidly adapt to 

changing environments.  

Various mechanisms define tumor cell migration, which include signaling components that 

drive the reorganization of the cytoskeleton, such as Rho-GTPases and its regulators, cell 

adhesion molecules part of the family of integrin receptors as well as downstream signaling 

mediators including focal adhesion kinase (FAK) and integrin linked kinase (ILK) (11–13). 

Often these molecules are part of gene networks that are co-regulated to promote cell 

migration, such as growth factor-mediated activation of Smad- and ZEB-family members that 

ultimately drive epithelial-mesenchymal transition (EMT) thereby facilitating cancer cell 

dissemination (14–17). Several of these individual factors, including FAK, EGFR, HBEGF, 

ROCK and RHOC are also essential in cancer metastasis (18–23). Independent functional 

genomics screens have assessed the role of kinases and adhesion-related molecules in cell 
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migration of lung carcinoma H1299 cells (24) and breast cancer MCF10A cells (25). Also 

recent in vivo RNAi screens have identified several novel modulators of cancer metastasis 

directly (26–28). However, a systematic analysis on the role of the complete spectrum of 

individual signaling molecules in tumor cell migration is lacking.  

Here, we aimed to unravel the landscape of cell signaling components that functionally drive 

migration of triple negative breast cancer (TNBC) cells, and are likely responsible for cancer 

cell dissemination and metastasis formation. The TNBC subtype contains ~15% of all breast 

cancers and has a poor prognosis (29). A large proportion of TNBC cell lines have a 

mesenchymal phenotype and a high motility behavior in association with a metastatic spread 

(30, 31). We performed an imaging-based RNAi-screen to identify genes involved in the 

regulation of different migratory phenotypes in the two highly motile and mesenchymal TNBC 

cell lines, Hs578T and MDA-MB-231. Given the diverse migratory behavior of these cells, it 

allowed a more complete coverage of individual genes and gene networks that define TNBC 

cell migration. Primary hits were extensively validated by deconvolution screens and additional 

live cell microscopy experiments. These gene sets were used for network analysis, which 

revealed enrichment of KEGG pathways in cancer and cell migration, and showed a profound 

overlap with networks derived from cell migration and breast cancer prognostic signatures. 

Next generation sequencing revealed that PRPF4B, BUD31 and BPTF depletion caused 

downregulation of various focal adhesion and extracellular matrix (ECM) interaction 

components. Importantly, PRPF4B knockdown decreases metastasis formation in vivo 

implying an essential role for this protein in breast cancer metastasis formation.  
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Results 

A systematic high throughput signaling RNAi screen for TNBC cell migration 

To unravel the critical signaling components that drive TNBC cell migration, we selected two 

most highly motile TNBC cell lines Hs578T and MDA-MB-231 for microscopy-based RNAi 

screening. These two cell lines both show a mesenchymal type of migration, yet show 

differences in lamellipodia organization and protrusive activity. These differences are visible 

during a PhagoKinetic Track (PKT) assay, where cells are seeded on a fibronectin-coated 

surface covered with a monolayer of beads and allowed to migrate over time (Fig. 1A, 

Supplementary movies 1 and 2). We optimized the siRNA transfection and PKT assay for full 

automation by liquid handling robotics and automated microscopy (Fig. 1B and Suppl. Fig. 1). 

Multi-parametric image analysis of the migratory tracks allowed quantitative assessment of cell 

migration behavior. To unravel the signaling landscape that regulates mesenchymal tumor cell 

migration, we focused our screening effort on the complete set of cell signaling components, 

covering all kinases, phosphatases, (de)ubiquitinases, transcription factors, G-protein coupled 

receptors, epigenetic regulators and cell adhesion-related molecules. In total, 4198 individual 

target genes were evaluated in both Hs578T and MDA-MB-231 in 2 biological independent 

experiments, in which each experiment measured two PKT assay technical replicate plates 

(see schematic overview of the entire screen set up in Suppl. Fig. 1). Image analysis of single 

cell tracks was performed using PhagoTracker (32, 33) and quantitative output data was 

normalized (robust Z-score) to mock transfected control cells using KNIME. High and low Z-

scores of individual parameters already showed the effect of siRNA knockdown on cell motility, 

i.e. low net area or low axial ratio suggests inhibition of cell migration whereas high axial ratio 

and high major axis indicated enhanced motility (Fig. 1C/D). Even though the quantification 

provided eight parameters, all the different migratory phenotypes observed within the data 

were not fully represented by single parameters. Therefore, migratory phenotypes were 

classified manually and visualized by principal component analysis (PCA)-based clustering 

(Fig. 1E/F). A combination of parameters was used to define inhibition of cell migration (i.e. 
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small and small round phenotype), loss of directionality (round phenotype), and enhanced cell 

migration (long rough and long smooth phenotype). Primary hits were identified by setting 

thresholds on Z-score for the most dominant parameters within each phenotype. For all 

phenotypes together, we defined in total 1501 primary hits for Hs578T, and 1306 for MDA-MB-

231. For each phenotype, the overlap in hits between Hs578T and MDA-MB-231 was 

determined (Fig. 1G). These overlapping hits (145 in total) showed similar effects on cell 

migration upon knockdown in both cell lines, suggesting these were bona-fide cell line-

independent drivers of tumor cell migration. Hence we selected these overlapping hits for 

validation by single siRNA sequences. Additionally, to obtain a larger coverage of genes 

regulating cell migration that would uncover a more cell type specific migratory behavior, we 

also selected the top 153 hits in each cell line for validation; only genes that have been defined 

as druggable were validated (Suppl. Fig. 1 and Suppl. Table 1). 

To validate the primary hits, we repeated the PKT screen assays with both SMARTpool and 

four single siRNA sequences (Suppl. Fig. 1). First, we confirmed that the SMARTpool 

knockdown was able to reproduce a similar effect as before and subsequently determined the 

number of single siRNA sequences showing the same results for the three main phenotypic 

classes (e.g. small (ZNF446), small round (PRPF4B), and round (PBX1); Fig. 2A). Hits were 

considered validated when at least 2 out of 4 sequences showed a similar result. Some single 

siRNAs showed phenotypic switching, i.e. the SMARTpool produced a small round phenotype 

and the single siRNA showed either a small or round track phenotype; such cases were still 

considered validated, as these different phenotypic classes indicate a reduction in migration. 

In total, 217 hits were validated in the Hs578T and 160 in the MDA-MB-231 (for Hs578T see 

Fig. 2B; for MDA-MB-231 see Suppl. Fig. 2; all validated genes are in Suppl. Table 2). Primary 

hits that enhanced cell migration in both cell lines were difficult to validate, likely the high 

motility of our TNBC cell lines is more suited to detect genes that inhibit migration upon 

knockdown. Indeed, the majority of validated hits were found in the phenotypic classes of 

reduced cell migration (Fig. 2C). There was an overlap of 65 validated candidate genes that 
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showed inhibition of cell migration in both cell lines (Fig. 2D). Annotation of protein classes for 

each set of validated hits (Hs578T, MDA-MB-231, and overlap) showed that most of the hits 

were transcription factors (Figure 2E i) also after correction for library size (Figure 2E ii), 

suggesting that transcriptional regulated gene networks are critical drivers of TNBC cell 

migration behavior and consequently metastasis formation. 

 

Transcriptional determinants are critical drivers of BC migratory phenotypes.  

To further confirm the migratory phenotype detected in the static PKT assay, we evaluated the 

effect of all validated hits on cell migration using a live microscopy cell migration assay. GFP-

expressing Hs578T and MDA-MB-231 cells were used, which allowed fast image acquisition 

of larger cell populations. Migratory behavior after knockdown was analyzed at the single cell 

level and normalized to mock (Suppl. Table 3 and 4). Live cell imaging with Hs578T cells 

confirmed 133 of the 217 hits to inhibit cell migration. Similarly, for the MDA-MB-231 cells, 113 

candidate genes (out of 160 validated hits) were confirmed to regulate cell migration. Upon 

knockdown, 31 PKT overlap candidates inhibited cell migration in this assay in both cell lines 

(Fig. 3A and 3B and Suppl. Movies 3-14), including various transcriptional and post-

transcriptional regulators such as RUNX1, MTF1, PAX7, ZNF141, SOX14, MXD1, ZNF446, 

TARDBP, TBX5, BPTF, TCF12, TCERG1, ZDHHC13, BRF1, some of which are directly 

involved with splicing (BUD31 and PRPF4B) or histone modification (HDAC2 and HDAC10). 

For cell line specific validated hits, we filtered candidate genes for which the expression was 

associated with clinical breast cancer metastasis-free survival (MFS) in a patient dataset (the 

Public-344 cohort, GSE5237 and GSE2034, Suppl. Table 5)  Many of the hits associated with 

poor outcome inhibited cell migration in both Hs578T and MDA-MB-231 (Fig. 3A and 3B, see 

Suppl. Table 3 and 4 for all candidate genes), combined with the overlap candidates resulting 

in 43 genes that were common denominators of cell migration. Single cell migratory trajectories 

were plotted for genes affecting cell migration in both cell lines (Fig. 3C). The cell migration 

movies were visually inspected to determine the effect of knockdown on migration phenotype. 
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Depletion of PRPF4B and TARDBP resulted in slow and round cells in both cell lines, yet 

Hs578T cells with knockdown still displayed a dynamic cell membrane with clear protrusive 

activity (Supplementary movies 5-6 and 15-16). Interestingly, siBUD31 and siUBE2E1 caused 

very small MDA-MD-231 cell phenotypes that lacked polarization but demonstrated highly 

dynamic yet unstable protrusions (Supplementary movies 12 and 18); similar effect of BUD31 

depletion was also observed in the Hs578T cells. Taken together, our tertiary screen 

established high confidence in 61% and 71% of our candidate genes (Hs578T and MDA-MB-

231 respectively).  

 

Functional drivers of tumor cell migration partner in networks predictive for BC 

progression. 

To better understand the regulatory networks driving BC cell migration, we used the larger lists 

of our PKT validated candidate genes to inform on protein-protein interaction (PPI) networks 

that are involved in Hs578T and MDA-MB-231 cell migration. KEGG pathway analysis was 

performed on the first-order networks of our candidate genes and revealed that similar 

pathways were affecting cell migration in both cell lines, despite that the networks were 

constructed from different candidate genes (Figure 4A and 4B, Suppl. Table 6). Several 

pathways were expected (‘Pathways in cancer’, ‘Focal adhesion’ and ‘Regulation of actin 

cytoskeleton’) and support that our candidate genes are likely directly connected to signaling 

networks that determine tumor cell migration. Interestingly, KEGG pathway analysis-based 

correction of the annotation of the PKT validated candidates not only confirmed the potent role 

of ‘Transcriptional misregulation in cancer’, but also immune-related, splicing and Notch-

signaling pathways in cancer cell migration (Suppl. Fig. 3A). To further investigate the 

connection of our candidate genes to cell migration and invasion, we correlated our signaling 

networks to that of three established gene signatures associated with metastatic behavior and 

cell migration: the Human Invasion Signature (HIS) (34), the Lung Metastasis Signature (LMS) 

(35, 36), and a 440-gene breast cancer cell migration signature. We previously determined the 
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latter signature based on the gene expression profiles and the migration and invasion capacity 

of a panel of 52 breast cancer cell lines (manuscript in preparation, Rogkoti et al.). Next, these 

three independent gene signatures were used to generate PPI networks and the size of each 

network was reduced to a smaller ‘core’ network (minimum interaction network), which only 

contained connecting nodes and seed proteins. We next compared the PPI networks from our 

Hs578T and MDA-MB-231 cell migration screen hits to these three gene signature-based PPI 

networks (Suppl. Fig. 3B). Both Hs578T and MDA-MB-231 networks show a solid overlap with 

the 440-gene signature-derived network, with 156 and 145 genes overlapping (Hs578T and 

MDA-MB-231, respectively). This indicates that the genes we identify as determinants of BC 

cell migration are part of the gene expression regulons associated with breast cancer cell 

migration. This notion is further strengthened by the overlap of the Hs578T and MDA-MB-231 

PPI networks with the LMS and HIS signature-based networks: 58 (LMS) and 90 (HIS) genes 

in overlap with Hs578T network, and 53 (LMS) and 77 (HIS) genes with the MDA-MB-231 

network. Furthermore, each gene signature derived network showed enrichment for the same 

KEGG pathways as the PPI networks based on our candidate genes (Suppl. Table 6). Given 

the high degree of overlap between these three gene signature-based networks and lists of 

candidate genes, we constructed a single zero-order network based on the combination of 

candidate genes affecting cell migration in Hs578T and MDA-MB-231 (Fig. 4C). This revealed 

a sub-network linking 8 transcriptional regulators of which most already have been related to 

cancer progression, including HDAC2, BPTF, BRF1, TAF11, TCF12 and FOS (37–39). 

Next we systematically investigated the effect of knockdown of the 217 PKT validated hits for 

morphological changes in the highly polarized Hs578T cell line. 72 hours after knockdown, 

cells were fixed followed by actin cytoskeleton staining and confocal imaging. For single cells 

we determined quantitative scores for the minor axis, major axis, cell area, cell spikes and 

compactness. For each gene knockdown we defined the average scores and fold changes 

compared to mock control (Suppl. Table 7). Hierarchical clustering grouped our PKT validated 

hits in nine different clusters (Fig. 4D, see Supplementary Figure 4 for all gene names). Both 
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clusters 2 and 9 contained control knockdown samples but also many genes that affected 

HS578T cell migration, suggesting that a decrease in migration does not necessarily coincide 

with an overall change in cell morphology. Not surprisingly, inhibition of cell migration was 

associated with a wide variety of cellular morphologies: genes in cluster 1 and 3 decreased 

overall cell area, while genes in cluster 4, 5 and 6 increased overall cell area. Regarding the 

parameter cell spikes (reflecting the number of cell protrusions), we observed the same 

variation: some genes reduced cell protrusion formation (cluster 4, 5 and 8), while others 

enhanced protrusion formation (cluster 7). Our combined data indicate that the various 

candidate hits differentially affect cell morphology and migratory phenotypes, indicative of 

different genetic programs that define BC cell migration behavior. 

 

Modulators of cell migration are associated with BC metastasis-free survival 

To further relate our candidate genes to breast cancer progression and metastasis formation 

in patients, we compared our genes to three prognostic signatures for breast cancer metastasis 

(40–42). Consistent with previous reports, we observed very few overlapping genes. Despite 

the minimal overlap of genes, these prognostic gene signatures have many related pathways 

in common (40). Therefore, we again used the PPI approach to investigate the relation 

between our migration screen hits and BC progression. Minimum interaction PPI networks 

were generated based on Wang’s 76 genes, Yu’s 50 genes, and the NKI-70. All three PPI 

networks showed a robust overlap with our Hs578T and MDA-MB-231 cell migration networks 

(Fig. 5A and Suppl. Table 8). These three gene expression signatures are strongly predictive 

of a short time to metastasis, implying that our candidate genes are part of biologically 

functional regulatory networks and pathways critical in early onset of breast cancer metastasis.  

Moreover, we investigated the percentage of mutations, amplifications and deletions (together 

% altered) of the 43 candidate genes decreasing migration in both cell lines (see Fig. 3A and 

3B) in 29 cancer types using publicly available data from The Cancer Genome Atlas (TCGA) 
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(Fig. 5B). We identified clusters of candidate genes highly altered in multiple cancer types, 

amongst which breast cancer. Separating different types of alterations for the top key factors 

including BPTF, BUD31, CACNG1, RUNX1, PRPF4B, and PBX1 demonstrated that most of 

these alterations in breast cancer are dominated by amplifications (Fig. 5C), suggesting that 

enhanced expression levels of these candidates might be involved in breast cancer initiation 

or progression. Consequently, we also evaluated the association of the gene expression of 

these 45 candidate genes with MFS in the Public-344 cohort (Fig. 5D, Suppl. Table 9). 19 out 

of 24 genes with available expression data showed a hazard ratio >1.2 implicating that high 

expression of these genes increases the chance of developing metastases with at least 20% 

in any of the breast cancer subtypes of which 14 are significant (adjusted p-value < 0.05). 

Interestingly, high expression levels of both splicing factors PRPF4B and BUD31 are 

associated with earlier metastasis formation in triple-negative and ER-positive tumors 

respectively (Fig. 5D). Non-core splicing factor PRPF4B is a serine/threonine-protein kinase 

regulating splicing by phosphorylation of other spliceosomal components (43). PRPF4B has 

already shown to be involved in taxane resistance and HER2 and ER induced proliferation in 

BC, but its role in migration and metastasis formation is yet unknown (44, 45). BUD31 is a core 

splicing factor essential for spliceosome assembly, catalytic activity and associates with 

multiple spliceosome subcomplexes and has shown to be a MYC target in MYC-driven cancer 

cells (46). We also identified the transcription factor BPTF, known for its role in chromatin 

remodeling (47), that is highly amplified in many cancer types and significantly positively 

correlated to MFS in breast cancer patients (Fig. 5D). BPTF was recently shown to be an 

important transcription factor interacting with the oncogene MYC in pancreatic cancer (48). We 

further focused on splicing factors PRPF4B, BUD31 and transcription factor BPTF, since these 

were newly identified modulators of cell migration associated with BC MFS and/or highly 

amplified in BC. 
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PRPF4B, BUD31 and BPTF modulate expression and activity of cell-matrix adhesion 

components 

In order to identify the mechanisms by which PRPF4B, BUD31 and BPTF were affecting BC 

cell migration, we performed knockdown of these candidate genes in MDA-MB-231 and 

Hs578T cells, followed by next generation sequencing (NGS)-based transcriptome analysis 

(Suppl. Table 10). For all three candidate genes, knockdown efficiency was >90% in Hs578T 

cells and >80% in MDA-MB-231 cells (Suppl. Fig. 5A). We identified differentially expressed 

genes (DEGs; log2FC <-1 or >1; adjusted p-value <0.05) for siPRPF4B, BUD31 and BPTF. 

Notably, expression levels of other validated screen candidates available in our RNA 

sequencing dataset were not specifically affected by knockdown of PRPF4B, BUD31 or BPTF, 

indicating that these genes uniquely modulate transcriptional programs that affect cell 

migration (Suppl. Fig. 6). Knockdown of BUD31 had the broadest effect on gene expression 

and caused down-regulation of 1119 genes in Hs578T and 929 in MDA-MB-231, with ~50% 

affected genes overlapping between the two cell lines (Suppl. Fig. 5B-D). PRPFB4 and BPTF 

knockdown most significantly affected the transcriptome of the Hs578T cells, primarily resulting 

in down-regulation of gene expression. There was limited overlap in the DEGs between 

PRPFB4, BUD31 and BPTF (Suppl. Fig. 5E). Since PRPF4B and BUD31 are both splicing 

factors, we also investigated the effects of knockdown of these candidates on alternative 

splicing patterns (Suppl. Fig. 7 and Suppl. Table 11). As expected, depletion of BUD31, a core 

spliceosomal protein,  increased the intron retention compared to controls (Suppl. Fig. 7A and 

7C) (46). As might be expected from a non-core splicing factor, siPRPF4B only increased a 

small number of introns retained (Suppl. Fig. 7B and 7C). We were unable to detect any 

changes in exon inclusion or 3’ or 5’ alterative splice site usage after knockdown of either 

PRPF4B or BUD31. Since siBUD31-induced intron retention in general relates to reduced 

expression of the specific gene of interest, we focused on the differentially expressed genes 

for further analysis. To identify pathways affected by siPRPFB4, siBUD31 and siBPTF we 

performed KEGG pathway over-representation analysis using the significantly down-regulated 
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genes for all hits in both cell lines separately using ConsensusPathDB (49). Although the 

overlap in DEGs between different cell lines and knockdown conditions was rather limited, the 

ECM-receptor interaction was over-represented in all conditions (Fig. 6A, Suppl. Fig. 8A). 

Moreover, knockdown of PRPF4B, BUD31 and BPTF resulted in down-regulation of the focal 

adhesion pathway in both cell lines, except for BPTF in Hs578T. Inhibition of these pathways 

likely directly contributes to the observed decrease in cellular migration. We also observed 

candidate specific responses: PRPF4B modulates immune signaling (Fig. 6A); BPTF is 

involved in cell adhesion signaling, as well as general cancer related pathways (Suppl. Fig. 

8A); BUD31 regulates a variety of signaling pathways, including metabolic pathways and 

PI3K/Akt regulated pathways (Suppl. Fig. 8A). Gene set enrichment analysis (GSEA) (50) 

confirmed the strong down-regulation of the ECM-receptor interaction pathway (Fig. 6B, Suppl. 

Fig. 8B). Clustering of all genes involved in ECM-receptor interaction (Fig. 6C, see Suppl. Fig. 

9 for all gene names) or focal adhesion (Suppl. Fig. 10) demonstrated the involvement of many 

different pathway components of which some were overlapping between PRPFB4, BUD31 and 

BPTF (Fig. 6C and 6D); a similar down-regulation was observed at the protein level for several 

key components in both cell lines (Fig. 6E, Suppl. Fig. 11C). The effects on differential 

expression of cell matrix adhesion components was also reflected in the different organization 

of focal adhesions and the F-actin network for both PRPFB4, BUD31 and BPTF (Fig. 6F and 

Suppl. Figure 11A-B). In summary, both splicing factors PRPF4B and BUD31 as well as the 

transcription factor BPTF modulate the expression of various focal adhesion-associated 

proteins and ECM-interaction signaling components in association with distinct cytoskeletal 

reorganization and decreased BC cell migration.  

 

PRPF4B is essential for breast cancer metastasis formation in vivo 

Finally, we investigated whether we could reproduce our in vitro findings in an in vivo mouse 

model for BC progression. Using our previously established orthotopic xenograft model, we 

predicted a decrease in BC metastasis formation upon splicing factor PRPF4B depletion. We 
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selected PRPF4B because its depletion strongly inhibits migration in both Hs578T and MDA-

MB-231 cells (see Fig. 3C) and moreover, a role of PRPF4B in metastasis formation has so 

far not been demonstrated. We established stable PRPF4B knockdown in the metastatic MDA-

MB-417.5 cell line that expresses both GFP and luciferase (24, 35, 51). shPRPF4B MDA-MB-

417.5 cells demonstrated ~40% PRPF4B knockdown at RNA as well as protein level (Fig. 7A-

C). shPRPF4B cells showed an equal primary tumor growth compared to the two shCtrl cell 

lines (Fig. 7D) which ensured identical time window for tumor cell dissemination from the 

primary tumor and outgrowth of macro-metastasis (Suppl. Fig. 12A and 12B). Bioluminescence 

imaging demonstrated that lung metastatic spread was less abundant in the PRPF4B 

knockdown cells injected group compared to control group (Suppl. Fig. 12C). Both 

bioluminescent imaging of the lungs ex vivo and counting of macro-metastases in the ink 

injected right lung revealed a significant decrease in metastasis formation in mice engrafted 

with shPRPF4B cells (Fig. 7F and 7G), which was also confirmed by a decreased lung weight 

(Suppl. Fig. 12D). Ex vivo bioluminescence imaging of the liver, spleen, heart, kidney, uterus 

and axillar lymph node also showed a decreased metastatic burden by shPRPF4B cells (Fig. 

7E) confirmed by a decreased liver and spleen weight (Suppl. Fig. 12E and 12F). Altogether, 

this demonstrates that PRPF4B knockdown impairs general metastasis formation without 

showing organ-specificity.  
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Discussion 

New insights into tumor cell migration is highly needed for the identification of potential new 

drug targets to modulate cancer progression. In the present study, we applied a multi-

parametric, high-content, imaging-based RNAi-screen to unravel regulatory networks in tumor 

cell migration. Our screening effort focused on a broad set of ~4200 cell signaling components, 

which allowed a high coverage of individual genes and gene networks that affect migration. 

Our work led to the identification of a defined panel of high-confidence candidate genes that 

affect the migratory behavior of Hs578T and MDA-MB-231. These genes are part of regulatory 

networks that are closely related to networks based on gene signatures that are predictive for 

cell migration, invasion, and metastasis. Our data indicate that different key modulators of cell 

motility, including PRPF4B, BUD31 and BPTF, define the expression of various genes that 

compose and regulate cell adhesions. Moreover, PRPF4B, which depletion blocks tumor cell 

migration in vitro is an essential regulator of breast cancer dissemination in vivo. Together, our 

work provides a repository of tumor cell migration drivers and contributes to a broader 

understanding of the molecular signaling programs that functionally determine BC cell 

migration and progression of metastatic disease. 

Tumor cell migration is a highly heterogeneous and plastic process. Plasticity in cell migration 

refers to the adaptive and compensatory response to changing environments, which allows 

tumor cells to switch migration modes when necessary and ultimately metastasize (7). To 

capture the different migration modes, we performed our RNAi-screen for BC cell migration in 

two TNBC cell lines. Given the differences in migratory behavior of Hs578T and MDA-MB-231 

cells, we anticipated to find novel regulators that affected cell migration independent of 

migration mode, as well as genes specifically affecting one type of migration. Indeed, the PKT 

assay allowed us to quantitatively assess different migration phenotypes, as the track 

morphology reveals the effect on migration, persistence and membrane activity. PCA analysis 

of the PKT data showed that three migratory phenotypes (small, small round, and round tracks) 

grouped closely together, resembling different types of inhibition of cell migration. Similarly, 
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two phenotypes of enhanced migration (long rough and long smooth) grouped together on the 

other side of the PCA space. Interestingly, all these phenotypes were mostly dependent on the 

parameters net area, axial ratio and major axis, with the enhanced migration phenotypes being 

separated by track roughness (cell migration with or without high lateral membrane activity). 

Enhanced cell migration proved to be difficult to validate, with only 8 candidate genes 

successfully validated and confirmed with live microscopy in the MDA-MB-231 cells. Most of 

the validated hits decreased net area and/or axial ratio, indicating inhibition of cell migration, 

as validated by live cell microscopy. The third live microscopy validation resulted in a 

conclusive selection of validated candidate tumor cell migration modulators: 133 and 113 

genes in Hs578T and MDA-MB-231, respectively. The majority of these candidate genes 

displayed inhibition of cell migration and are most interesting for translation to cancer 

metastasis. Importantly, candidate migratory regulators, including SRPK1 and TRPM7, have 

previously been shown to impair cell migration and metastasis formation (24, 52), supporting 

the robustness of our candidate drug target discovery strategy. 

Our work provides a comprehensive resource detailing the role of individual signaling genes 

in cell migration. Previously, a cell migration screen in H1299 (non-small cell lung carcinoma) 

identified 30 candidate migration modulating genes (24). Surprisingly, there was little overlap 

with our validated genes, with the exception of SRPK1. Similarly, little overlap in hits was found 

with a wound-healing screen in MCF10A cells (25). These differences are likely due to the 

coverage and size of the screening libraries with the current screen covering ~4200 genes 

compared to ~1400 genes in the previously published data. Moreover, TNBC cell migration 

might be driven by different genetic program than non-small cell lung carcinoma and MCF10A 

cells. Lastly, the MCF10A screen focused on collective cell migration in epithelial cells, which 

is distinct from single cell mesenchymal migration in our two TNBC cell lines.  While our two 

individual TNBC cell lines showed some overlap in genes that define cell migration, clearly 

also many distinct molecular determinants were defined for each cell line. This suggest that 

also the genetic differences between cancer cell lines lead to different molecular networks that 
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can modulate the migratory behavior of tumor cells. For ultimate therapeutic strategies to 

modulate cancer dissemination the identification of common denominators of migratory and 

metastatic behavior is essential. Our work contributes to the definition of some of these 

common players. 

The importance of our candidate TNBC cell migration modulators was supported by 

comparative bioinformatics-based network analysis. While we found little direct overlap 

between our candidate genes and genes from several different clinical prognostic signatures, 

our comparative network analyses demonstrated that the cell migration PPI networks in 

Hs578T and MDA-MB-231 cells are profoundly similar to PPI networks derived from cell 

migration (Lung Metastasis Signature) (35), cell invasion (Human Invasion Signature) (34), as 

well as several BC prognostic signatures (40–42). Only cyclin T2, CCNT2, was shared 

between these signatures and our cell migration data, and was associated with aggressive 

tumor behavior (40). Moreover, we identified candidates that are highly amplified and/or 

mutated in many cancer types as well as candidates specifically related to breast cancer 

metastasis formation. Interestingly, two of these candidates, PRPF4B and BUD31, were 

splicing factors suggesting modulation of the expression of gene networks through alternative 

splicing. Moreover, the transcription factor BPTF was one of the major hubs in the interaction 

network of candidate genes, which is also highly amplified in primary tumors of BC patients 

and its expression levels are negatively related to MFS. Next generation sequencing revealed 

that knockdown of PRPF4B, BUD31 and BPTF all resulted in decreased expression of genes 

involved in focal adhesions and ECM interactions, thus directly driving the observed more 

rounded and less polarized phenotype in conjunction with decreased cell migration.  

Our list of candidate genes that regulate TNBC cell migration likely also contributes to cancer 

metastasis. We selected PRPF4B to assess whether our in vitro screening efforts can be 

translated to in vivo inhibition of metastasis formation. Depletion of PRPF4B almost completely 

abolished the migration of both Hs578T and MDA-MB-231 cells in vitro. Also decreased levels 

of PRPF4B almost completely eradicated spontaneous metastasis formation from the 
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orthotopic primary tumor to distant organs. This indicates that PRPF4B seems essential in 

metastasis formation. PRPF4B is a pre-mRNA splicing factor 4 kinase involved in the 

phosphorylation of PRP6 and PRP31 and splicing complex formation. Yet, in our hands 

depletion of PRPF4B showed little effect on intron retention patterns, suggesting more subtle 

splicing effects. In contrast, we found that depletion of BUD31, an important factor in the core 

of the spliceosome implicated in many catalytic steps of the splicing reaction, drastically 

increased intron retention in many genes.  

Yet, PRPF4B knockdown did affect the expression of various components of the focal 

adhesion and ECM signaling pathways. Likely, this effect is an important contributor to the 

reduced migratory and metastatic behavior of TNBC cells. Hence, PRPF4B could be a relevant 

drug target to combat TNBC dissemination and future research should focus on the 

development of a specific PRPF4B inhibitor; the x-ray structure of the catalytic domain of 

PRPF4B suggest this is feasible (53).  

Our list of highly confident candidate migratory modulating genes provides ample opportunities 

for new hypotheses and additional studies in the field of cell migration. 16 G-protein coupled 

receptors were defined including GPR39, LGR7, GPR85, GRM6 and GPR51. This is 

particularly relevant as the pathway of GPCR-signaling is one of top over-represented 

pathways in ER-negative tumors (40). Depletion of several ubiquitinases and proteasome 

components (DTX3L, UBE2E1, RNF31, RNF115, USP2, USP42, PSMC3, and PSMD10) were 

also found to inhibit tumor cell migration. Protein homeostasis and proteasome function have 

recently been suggested as a target for proliferation and growth in basal-like TNBC (54). 

Transcription factors and regulators make up the largest group of candidate metastasis genes. 

Some of these factors are part of a large interactive network including HDAC2, BPTF, BRF1, 

TAF11, TCF12 and FOS. Transcriptional regulation takes place at different levels from direct 

transcriptional enhancement or suppression, histone modification to pre-mRNA processing 

thanks to the spliceosome. The downstream targets of these transcription factors are 

potentially driving BC cell migration, and/or other biological processes that are critical for 
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metastasis formation. Indeed BPTF knockdown affected focal adhesion and ECM components 

in a similar fashion as PRPF4B and BUD31 knockdown did. 

In conclusion, in the present study we used imaging-based phenotypic screening to identify 

candidate metastatic genes for TNBC that have translational relevance. Understanding the 

gene networks that are controlled by the various candidate genes provides further insights in 

the biological programs that define BC cell migration behaviour and lead to important novel 

drug targets to combat cancer metastasis.  
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Materials and Methods 

Cell culture 

Hs578T (ATCC-HBT-126) and MDA-MB-231 (ATCC-HBT-26) were purchased from ATCC. 

MDA-MB-417.5 (MDA-LM2) was kindly provided by Dr. Joan Massagué. All  cell lines were 

grown in RPMI-1640 medium (Gibco, ThermoFisher Scientific, Breda, The Netherlands) 

supplemented with 10% FBS (GE Healthcare, Landsmeer, The Netherlands), 25 IU/ml 

penicillin and 25 µg/ml streptomycin (ThermoFisher Scientific) at 37 °C in a humidified 5% CO2 

incubator. Stable GFP-expressing Hs578T and MDA-MB-231 cells were generated by lentiviral 

transduction of pRRL-CMV-GFP and selection of GFP positive clones by FACS. For live cell 

imaging, phenol red-free culture medium was used. 

 

Antibodies and reagents 

Rabbit anti-PRPF4B (8577, Cell Signaling Technology), mouse anti-Tubulin (T-9026, Sigma-

Aldrich), mouse anti-Paxillin (610052, BD Biosciences), mouse anti-ITGB1 (610467, BD 

Biosciences), mouse anti-FAK (610087, BD Biosciences), mouse anti-N-cadherin (610920, BD 

Biosciences), mouse anti-E-cadherin (610181, BD Biosciences), rabbit anti-p-FAKY397 (446-

24ZG, Thermo Fisher) and mouse anti-Vimentin (ab8069, Abcam) were all commercially 

purchased. Rabbit anti-ITGA3 and rabbit anti-Laminin5 were kindly provided by A. Sonnenberg 

(NKI, Amsterdam, The Netherlands). Anti-mouse and anti-rabbit horseradish peroxidase 

(HRP) conjugated secondary antibodies were purchased from Jackson ImmunoResearch. 

 

Transient siRNA-mediated gene knockdown 

Human siRNA libraries were purchased in siGENOME format from Dharmacon (Dharmacon, 

Lafayette, CO, USA). Transient siRNA knockdown was achieved by reverse transfection of 50 

nM single or SMARTpool siRNA in 2,500-5,000 cells/well in a 96-well plate format (PKT assay 
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and RCM assay, resp.) using the transfection reagent INTERFERin (Polyplus, Illkirch, France) 

according to the manufacturer’s guidelines. Medium was refreshed after 20 h and transfected 

cells were used for various assays between 65 to 72 h after transfection. Mock and/or 

siKinasePool were used as negative control.  

 

Stable shRNA-mediated gene knockdown 

MDA-MB-417.5 cells were transduced with lentiviral shRNA constructs coding for a non-

targeting control sequences shCtrl #1 (SHC002), shCtrl #2 (SHC202V) or a sequence targeting 

the coding region of PRPF4B (target sequence: GCTTCACATGTTGCGGATAAT 

(TRCN0000426824)) (Mission/Sigma-Aldrich, Zwijndrecht, The Netherlands). The cells were 

selected by puromycin (sc-108071, Santa Cruz Biotechnology, Heidelberg, Germany). 

Knockdown efficiency was verified by RT-qPCR, Western Blot and immunofluorescent 

staining.  

 

Phagokinetic track (PKT) assay 

PKT assays were performed as described before (32, 33). Briefly, black 96-well µClear plates 

(Greiner Bio-One, Frickenhausen, Germany) were coated with 10 µg/ml fibronectin (Sigma-

Aldrich, Zwijndrecht, The Netherlands) for 1 h at 37°C. Plates were washed twice with PBS, 

using a HydroFlex platewasher (Tecan, Männedorf, Switzerland). Subsequently, the plates 

were coated with white carboxylate modified latex beads (400 nm, 3.25·109 particles per well; 

Life Technologies, Carlsbad, CA, USA) for 1 h at 37°C, after which the plate was washed 7 

times with PBS. 65 h after siRNA transfection, transfected cells were washed twice with PBS-

EDTA and trypsinized. Cells were resuspended into single cell suspensions, then diluted, and 

finally seeded at low density (~100 cells/well) in the beads-coated plate. Cells were allowed to 

migrate for 7 h, after which the cells were fixed for 10 min with 4% formaldehyde and washed 

twice with PBS. For each transfection, duplicate bead plates were generated (technical 
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replicates); transfection of each siRNA library was also performed in duplicate (independent 

biological replicate). Procedures for transfection, medium refreshment and PKT assay were 

optimized for laboratory automation by a liquid-handling robot (BioMek FX, Beckman Coulter). 

 

PKT imaging and analysis 

Migratory tracks were visualized by acquiring whole well montages (6x6 images) on a BD 

Pathway 855 BioImager (BD Biosciences, Franklin Lakes, NJ, USA) using transmitted light 

and a 10x objective (0.40 NA). A Twister II robotic microplate handler (Caliper Life Sciences, 

Hopkinton, MA, USA) was used for automated imaging of multiple plates. Montages were 

analyzed using WIS PhagoTracker (32). Migratory tracks without cells or with more than 1 cell 

were excluded during image analysis. Quantitative output of PhagoTracker was further 

analyzed using KNIME. Wells with <10 accepted tracks were excluded. Next, data was 

normalized to mock to obtain a robust Z-score for each treatment and each parameter. After 

normalization, an average Z-score of the 4 replicates was calculated. Knockdowns with <3 

images were removed, as well as knockdowns with <60 accepted tracks for Hs578T and <150 

accepted tracks for MDA-MB-231. Phenotypic classes were identified manually and Z-score 

thresholds were used as cut-off to define hits.  

 

Live single cell migration analysis 

Hs578T-GFP and MDA-MB-231-GFP cells were transfected with siRNAs as described above 

and after 65 h, knockdown cell suspensions were seeded in fibronectin-coated black 96-well 

glass plates (SensoPlate, Greiner Bio-One, Frickenhausen, Germany). Knockdown and 

control cells were allowed to adhere for 10 h before imaging started. As positive controls, 

siRNA targeting the GTPase dynamin 2 (DNM2) was used for reduced cell migration and 

siGFP was used as transfection control. Live microscopy was performed on a Nikon Eclipse 

Ti microscope, equipped with a 37°C incubation chamber with CO2 flow, an automated xy-
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stage, Perfect Focus System and 20x objective (0.75 NA, 1.00 WD). Images were captured 

using a DS-Qi1MC CCD camera with 2x2 binning (pixel size: 0.64µm) and a 2x2 montage was 

acquired. Two positions per well were selected and GFP images were acquired every 12 min 

for a total imaging period of 12 h using NIS software (Nikon, Amsterdam, The Netherlands). 

After live imaging, plates were fixed for 10 min with 4 % formaldehyde and washed twice with 

PBS. Cells were stained with Hoechst 33258 (H3569, Thermo Fisher Scientific) and 

Rhodamin-Phalloidin (Sigma-Aldrich) to visualize nuclei and actin cytoskeleton. Nuclei images 

were captured on the same microscope, acquiring an 8x8 montage of the whole well using a 

10x objective. Image analysis was performed using CellProfiler (Broad Institute) (55). For live 

cell migration, images were segmented using an in-house developed watershed masked 

clustering algorithm (56), after which cells were tracked based on overlap between frames. 

Tracking data was organized and analyzed using in-house developed R-scripts to obtain single 

cell migration data. Only data originating from cells that were tracked for a minimum of 2 h was 

used. Single cell migration speeds were plotted using GraphPad Prism 6.0 and changes in 

migration speed were evaluated by comparing cell populations to at least 2 populations of 

control cells. Two negative control wells with low and high cell densities, comparable to the 

knockdown populations, were selected for statistical comparison, and knockdowns were 

required to be statistically significant compared to both controls.  

 

Imaging-based phenotypic screen 

Hs578T cells were fixed and permeabilized in 1% formaldehyde and 0.1% Triton X-100 in PBS 

and blocked in 0.5% bovine serum albumin (BSA, A6003, Sigma Aldrich) in PBS. Cells were 

stained with Hoechst 33258 (H3569, Thermo Fisher Scientific) and Rhodamine Phalloidin 

(R415, Molecular Probes) and imaged using an Nikon Eclipse TE2000-E inverted confocal 

microscope (Nikon Instruments, Amsterdam, The Netherlands) using a 20x Plan Apo objective, 

408 and 561 nm lasers, integrated Perfect Focus System and automated xy-staging. 2x digital 

zoom, 2x2 stitching images were captured at 4 positions per well. Nuclei and actin cell body 
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were detected by CellProfiler (Broad Institute) and cell area, major and minor axis length, 

solidity and form factor were measured using the measure object size and shape module in 

CellProfiler. Images with more than 150 cells were filtered out. Using KNIME, nuclei without a 

clear cell body were rejected and single cell data was normalized to the median of 2 mock 

control wells per plate. For the heatmap, all features were mock normalized and clustering was 

performed on complete linkage and Euclidean distance.  

 

Immunofluorescence 

Cells were fixed and permeabilized 72 h after knockdown by incubation with 1% formaldehyde 

and 0.1% Triton X100 in PBS for 10 minutes, followed by three times washing with 0.5% w/v 

BSA in PBS. Cells were incubated with the primary antibody in 0.5% w/v BSA in PBS overnight 

at 4°C, washed trice with 0.5% w/v BSA in PBS and incubated with the corresponding 

secondary antibodies and 1:10,000 Hoechst 33258 for 1 h at room temperature. After washing 

once with 0.5% w/v BSA in PBS and twice with PBS, cells were imaged with a Nikon Eclipse 

Ti microscope and 60x oil objective.  

 

Western Blotting 

Samples were lysed in RIPA lysis buffer (1% w/w deoxycholate, 50 mM Tris (pH 7.5), 0.15 M 

NaCl, 0.1% sodium dodecyl sulfate (SDS), 1% v/v NP-40, 2 mM EDTA, 1% v/v protease 

inhibitor cocktail (P8340, Sigma-Aldrich)) 72 hours after transfection or 2 days after plating for 

stable knockdown cell lines. Proteins were separated by electrophoresis using SDS-PAGE 

gels, followed by transfer to PVDF membranes (Merck Millipore), blocked in 5% w/v BSA and 

overnight incubated with the corresponding primary antibody at 4°C. Membranes were 

incubated with secondary antibody for 1 hour at room temperature, exposed to Pierce ECL 

western blotting substrate (Thermo Fisher Scientific) and visualized by using the Amersham 
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Imager 600 (GE Healthcare). At least 2 biological replicates were performed per experiment. 

Tubulin was used as a loading control.  

 

RT-qPCR 

48 hours after plating stable knockdown cell lines, total RNA was extracted using RNeasy plus 

mini kit (Qiagen) followed by cDNA synthesis using the RevertAid H minus first strand cDNA 

synthesis kit (Thermo Fisher Scientific) both according to the manufacturer’s protocol. RT-

qPCR was performed with the SYBR Green PCR master mix (Thermo Fisher Scientific) on a 

7500 Fast Real-Time PCR machine (Applied Biosystems/Thermo Fisher Scientific) by using 

the following primers: PRPF4B forward: 5’-CCGAGGAGTCAGGAAGTTCA-3’, PRPF4B 

reverse: 5’-TCTTTTCAGAATTAGCATCTTCCAT-3’; GAPDH forward: 5’-

CTGGTAAAGTGGATATTGTTGCCAT-3’, GAPDH reverse: 5’-

TGGAATCATATTGGAACATGTAAACC-3’; β-actin forward: 5’-

TCAAGATCATTGCTCCTCCTGAG-3’, β-actin reverse: ACATCTGCTGGAAGGTGGACA-3’. 

Relative gene expression was calculated after correction for GAPDH and β-actin expression 

using the 2ΔΔCt method. 

 

Next generation sequencing 

RNA was collected 72 hours after knockdown using the RNeasy plus mini kit (Qiagen) 

according to the manufacturer’s guidelines. DNA libraries were prepared with the TruSeq 

Stranded mRNA Library Prep Kit. The DNA libraries were sequenced according to the Illumina 

TruSeq v3 protocol on an Illumina HiSeq2500 sequencer. Paired-end reads were generated 

of 100 base-pairs in length. Alignment was performed using the HiSat2 aligner (version 2.2.0.4) 

against the human GRCh38 reference genome. Gene expression was quantified using the 

HTseq-count software (version 0.6.1) based on the ENSEMBL gene annotation for GRCH38 

(release 84). Count data was normalized and log2 fold changes and adjusted P-values were 
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calculated using the DESeq2 package (57). Calculated log2 fold changes were used to perform 

ranked gene set enrichment analysis (GSEA) (50). Differentially expressed genes were 

selected by effect size (log2 fold change bigger than 1 or smaller than -1) and adjusted p-value 

(smaller than 0.05) and used for over-representation analysis for KEGG pathways using 

ConsensusPathDB (49). 

For the intron retention analysis, RNA-seq reads were mapped to the current human genome 

(GRCh38) using Hisat 2 (58).  Differential intron retention analysis was carried out in R was 

using DexSeq package (59, 60). In DexSeq the difference of intron inclusion were determined 

based the counts from the intron and the counts from the two adjacent exons. The sizes of the 

exons were limited to 100nt immediately adjacent to the intron to reduce artifacts deriving from 

alternative promoters, alternative splice sites and alternative poly-adenylation sites. 

RNA sequencing data is available in Sequence Read Archive with accession number 

SRP127785. 

 

Network analysis 

Protein annotation of the primary hits was retrieved from QIAGEN’s Ingenuity Pathway 

Analysis (IPA, QIAGEN Redwood City, USA). Protein-protein interaction (PPI) networks were 

generated using NetworkAnalyst (www.networkanalyst.ca) (61). Candidate genes were used 

as seed proteins to construct first-order, minimum interaction and zero-order networks based 

on the InnateDB Interactome. KEGG pathway analysis was performed on the first-order PPI 

networks. The connection between multiple PPI networks was visualized by a Chord diagram 

using NetworkAnalyst. 

 

Orthotopic mouse model for metastasis assessment  
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1 x 106 MDA-MB-417.5 shCtrl #1, shCtrl #2 or shPRPF4B cells diluted in 100 μL matrigel (9.2 

mg/ml, 354230, batch 4321005, Corning, Amsterdam, The Netherlands) were injected in the 

fourth mammary fat pad of 7 to 9 week old female Rag2–/– Il2rg–/– mice  (n=8 per group). 

Housing and experiments were performed according to the Dutch guidelines for the care and 

use of laboratory animals. Sterilized food and water was provided ad libitum and primary breast 

tumors were surgically removed when they reached the size of 7×7 mm. Next, bioluminescent 

imaging was used to follow metastasis formation over time. Mice were sacrificed 50 or 51 days 

after surgery and metastasis formation of all organs was assessed by bioluminescent imaging 

followed by weighing the lungs, liver and spleen. Finally the right lung was injected with ink in 

order to count the number of lung macrometastases.  

 

Breast cancer patient gene expression profiles 

Gene expression data of a cohort of 867 lymph node-negative BC patients, who had not 

received any adjuvant systemic treatment, was used and is available from the Gene 

Expression Omnibus (accession no. GSE5237, GSE2034, GSE2990, GSE7390 and 

GSE11121). Clinical characteristics, treatment details and analysis were previously described 

(40, 41, 62–64). The Public-344 cohort consists of 221 estrogen receptor-positive (ER-positive) 

and 123 estrogen receptor-negative (ER-negative) patients. Stata (StataCorp) was used to 

perform Cox proportional hazards regression analysis, with gene expression values as 

continuous variable and MFS as end point. 

 

Statistical Analysis 

Normality of migration measurements and in vivo data was tested using Kolmogorov–

Smirnov’s test, d’Agostino and Pearson’s test and Shapiro–Wilk’s test using GraphPad Prism 

6.0 (GraphPad Software, San Diego, CA). A data set was considered normal if found as normal 

by all three tests. Data sets following a normal distribution were compared with Student’s t-test 
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(two-tailed, equal variances) or one-way ANOVA (for comparison of more than 2 groups) using 

GraphPad Prism 6.0. Data sets that did not follow a normal distribution were compared using 

Mann–Whitney’s test or a non-parametric ANOVA (Kruskal–Wallis with Dunn’s multiple 

comparisons post-test) using GraphPad Prism 6.0. Results were considered to be significant 

if p-value < 0.05.  
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Figure Legends 
 
Figure 1. A phenotypic, imaging-based, RNAi screen identifies novel regulators of tumor 
cell migration. (A) Live cell imaging of Hs578T and MDA-MB-231 phagokinetic tracks. Scale 

bar is 100 µm. (B) Schematic representation of PKT screen. Transfection was performed in 

96-well plates and controls were included in each plate. After 65 h, transfected cells were 

washed, trypsinized, diluted and seeded onto PKT assay plates. Plates were fixed after 7 h of 

cell migration and whole-well montages were acquired using transmitted light microscopy. For 

each siRNA knockdown, a robust Z-score was calculated for each PKT parameter. (C) The 

three most dominant quantitative PKT parameters are shown for Hs578T and (D) MDA-MB-

231. Representative images of migratory tracks for genes with strong effect are shown below 

each graph and highlighted for enhancement (red) and inhibition (green). (E) Supervised 

clustering of migratory phenotypes in Hs578T and (F) MDA-MB-231. Migratory phenotypes 

were identified manually and grouped together in a 3D phenotypic space. Only hits in each 

phenotypic class and mock control are plotted, and representative images of each phenotype 

are shown. (G) Overlap of hits in each phenotypic class in both Hs578T and MDA-MB-231. 

 

Figure 2. Candidate migratory gene validation by deconvolution PKT screen. (A) 

Representative images of valid candidate genes using 4 individual single siRNAs in three 

phenotypic classes are shown. Scale bar is 100 µm. (B) 282 selected genes were tested in a 

deconvolution PKT screen with 4 single siRNAs per gene. SMARTpool and single siRNA Z-

scores of Net Area and Axial Ratio are shown for the ‘overlap hits’ that were validated in 

Hs578T. (C) Distribution of validated candidate genes in the five phenotypic classes. (D) 

Overlap of validated hits between Hs578T and MDA-MB-231. (E) Distribution of the validated 

genes involved in tumor cell migration in Hs578T, MDA-MB-231 over the different libraries 

based on validated hits effective in both cell lines.  

 

Figure 3. Candidate genes directly affect TNBC cell migratory behavior. (A) Quantification 

of single cell migration speed of Hs578T-GFP cells after knockdown of validated hits. Hs578T-

GFP cells were transfected with siRNAs and cell migration was assessed by live microscopy. 

Hits were required to show significant and consistent effects in both replicates to be considered 

as candidate genes (right panel). Median ± 95% confidence interval is shown and cell 

populations were compared by Kruskal-Wallis test with Dunn’s post correction test. (B) Same 

as in A, with MDA-MB-231-GFP cells. (C) Single cell trajectories of cell migration upon 

knockdown of PRPF4B, MXD1, BUD31 or BPTF in (i) Hs578T  and (ii) MDA-MB-231 cell lines. 
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Figure 4. Regulatory networks drive tumor cell migration. (A) Enrichment of KEGG 

Pathways in PPI networks generated from Hs578T candidate genes and (B) MDA-MB-231 

candidate genes. NetworkAnalyst was used to generate PPI networks. (C) Zero-order 

interaction network of combined Hs578T and MDA-MB-231 candidate genes reveals a highly 

connected subnetwork of clinically associated genes (in blue). Candidate genes inhibiting cell 

migration in both cell lines are shown in red; central hubs are highlighted in green. The degree 

of connectivity (number of connections) is displayed on the right. (D) Phenotype-based 

clustering of the PKT validated candidate genes based on morphological changes in the 

Hs578T cell line. Per parameter, log2FC compared to mock control was calculated. Clustering 

was performed based on Euclidean distance and complete linkage.  

 

Figure 5. Candidate modulators of TNBC cell migration are related to breast cancer 
metastasis-free survival and breast cancer progression. (A) Prognostic gene signatures 

were used to generate minimum interaction PPI networks and compared to our candidate 

TNBC cell migration gene networks. Candidate genes affecting cell migration feed into similar 

networks essential for BC progression and metastasis formation. (B) Hierarchical clustering 

(Euclidean distance, complete linkage) of genetic modifications (mutations, deletions and 

amplifications combined) of 43 candidate genes in 29 cancer types. Data was derived from 

The Cancer Genome Atlas. Annotation shows the expression of the candidate in relation to 

BC metastasis-free survival in different BC subtypes. P-values were calculated using Cox 

proportional hazards regression analysis, with gene expression values as continuous variable 

and metastasis-free survival as end point. Genes marked in  red and blue are highlighted in C. 

Red genes were selected for further analysis. (C) Contribution of different genetic modifications 

to the rate in several highly mutated or amplified candidates. (D) Kaplan Meier curves of for 

expression of PRPF4B, BUD31 and BPTF and relation to metastasis-free survival in ERpos or 

TNBC breast cancer. Gene expression data of lymph-node negative BC patient cohort without 

prior treatment using optimal split was used.  
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Figure 6. PRPF4B, BUD31 and BPTF depletion affects expression of focal adhesion and 
ECM-receptor signaling related genes. (A) Over-representation analysis of genes with 

decreased expression levels (log2FC change < -1) after PRPF4B knockdown in Hs578T and 

MDA-MB-231 cells using pathways annotated in the KEGG database. (B) Gene Set 

Enrichment Analysis (GSEA) identifies the ECM-receptor interaction pathway as significantly 

enriched in downregulated genes after PRPF4B knockdown in Hs578T and MDA-MB-231 cell 

lines. (C) Hierarchical clustering (Euclidean distance, complete linkage) of log2FC in 

expression levels of genes involved in the KEGG ECM-receptor interaction pathway after 

knockdown of candidates demonstrates that many genes involved in this pathway are 

downregulated after candidate knockdown. (D) LAMA5, ITGB1 and ITGA3 expression upon 

depletion of PRPF4B, BUD31 and BPTF (one-way ANOVA, *P<0.05, **P<0.01, ***P<0.001). 

(E) Effect of PRPF4B, BUD31 and BPTF depletion on levels of different ECM and focal 

adhesion components in MDA-MB-231 cells analyzed with western blot. (F) Effect of indicated 

gene depletion on focal adhesion and actin cytoskeleton organization. Hs578T cells were fixed 

and stained against the actin cytoskeleton, p-FAK (Y397). Scale bar is 50 µm.   

 

Figure 7. PRPF4B is essential for breast cancer metastasis formation in vivo. (A) mRNA 

and (B) protein expression of PRPF4B in shPRPF4B MDA-MB-417.5 cell line compared to 

shCtrl#1 and shCrtl#2 MDA-MB-417.5 cell lines (one-way ANOVA, *P<0.05, **P<0.01). (C) 

Immunofluorescent staining for PRPF4B (green) and DNA (DAPI; blue) in shCtrl#1, shCtrl#2 

and shPRPF4B MDA-MB-417.5 cell lines. (D) Tumor growth of shPRPF4B, shCtrl#1 and 

shCtrl#2 MDA-MB-417.5 cells engrafted in the mammary fat pad of Rag2–/– Il2rg–/– mice  (n=7-

8 animals per group). (E) Dissemination of shPRPF4B, shCtrl#1 and shCtrl#2 MDA-MB-417.5 

cells in the lung, liver, spleen, kidney, heart, uterus and axillar lymph node as determined by 

ex vivo bioluminescent analysis (total flux (p/s)) of different target tissues. (F) Number of lung 

metastases for shPRPF4B, shCtrl#1 and shCtrl#2 injected mice as determined by macroscopic 

evaluation of lungs injected with ink. (G) Images of ink injected lungs (left) and bioluminescent 

signal in the lungs (right) of all individual mice. Blanc indicates mice that did not receive MDA-

MD-417.5 cells. Groups were compared by Kruskal-Wallis test with Dunn’s post correction test 

(luminescence) or ANOVA (metastasis count). * p < 0.05, ** p < 0.01.  
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Supplemental figures 
 
Supplemental Figure 1. RNAi PKT screen setup. Transfection of up to 10 siRNA library 

plates per run was performed by automated liquid handling (BioMek). Transfections were 

performed in duplicate, on different days with separately grown cell cultures. Transfected cells 

were washed with PBS, trypsinized, diluted and resuspended into single cell suspension, 

before being seeded in duplicate PKT assay plates (technical replicate). All steps were 

optimized for automated liquid handling. Whole well montages (6x6) were acquired on a BD 

Pathway BioImager using transmitted light, and a robotic arm (Twister II, Caliper) placed and 

removed the PKT assay plates on the microscope. PKT images were analyzed using 

PhagoTracker software as described previously20,21. Quantitative output was normalized to 

mock control (robust Z-score) using KNIME. Visual inspection of images led to the identification 

of migratory phenotypes, which were subsequently used for supervised clustering of hits by 

means of principal component analysis and plotted in a 3D phenotypic space (Fig. 1E,F). 

Primary hits were selected in two ways: hits that showed overlap between the two cell lines for 

each migratory phenotype (129 hits) and the top hits affecting cell migration within each cell 

line (153 hits in Hs578T, 153 hits in MDA-MB-231). Primary hits were validated by 

deconvolution screens, evaluating the effect of SMARTpool and single siRNA sequences in 

PKT assays as before. Hits were considered validated if the SMARTpool showed consistent 

results and at least 2 of 4 single siRNA sequences showed the same phenotype. Ultimately, 

217 hits were validated in the Hs578T cells and 160 hits in the MDA-MB-231. 

 

Supplemental Figure 2. Phenotypic candidate gene validation by deconvolution screens 
in MDA-MB-231. Hits were considered validated if SMARTpool and at least 2 of 4 single 

siRNAs showed the same effect. 282 selected genes were tested in a deconvolution PKT 

screen with 4 single siRNAs per gene. SMARTpool and single siRNA Z-scores of Net Area 

and Axial Ratio are shown for the ‘overlap hits’ that were validated in MDA-MB-231. A list of 

all the validated hits can be found in the Supplementary Table 2 

 

Supplemental Figure 3. Interaction between candidate genes and migration signatures. 
(A) Enrichment of KEGG Pathways in Hs578T  and MDA-MB-231 validated candidate genes. 

(B) Chord diagram displaying the connection between our cell migration networks and PPI 

networks derived from cell migration signatures. 
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Supplemental Figure 4. Phenotype-based clustering of the PKT validated candidate 
genes based on morphological changes in the Hs578T cell line. Zoom in of clustering of 

Fig. 4D. (A) Clustering overview. (B) Zoom in of blue and red clusters shown in A.  

 

Supplemental Figure 5. Effect of PRBF4B, BUD31 and BPTF depletion on gene 
expression. (A) qRT-PCR of knockdown efficiency of siPRBF4B, siBUD31 and siBPTF  used 

for next generation sequencing in Hs578T and MDA-MB-231 cells. Data are normalized using 

the ∆∆CT method normalized to actin and tubulin levels. (B) Number of DEGs for siPRBF4B, 

siBUD31 and siBPTF when compared to control situation (log2FC >1 or <-1) in Hs578T and 

(C) MDA-MB-231. (D) Overlap of DEGs in Hs578T and MDA-MB-231. (E) Overlap of DEGs 

comparing different knockdown conditions.  

 

Supplemental Figure 6. Effect of PRBF4B, BUD31 and BPTF depletion on expression of 
other candidate TBNC cell migration modulators. Hierarchical clustering (Euclidean 

distance, complete linkage) of log2FC of the gene expression of 35 common validated 

candidate TNBC cell migration modulators after knockdown of BUD31, PRPF4B or BPTF in 

Hs578T and MDA-MB-231.  

 

Supplemental Figure 7. Effect of BUD31 and PRPF4B depletion on intron retention and 
exclusion. (A) Effect of siBUD31 on intron retention. For all introns, the fraction of siBUD31 

vs siKP is plotted. Introns for which the inclusion rate significantly differs from siKP are plotted 

in red (inclusion difference > 0.10 and padj < 0.01). The inclusion difference plotted against 

the log2FC in expression level demonstrates that intron inclusion in general results in lower 

expression of these genes. (B) The same as in A, but then for siPRPF4B knockdown. (C) The 

total number of intron inclusion and exclusion events in siBUD31 and siPRPF4B samples.  

 

Supplemental Figure 8. Pathway analysis of altered gene expression after PRPF4B, 
BUD31 and BPTF depletion. (A) Significantly over-represented KEGG pathways in the 

downregulated genes after BUD31 or BPTF knockdown in the Hs578T or MDA-MB-231 cell 

line. (B) Significantly inhibited KEGG pathways after PRPF4B, BUD31 or BPTF knockdown in 

Hs578T and MDA-MB-231 cell line identified by performing a ranked gene set enrichment 

analysis (GSEA).  

 

Supplemental Figure 9. Effect of PRPF4B, BUD31 or BPTF depletion on levels of ECM 
components. Hierarchical clustering (Euclidean distance, complete linkage) of log2FC in 

expression levels of genes involved in the KEGG ECM receptor interaction pathway in Hs578T 

and MDA-MB-231. Zoom in of Fig. 6C.  
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Supplemental Figure 10. Effect of PRPF4B, BUD31 or BPTF depletion of levels of focal 
adhesion components. Hierarchical clustering (Euclidean distance, complete linkage) of 

log2FC in expression levels of genes involved in the KEGG focal adhesion pathway in Hs578T 

and MDA-MB-231,  

 

Supplemental Figure 11. Effect of PRPF4B, BUD31 or BPTF depletion on cell phenotype. 
(A) Effect of indicated gene depletion on focal adhesion and actin cytoskeleton organization. 

Hs578T cells were fixed and stained against the actin cytoskeleton, paxillin (PXN) and Hoechst 

(nuclei staining). (B) Hs578T cells were fixed and stained against the actin cytoskeleton, p-

FAK(Y397) and Hoechst as in Figure 6F. Scale bar is 50 µm.  (C) Protein levels of focal 

adhesion and ECM-interaction related components after knockdown of PRPF4B, BUD31 or 

BPTF of candidates in Hs578T cells.  

 

Supplemental Figure 12. Effect of PRPF4B downregulation on tumor growth and 
metastasis. (A) Time of removal of the primary tumor or (B) the total duration of the experiment 

until sacrifice. (C) Total bioluminescent flux in lungs of mice after surgery till sacrifice. Signal 

was normalized to lung area. Weight of the (D) lung, (E) liver and (F) spleen after sacrificing 

the mice. Groups were compared by Kruskal-Wallis test with Dunn’s post correction test 

(luminescence) or ANOVA (metastasis count). * p < 0.05, ** p < 0.01.  
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Supplemental Movies 

Supplemental movie 1. Live cell imaging of MDA-MB-231 (10 frames/second, 4 

minutes/frame, 10x objective, 2x2 stitching) 

Supplemental movie 2. Live cell imaging of Hs578T (10 frames/second, 4 minutes/frame, 10x 

objective, 2x2 stitching) 

Supplemental movie 3. Live cell imaging of mock control in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 4. Live cell imaging of mock control in MDA-MB-231 (10 frames/second, 

12 minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 5. Live cell imaging of siPRPF4B in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 6. Live cell imaging of siPRPF4B in MDA-MB-231 (10 frames/second, 

12 minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 7. Live cell imaging of siITGB1 in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 8. Live cell imaging of siITGB1 in MDA-MB-231 (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 9. Live cell imaging of siMXD1 in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 10. Live cell imaging of siMXD1 in MDA-MB-231 (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 11. Live cell imaging of siBUD31 in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 12. Live cell imaging of siBUD31 in MDA-MB-231 (10 frames/second, 

12 minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 13. Live cell imaging of siBPTF in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 14. Live cell imaging of siBPTF in MDA-MB-231 (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 
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Supplemental movie 15. Live cell imaging of siTARDBP in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 16. Live cell imaging of siTARDBP in MDA-MB-231 (10 frames/second, 

12 minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 17. Live cell imaging of siUBE2E1 in Hs578T (10 frames/second, 12 

minutes/frame, 20x objective, 2x2 stitching). 

Supplemental movie 18. Live cell imaging of siUBE2E1 in MDA-MB-231 (10 frames/second, 

12 minutes/frame, 20x objective, 2x2 stitching). 
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Supplemental Tables 

Supplemental Table 1. Primary PKT screen. This file contains the full human drugable 

genome library annotation used for the primary screen, all primary PKT screen data and 

selected candidate geneIDs and symbols.  

 

Supplemental Table 2. PKT screen validation. Results of the single siRNA validation screen 

including validated candidates, the resulting phenotypes and number of single siRNAs 

confirming the smartpool results. 

 

Supplemental Table 3. Live cell imaging in Hs578T. Results of the live cell imaging in 

Hs578T of  PKT derived candidates in Hs578T and MDA-MB-231 candidates that were 

significantly related to metastasis formation in the Public-344 cohort. 

 

Supplemental Table 4. Live cell imaging in MDA-MB-231. Results of the live cell imaging in 

MDA-MB-231 of  PKT derived candidates in MDA-MB-231 and Hs578T candidates that were 

significantly related to metastasis formation in the Public-344 cohort. 

 
Supplemental Table 5. Candidate expression related to metastasis formation in human 
breast cancer patients. This file contains the PKT candidates of which the expression levels 

were related to metastasis-free survival in ER-negative or ER-postive tumors.  
 
Supplemental Table 6. KEGG pathways in networks. Results of KEGG over-representation 

analysis of first order PPI networks of the following datasets: candidates PKT screen Hs578T 

and MDA-MB-231, 440 gene Migration/Invasion signature (440 signature), Human Invastion 

Signature (HIS), Lung Metastasis Signature (LMS), Yu’s 50 gene signature, NKI-70 signature 

and Wang’s 76 gene signature.  

 

Supplemental Table 7. Phenotypic screen. Results of phenotypic screen, normalized to 

mock control.  

 

Supplemental Table 8. PPI network overlap. This file contains lists of genes in the minimum 

interaction PPI networks established based on candidates PKT screen Hs578T and MDA-MB-

231, 440 signature, HIS, LMS, Yu’s 50 gene signature, NKI-70 signature and Wang’s 76 gene 

signature and the overlap between the different signatures. 
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Supplemental Table 9. Candidate expression related to metastasis formation in the 
Public-344 cohort. This file contains all data relating candidate expression levels to 

metastasis-free survival in human BC patients using the Public-344 dataset. Stata (StataCorp) 

was used to perform Cox proportional hazards regression analysis, with gene expression 

values as continuous variable and metastasis-free survival as end point. 

 

Supplemental Table 10. Next generation sequencing of siPRPF4B, siBUD31 and siBPTF 
in MDA-MB-231 and Hs578T. This file contains basemean (mean count of control and 

knockdown samples), log2FC and adjusted P-values of all genes for siPRPF4B, siBUD31 and 

siBPTF compared to siKinasePool control. The DESeq2 package (Love, 2014) was used to 

normalize the data perform statistics. 

 

Supplemental Table 11. Intron retention of siPRPF4B and siBUD31 in Hs578T and MDA-
MB-231. This file contains the intron inclusion differences and adjusted P-values of all introns 

for siPRPF4B and siBUD31 compared to siKinasePool.  
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