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Abstract

We learn about population history and underlying evolutionary biology through patterns of genetic
polymorphism. Many approaches to reconstruct evolutionary histories focus on a limited number of
informative statistics describing distributions of allele frequencies or patterns of linkage disequilibrium.
We show that many commonly used statistics are part of a broad family of two-locus moments whose
expectation can be computed jointly and rapidly under a wide range of scenarios, including complex
multi-population demographies with continuous migration and admixture events. A full inspection of
these statistics reveals that widely used models of human history fail to predict simple patterns of
linkage disequilibrium. To jointly capture the information contained in classical and novel statistics,
we implemented a tractable likelihood-based inference framework for demographic history. Using this
approach, we show that human evolutionary models that include archaic admixture in Africa, Asia, and
Europe provide a much better description of patterns of genetic diversity across the human genome. We
estimate that individuals in two African populations have 6 − 8% ancestry through admixture from an
unidentified archaic population that diverged from the ancestors of modern humans 500 thousand years
ago.

The study of genetic diversity in human populations has shed light on the origins of our species and our
spread across the globe. With the growing abundance of sequencing data from contemporary and ancient
humans, coupled with archaeological evidence and detailed models of human demography, we continue to
refine our understanding of our intricate history. Accurate demographic models also serve as a statistical
foundation for the identification of loci under natural selection and the design of biomedical and association
studies.

Whole-genome sequencing data are high dimensional and noisy. In order to make inferences of history
and biology, we rely on summary statistics of variation across the entire genome and in many sequenced
individuals. One such statistic that is commonly used for demographic inference is the distribution of SNP
allele frequencies in one or more populations, called the sample or allele frequency spectrum (AFS) (Marth
et al., 2004; Gutenkunst et al., 2009; Jouganous et al., 2017; Kamm et al., 2017). AFS-based inference has
proven to be a powerful inference approach, yet it assumes independence between SNPs and therefore ignores
information contained in correlations between neighboring linked loci, which is also referred to as linkage
disequilibrium (LD).

Measures of LD are also informative about demographic history, mutation, recombination, and selection.
A separate class of inference methods leverage observed LD across the genome to infer local recombination
rates (McVean et al., 2004; Auton and McVean, 2007; Chan et al., 2012; Kamm et al., 2016) and demographic
history (Li and Durbin, 2011; Loh et al., 2013; Schiffels and Durbin, 2014; Rogers, 2014).

While two-locus statistics have been extensively studied (Hill and Robertson, 1966, 1968; Karlin and Mc-
Gregor, 1968; Ohta and Kimura, 1969a,b; Golding, 1984; Ethier and Griffiths, 1990; Hudson, 2001; McVean,
2002; Song and Song, 2007), most of this work focused on a single population at equilibrium demography,
precluding their application to realistic demographic scenarios. Recently, approaches for computing the full
two-locus sampling distribution for a single population with non-equilibrium demography were developed
via the coalescent (Kamm et al., 2016) or a numerical solution to the diffusion approximation (Ragsdale and
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Gutenkunst, 2017), allowing for more robust inference of fine-scale recombination rates and single population
demographic history. However, there remain significant limitations. Computing the full two-locus haplo-
type frequency spectrum is computationally expensive, hindering its application to inference problems that
require a large number of function evaluations. Alternatively, computationally efficient low-order equations
for specific LD statistics have been proposed (Hill and Robertson, 1968; Rogers, 2014), but these have seen
limited application and only to single populations.

In this article, we show that the moment system of Hill and Robertson (1968) can be expanded to
compute a large family of one- and two-locus statistics with flexible recombination, population size history,
and mutation models. Additionally, we show that the system can be extended to multiple populations with
continuous migration and discrete admixture events, and that low order statistics can be accurately and
efficiently computed for tens of populations with complex demography.

We use this moment system together with likelihood-based optimization to infer multi-population de-
mographic histories. We reexamine how well widely-used models of human demographic history recover
observed patterns of polymorphism, and find that these models underestimate LD among rare variants in
each population, sometimes by a large amount. The inclusion of archaic admixture in both Eurasian and
African populations resolves these differences, and we infer ∼ 6−8% archaic contribution in two populations
in Africa. By jointly modeling a wide range of summary statistics across human populations, we can reveal
important aspects of our history that are invisible through traditional analyses using individual statistics.

Theory and methods

To compute a large set of summary statistics for genetic data, we use mathematical properties of the Wright-
Fisher model that are related to the look-down model (Donnelly and Kurtz, 1999a,b). To illustrate this
process, we first build intuition through familiar equations from population genetics and then explain how
these fit within a larger hierarchy of tractable models.

In this section, we therefore begin with evolution equations for heterozygosity and the frequency spec-
trum, then turn to recursions for low-order LD statistics and show that the classical Hill-Robertson (1968)
system for D2 can be extended to arbitrary moments of D, multiple populations, and even the full sam-
pling distribution of two-locus haplotypes. Mathematical details and expanded discussion for each result
are given in the Appendix. Throughout this article, we assume that human populations can be described,
approximately, by a finite number of randomly mating populations.

Motivation: Single site statistics and the allele frequency spectrum

The most basic measure of diversity is the expected heterozygosity E[H], or the expected number of differ-
ences between two haploid copies of the genome. Given E[H] at time t, population size N(t) and mutation
rate u, Wright (1931) showed that enumerating all distinct ways to choose parents among two lineages leads
to a recursion for E[H],

E[H]t+1 =

(
1− 1

2N(t)

)
E[H]t + 2u. (1)

To leading order in 1/N and u, two copies of the genome are different if their parents were distinct (which
has probability 1− 1

2N ) and carried different alleles (which has probability E[H]t), or if there was a mutation
along one of two lineages (which has probability 2u.)

Heterozygosity is a low order statistic: we only require two copies of the genome to estimate E[H]
genome-wide. More samples provide additional information that can be encoded in the sample AFS Φn, the
distribution of allele counts within a sample of size n .

A standard forward approach to compute Φn involves numerically solving the partial differential equation
for the distribution of allele frequencies in the full population and then sampling from this distribution for the
given sample size n (e.g. Gutenkunst et al. (2009)). By enumerating mutation events and parental copying
probabilities in a sample of size n, Jouganous et al. (2017) showed that Equation 1 can be generalized to
a recursion for {Φn(i)}i=0,...,n. E[H] can be seen as a special case equal to Φ2(1), the i = 1 bin in the
size n = 2 frequency spectrum. These recursions can also be derived as moment equations for the diffusion
approximation (Evans et al., 2007; Živković et al., 2015; Jouganous et al., 2017).
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Figure 1: Hierarchy of even-order moments of Wright-Fisher evolution. Expected statistics under
neutral Wright-Fisher evolution depend on equal or lower-order statistics at the previous generation, allowing
for a hierarchy of closed recursion equations. On the left, single-site statistics are represented as the entries
in the size-n AFS, Φn, and depend only on same-order statistics. On the right, the corresponding two-locus
statistics, including the Hill-Robertson system for E[D2], which relies on the expected heterozygosity. Closed
recursions can be found for any given E[Dm], giving rise to sparse, linear system of ODEs that may be solved
efficiently. We denote π2 = p(1− p)q(1− q), z = (1− 2p)(1− 2q), and σi = pi(1− p)i + qi(1− q)i. Arrows
indicate dependence of moments and highlighted moments indicate classical recursions. Odd-order moments
are shown in Figure A1.

Two-locus statistics

We will use this same intuition for the two-locus theory. First consider the model for two loci that each
permit two alleles: alleles A/a at the left locus, and B/b at the right. There are four possible two-locus
haplotypes, AB,Ab, aB, and ab, whose frequencies sum to 1 in the population. LD between two loci is
measured as the covariance of their allele frequencies:

D = fABfab − fAbfaB .

In other words, D is the probability of drawing two lineages from the population and observing one lineage
of type AB and the other of type ab, minus the probability of observing the two cross types Ab and aB.
As such, E[D] is a two-haplotype statistic, meaning we require just two haploid copies of the genome (or a
single phased diploid genome) to estimate D, in the same way that the expected heterozygosity E[H] is a
two-sample statistic of single-site variation.

Moment equations for D and D2

Enumerating possible copying, recombination, and mutation events for two lineages also leads to a well-
known recursion for E[D] (Hill and Robertson, 1966). The possibility of sharing a common parent from
the previous generation leads to the same 1

2N decay familiar from Equation 1. E[D] also decays due to
recombination with rate proportional to the probability r of a recombination event between two loci in a
given generation. To leading order in r, u, and 1

2N , we have

E[D]t+1 =

(
1− 1

2N
− r
)
E[D]t. (2)
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Mutation doesn’t contribute to E[D] because any mutation event is equally likely to contribute positively or
negatively to the statistic. As a result, D is expected to be zero across the genome.

However, the second moment E[D2] is positive. Hill and Robertson (1968) found a recursion for a triplet
of statistics including E[D2], which we write as

y =

 E[D2]
E[D(1− 2p)(1− 2q)]
E[p(1− p)q(1− q)]

 ,

where p is the allele frequency of A, and q is the allele frequency of B. The recursion is

yt+1 − yt =
(
DN(t) +Rr

)
yt, (3)

where D and R are matrix operators for drift and recombination, respectively. To leading order in 1
2N and

r, these take the form

DN(t) =
1

2N(t)

−3 1 1
4 −5 0
0 1 −2

 ,

and

Rr = r

−2 0 0
0 −1 0
0 0 0

 .

The three statistics in the Hill-Robertson system have a natural interpretation. E[D2] is the variance of D
and has received plenty of attention over the years. The second statistic includes a term z = (1−2p)(1−2q)
whose magnitude is largest when there are rare alleles at both loci. Thus E[D(1− 2p)(1− 2q)] = E[Dz] is a
measure of LD weighted towards rare variants. In other words, pairs of rare variants in high LD contribute
sizably to this statistic. E[π2] = E[p(1 − p)q(1 − q)] is the joint heterozygosity across pairs of SNPs. If we
sample four haplotypes from the population, this is the probability that the first pair differ at the left locus,
and the second pair differ at the right locus.

The applications in this article focus on generalizing the Hill-Robertson equations to multi-population
settings. However, we first outline generalizations to high-order moments and non-neutral evolution, leaving
theoretical developments and simulations to the Appendix.

Generalizing to higher moments of D

The existence of tractable higher-order moment equations for one-locus statistics (Jouganous et al., 2017)
suggests the existence of a similar high-order system for two-locus statistics. Higher moments of D provide
additional information about the distribution of two-locus haplotypes. Appendix A.1 shows that the Hill-
Robertson system can be extended to compute any moment of D, and presents recursions for those systems
of arbitrary order Dm that closes under drift, recombination, and mutation.

This family of recursion equations takes a form similar to the D2 system: the evolution of E[Dm] requires
E[Dm−1z] and E[Dm−2π2], with each of those terms depending on additional terms of the same order and
smaller orders (Figure 1). For any order m, Appendix A.4.1 shows the system closes and forms a hierarchy
of moment equations, in that the Dm recursion contains the Dm−2 system, which itself contains the Dm−4

system, and so on (Figure A1). Just as the Wright equation for heterozygosity generalizes naturally to
equations for the more informative distribution of allele frequency (Jouganous et al., 2017), the Hill and
Robertson equations for E[D] and E[D2] generalize to informative higher-order LD statistics.

Generalizing to arbitrary two-locus haplotype distribution

Given the analogy between the frequency spectrum and the Hill-Robertson equations, it is natural to study
the connection between the moment equations for Dn and the evolution of the two-locus haplotype frequency
distribution Ψn(fAB , fAb, faB , fab).
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Figure 2: LD curves are sensitive to demography. (A-C) The statistics in the Hill-Robertson system,
including the decay of linkage disequilibrium, are sensitive to demography. Here we compute expected decay
curves for three distinct population size histories: constant size, a recent bottleneck and recovery, and recent
exponential growth. Both the amplitude and shape of the LD curves differ between demographic models for
(B) E[D2] and (C) E[Dz] = E[D(1 − 2p)(1 − 2q)]. (D) To illustrate the effect of admixture on LD curves,
we consider two populations in isolation for 2N generations, followed by an admixture event where the focal
population receives 1% of lineages from the diverged population. (E) E[D2] curves are largely unaffected by
this low level of admixture. (F) However, E[Dz] is immediately and strongly elevated following admixture,
and remains significantly elevated for prolonged time T since the admixture event.

While classical approaches for computing Ψn (Golding, 1984; Hudson, 2001) were limited to neutrality and
steady-state demography, recent coalescent and diffusion developments allow for Ψn to be computed under
non-equilibrium demography and selection (Kamm et al., 2016; Ragsdale and Gutenkunst, 2017). These

approaches are computationally expensive and limited to one population, as Ψn has size (n+1)(n+2)(n+3)
6 ,

and the P -population distribution grows asymptotically as n3P .
Generalizing the approach of Jouganous et al. (2017), we can write a recursion equation on the entries

of Ψn under drift, mutation, recombination, and selection at one or both loci (Appendix A.3). As expected,
this recursion does not close under selection: to find Ψn at time t + 1, we require Ψn+1 and Ψn+2 at time
t. It also does not close under recombination, requiring a closure approximation. Using the same closure
strategy for selection and recombination, however, we can approximate the entries of Ψn+1 and Ψn+2 as linear
combinations of entries in Ψn and obtain a closed equation. This approach provides accurate approximation
for moderate n under recombination and selection (Appendix A.3.5) that represent a 10 to 100-fold speedup
over the numerical PDE implementation in Ragsdale and Gutenkunst (2017) (Table A1). However, closure
is inaccurate for small n.

By contrast to the full two-locus model, equations for moments of D close under recombination because
the symmetric combination of haplotype frequencies that define D ensures the cancellation of higher-order
terms (Appendix A.1.2). This makes the moments of D particularly suitable for rapid computation of
low-order statistics over a large number of populations.

The Hill-Robertson system does not close, however, if one or both loci are under selection. Appendix A.1.4
considers a model where one of the two loci is under additive selection. We derive recursion equations for
terms in the D2 system and describe the moment hierarchy and a closure approximation, though we leave
its development to future work. In the following we focus on neutral evolution.
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Multiple populations

While a large body of work exists for computing expected LD in a single population, little progress has
been made toward extending these models to multiple populations. Forward equations for the full two-locus
sampling distribution become computationally intractable beyond just a single population, even with the
moment-based approach described above. Here, we extend the Hill-Robertson system to any number of
populations, allowing for population splits, admixture, and continuous migration.

Motivation: Heterozygosity across populations

To motivate our derivation of the multi-population Hill-Robertson system and provide intuition, we begin
with a model for heterozygosity across populations with migration. With two populations we consider the
cross-population heterozygosity, E[H12] = E[p1(1 − p2)] + E[p2(1 − p1)], the probability that two lineages,
one drawn from each population, differ by state. At the time of split between populations 1 and 2, E[H1] =
E[H2] = E[H12]. Because coalescence between lineages in different populations is unlikely, E[H12] is not
directly affected by drift. In the absence of migration, this statistic increases linearly with the mutation rate
over time (Figure A2).

With migration, the evolution of E[H12] depends also on E[H1] and E[H2]. We define the migration rate
m12 to be the probability that a lineage from population 1 replaces a given lineage in population 2 in one
generation. If the lineage drawn from population 2 is a new migrant from population 1 (with probability
m12), then E[H12]t+1 is equal to E[H1]t (and similarly, equal to E[H2]t with probability m21 for a migration
event in the opposite direction). To leading order in mij , we have

E[H12]t+1 = m12E[H1]t +m21E[H2]t + (1−m12 −m21)E[H12]t.

Similar intuition leads to recursions for E[H1] and E[H2] under migration, and this system easily extends to
more than two populations.

The Hill-Robertson system with migration

We take the same approach to determine transition probabilities in the multi-population Hill-Robertson sys-
tem. Suppose that at some time, a population splits into two populations. At the time of the split, expected
two-locus statistics (D2, Dz, π2) in each population are each equal to those in the parental population at the
time of split (Appendix A.2.1). Additionally, the covariance of D between the two populations, E[D1D2], is
initially equal to E[D2] in the parental population. In the absence of migration, Hill-Robertson statistics in
each population evolve according to Equation 3, and

E[D1D2]t+1 =

(
1− 1

2N1(t)
− 1

2N2(t)
− 2r

)
E[D1D2]t. (4)

With migration, additional moments are needed to obtain a closed system. These additional terms take
the same general form as the original terms in the Hill-Robertson system, but include cross-population
statistics, analogous to H12 in the heterozygosity model with migration. We denote this basis z,

z =


DiDj

Dizj,k
π2(i, j; k, l)

Hi,j

 , 1 ≤ i, j, k ≤ P (5)

where P is the number of populations, and we slightly abuse notation so that DiDj stands in for all index
permutations (D2

1, D
2
2, and D1D2 in the two-populations case). We derive transition probabilities under

continuous migration in Appendix A.2.2 leading to the closed recursion,

zt+1 − zt =
(
DN(t) +Mm +Rr + Uu

)
zt, (6)

where D, M, R, and U are sparse matrices for drift, migration, recombination and mutation that depend
on the number of populations, population sizes N(t), and migration rates m.
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Admixture

Patterns of LD are sensitive to migration and admixture events, and low order LD statistics are commonly
used to infer the parameters of admixture events (Moorjani et al., 2011; Loh et al., 2013). A well-known result
(Cavalli-Sforza and Bodmer, 1971) shows that E[D] in an admixed population can be nonzero even when D
is zero in both parental populations, if frequencies have changed appreciably between the two populations.
This is seen by enumerating all possible combinations of haplotype sampling when a fraction f of lineages
were contributed by population 1, and 1− f by population 2 (Appendix A.2.3). Right after admixture, the
expectation E[Dadm] in the admixed population is

E[Dadm] = fE[D1] + (1− f)E[D2] + f(1− f)E[δ], (7)

where δ = (p1 − p2)(q1 − q2).
To integrate the multi-population D2 system after an admixture event, we require E[D2

adm] and other
second order terms in the basis (5) involving the admixed population. Using the same enumeration approach
as for Equation 7, the expectation immediately following the admixture event is

E[D2
adm] =f2E[D2

1] + (1− f)2E[D2
2] + 2f(1− f)E[D1D2]

+ 2f2(1− f)E[D1δ] + 2f(1− f)2E[D2δ] + f2(1− f)2E[δ2]. (8)

Each other required term can be found in a similar manner (Appendix A.2.3). In this way, the set of moments
may be expanded to include the admixed population and integrated forward in time using Equation 6.

Numerical implementation

We rescale time by 2Nref generations (Nref is an arbitrary reference population size, often the ancestral
population size), so that the recursion can be approximated as a differential equation

ż =
(
Dν(t) +Mm̃ +Rρ/2 + Uθ/2

)
z, (9)

where ν are the relative population sizes at time t (νi(t) = Ni(t)/Nref), m̃ are the population size scaled
migration rates 2Nrefmi,j , ρ = 4Nrefr, and θ = 4Nrefu. Each matrix is sparse and has low order, so this
equation can be solved efficiently using a standard Crank-Nicolson integration scheme. Our implementation
allows users to define general models with standard demographic events (migrations, splits and mergers, size
changes, etc.) similar to the ∂a∂i/moments interface (Gutenkunst et al., 2009; Jouganous et al., 2017). A
single evaluation of the four-population model shown in Figure A3 can be computed in roughly 0.1 second.
We packaged our method with moments (Jouganous et al., 2017) as moments.LD, a python module that
computes expected statistics and performs likelihood-based inference from observed data (described below),
available at bitbucket.org/simongravel/moments.

Validation

We validated our numerical implementation and estimation of statistics from simulated genomes using
msprime (Kelleher et al., 2016). Expectations for low-order statistics match closely with coalescent sim-
ulations. For example, Figure A3 shows the agreement for a four population model with non-constant
demography, continuous migration, and an admixture event, for which we computed expectations using
moments.LD that matched estimates from msprime. While approximating expectations from msprime re-
quired the time-consuming running and parsing of many simulations, expectations from moments.LD were
computed in seconds on a personal computer.

Data and inference

Genotype data

Computing D using the standard definition requires phased haplotype data. Most currently available whole
genome sequence data is unphased, so that we must rely on two-locus statistics based on genotype, instead

7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/489401doi: bioRxiv preprint 

https://doi.org/10.1101/489401
http://creativecommons.org/licenses/by-nc-nd/4.0/


of haplotype, counts. One could estimate haplotype statistics using the Weir (1979) estimator

D̂ =
1

2nd

(
2nAABB + nAABb + nAaBB +

1

2
nAaBb

)
− nA

2nd

nB
2nd

, (10)

where nA is the count of A at the left locus, nB the count of B at the right locus, nd the number of diploid
individuals in the sample, and {nAABB , nAABb, . . .} the counts of each observed genotype. However, the
Weir estimator for D is biased. Fortunately, we can simply treat the Weir estimator D̂ as a statistic and
obtain an unbiased prediction for its expectation (Appendix A.7.3). Even though E[Dn] can be estimated
from 2n phased haplotypes, more samples are required for accurate estimation with unphased data. Weir
(1979) suggests sample sizes of nd = 20 are sufficient for D̂.

1000 Genome Project data

We computed statistics from intergenic data in the Phase 3 1000 Genomes Project data (The 1000 Genomes
Project Consortium, 2015). The non-coding regions of the 1000 Genomes data is low coverage, which can lead
to significant underestimation of low frequency variant counts, which distorts the frequency spectrum and can
lead to biases in AFS-based demographic inference (e.g., Gravel et al. (2011)). However, low-order statistics
in the Hill-Robertson system are robust to low coverage data in a large enough sample size (Figure A4), so
that low coverage data are well suited for inference from LD statistics (see also Rogers (2014)).

To avoid possible confounding due to variable mutation rate across the genome, we calculated and
compared statistics normalized by π2, the joint heterozygosity: σ2

d = E[D2]/E[π2], as in Rogers (2014).
All figures showing σ2

d-type statistics are normalized using π2(YRI), the joint heterozygosity in the Yoruba
population (YRI) from Nigeria.

This normalization removes all dependence of the statistics on the overall mutation rate, so that estimates
of split times and population sizes are calibrated by the recombination rate per generation instead of the
mutation rate. This is convenient given that genome-wide estimates of the recombination rate tend to be
more consistent across experimental approaches than estimates of the mutation rate.

We considered all pairs of intergenic SNPs with 10−5 ≤ r ≤ 2 × 10−2 using the African-American
recombination map estimated by Hinch et al. (2011). The lower bound was chosen to further reduce the
potential effect of short-range correlations of mutation rates and experimental error.

Likelihood-based inference on LD-curves

To compare observed LD statistics in the data to model predictions, and thus to evaluate the fit of the
model to data, we used a likelihood approach. We binned pairs of SNPs based on the recombination distance
separating them (Appendix A.7.2). Bins were defined by bin edges {r0, r1, . . . , rn}, roughly logarithmically
spaced. The model is defined by the set of demographic parameters Θ. For a given recombination bin
(ρi, ρi+1], we computed statistics from the data ẑi, and expected statistics from the model Mi. We then
estimated the likelihood as

L(Θ|ẑi) = N (ẑi; Mi,Σi) ,

taking the probability of observing data ẑ to be normally distributed with mean M and covariance matrix
Σ.

We estimated Σ directly from the data by constructing bootstrap replicates from sampled subregions of
the genome with replacement. This has the advantage of accounting for the covariance of statistics in our
basis, as well as non-independence between distinct neighboring or overlapping pairs of SNPs. To compute
the composite likelihood across ρ bins, we simply took the product of likelihoods over values of recombination
bins indexed by i, so that

L(Θ) =
∏
i

L(Θ|ẑi).

To compute confidence intervals on parameters, we used the approach proposed by Coffman et al. (2016),
which adjusts uncertainty estimates to account for non-independence between recombination bins and neigh-
boring pairs of SNPs.
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Figure 3: Standard out-of-Africa model underestimates LD among rare variants (A) We fit the
13-parameter model proposed by Gutenkunst et al. (2009) to statistics in the two-locus, multi-population
Hill-Robertson system. The remaining 35 statistics from the Hill-Robertson basis used in the fit are shown
in Figure A5. Best fit values for labeled parameters are given in Table A2. Most statistics were accurately
predicted by this model, including (B) the decays of E[D2] in each population, (C) the decay of the covariance
of D between populations, and (E) the joint heterozygosity E[π2(i)]. (D) However, E[Di(1 − 2pi)(1 − 2qi)]
was fit poorly by this model, and we were unable to find a three-population model that recovered these
observed statistics, including with additional periods of growth or recent admixture with other modern
human populations. Error bars represent bootstrapped 95% confidence intervals on the statistic estimate.

Application to human data

Human expansion models underestimate LD between rare variants

The demographic model for human out-of-Africa (OOA) expansion proposed and inferred by Gutenkunst
et al. (2009) has been widely used for subsequent simulation studies, and parameter estimates have been
refined as more data became available (Gravel et al., 2011; Tennessen et al., 2012; Jouganous et al., 2017).
These models have typically been fit to the single-locus joint AFS, with Yoruba of Ibidan, Nigeria (YRI),
Utah residents of Western European ancestry (CEU), and Han Chinese from Beijing (CHB) as representative
panels. Gutenkunst et al. (2009) verified that the observed decay of r2 was consistent with simulations under
their inferred model.

We first asked if the OOA model (Figure 3(A)) is able to capture observed patterns of LD within and
between these three populations. When fitting to all statistics in the multi-population basis, parameters
diverged to infinite values, suggesting that the model is mis-specified. In particular, this model was unable
to describe observed Dz-type statistics (E[D(1 − 2p)(1 − 2q)], D weighted by the joint rarity of alleles),
with Dz-curves from the model drastically underestimating observations. We refit the OOA model without
including Dz statistics, and we inferred best-fit parameters that generally align with estimates using the
joint AFS (Table A2, left, and Figure 3). This model underestimated observed Dz in each population,
especially in the YRI population (Figure 3(D)). Using AFS-inferred parameters from previous studies led to
qualitatively similar results.

The Gutenkunst model is a vast oversimplification of human evolutionary history, so its failure to account
for Dz is not all that surprising. However, given the good agreement of the model to both allele frequencies
and D2 decay, we did not expect such a large discrepancy. Having ruled out low coverage and spatial
correlations in the mutation rate as explaining factors, our next hypothesis was a more complex demographic
history. We generalized the Gutenkunst model with a number of additional parameters, such as recent growth
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in the YRI population and recent mixing between populations, but none of these modifications provided
satisfactory fit to the data.

Inference of archaic admixture

E[Dz] is a measurement of D weighted by the joint rarity of SNPs at the two loci, and pairs of rare alleles
in high LD will have a substantial positive contribution to E[Dz]. We therefore expect this statistic to
be sensitive to the presence of rare, deep-coalescing lineages within the population, as those lineages will
contribute haplotypes with a large number of tightly linked low frequency variants (see Discussion below).

Given prior genetic evidence for archaic introgression in Eurasia and Africa (Wall and Brandt, 2016),
we proposed a model that includes two archaic branches, with one branch mixing with Eurasian ancestors
beginning at the OOA event, and the second one mixing with the ancestors of the Yoruba population over a
time period that could include the OOA event. In this scenario, this second branch could also contribute to
Eurasians through admixture prior to the OOA event (Figure 4(A)). Modern and archaic humans coexisted
on the African continent until quite recently (Berger et al., 2017), and genetic evidence points to a history of
archaic introgression across many modern African populations (Hammer et al., 2011; Lachance et al., 2012;
Hsieh et al., 2016; Durvasula and Sankararaman, 2018). It is likely that modern humans have met and mixed
with archaic lineages many times through history, rather than receiving a single pulse of migrants (Browning
et al., 2018; Villanea and Schraiber, 2018). We chose to model the mixing of archaic and modern human
branches as continuous and symmetric (Kuhlwilm et al., 2016), parameterizing the migration rate between
these branches and the times that migration began and ended.

We considered two topologies for the archaic branches: 1) both archaic branches split independently
from that leading to modern humans (Figure 4(A)), and 2) one archaic branch split from the modern human
branch, which some time later split into the two archaic populations (Figure A6(A)). Both models fit the
data well with little statistical evidence to discriminate between these two models (∆LL < 1, as opposed
to ∆LL = 1, 730 between models with and without archaic admixture). Consistent among the inferred
models was the age of the split between archaic African and modern human branches at ∼ 500 kya, though
uncertainty remains with regard to the relationship between archaic humans in Africa and Eurasia. The
sequencing of archaic genomes within Africa would clearly be helpful in resolving these topologies.

We inferred an archaic population to have contributed measurably to Eurasian populations. This branch
(putatively Eurasian Neanderthal) split from the branch leading to modern humans between ∼ 470 − 650
thousand years ago, and ∼ 1% of lineages in modern CEU and CHB populations were contributed by
this archaic population after the out-of-Africa split. This range of divergence dates compares to previous
estimates of the time of divergence between Neanderthals and human populations, estimated at ∼650 kya
(Prüfer et al., 2014). The “archaic African” branch split from the modern human branch roughly 460− 540
kya and contributed ∼ 7.5% to modern YRI in the model (Table A2).

We chose a separate population trio to validate our inference and compare levels of archaic admixture
with different representative populations. This second trio consisted of the Luhya in Webuye, Kenya (LWK),
Kinh in Ho Chi Minh City, Vietnam (KHV), and British in England and Scotland (GBR). We inferred
the KHV and GBR populations to have experienced comparable levels of migration from the putatively
Neanderthal branch. However, the LWK population exhibited lower levels of archaic admixture (∼ 6%)
in comparison to YRI, suggesting population differences in archaic introgression events within the African
continent (Table A3).

Discussion

Multi-population two-locus diversity statistics

The application presented here relied on the four-haplotype statistics (D2, Dz, π2). Studying these low-
order multi-population statistics in a likelihood framework allowed us to infer a demographic model with
archaic admixture, even without archaic reference genomes. We have also shown that higher order statistics
may be computed through this same framework. Extending higher order two-locus moment systems to
multiple populations would potentially provide further information about demography, particularly for past
encounters with archaic branches.
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Figure 4: Inferred OOA model with archaic admixture. (A) We fit a model for out-of-Africa expansion
related to the standard model in Figure 3(A). Demographic events for the three modern human populations
are parameterized as above, but we also include two archaic branches with deep split from the ancestral
population to modern humans. A putatively Neanderthal branch that remains isolated until the Eurasian
split from YRI, and a deep archaic branch within Africa that is allowed to be isolated for some time before
continuously exchanging migrants with the common ancestral branch and the YRI branch. (B-E) This model
fits the data much better than the model without archaic admixture, and especially for the Dz statistics
(D). Fits to 35 more curves and statistics are shown in Figure A5. The migration rates inferred between the
archaic branch and YRI provides an estimate of ∼ 7.5% archaic contribution.

Relation to other statistics

There are many approaches for computing expected statistics for diversity under a wide range of scenarios.
Single-site statistics, which include expected heterozygosity and the AFS, may be computed efficiently using
forward- or reverse-time approaches. Beyond the classical recursions for E[D] and E[D2] (Hill and Robert-
son, 1968; Rogers, 2014), two-locus statistics are difficult to compute for non-equilibrium, multi-population
demographic models. Sved (2009) proposed an IBD based recursion to compute E[r2] across subdivided
populations, but its accuracy and interpretation remain debated (Rogers, 2014).

The moments-based approach presented here generalizes the recursion for the single-site AFS presented in
(Jouganous et al., 2017). The moments system includes all heterozygosity statistics, so we recover expected
F -statistics under arbitrary demography, which are commonly used to test for admixture (Reich et al., 2009;
Patterson et al., 2012; Peter, 2016). Long-range patterns of elevated LD in putatively admixed populations
are used to infer the timing of admixture events and relative contributions of parental populations (Moorjani
et al., 2011; Loh et al., 2013). These approaches rely on the recursion for E[D] after admixture events that is
used here (Equations 2 and 7). Thus the generalized Hill-Robertson system is sensitive to ancient admixture,
but also captures statistics used to identify recent admixture history, with fewer assumptions about early
history.

Plagnol and Wall (2006); Wall et al. (2009) introduced a statistic, S∗, specifically designed to scan for
introgressed haplotypes without having sequence data from the putatively archaic population. S∗ uses an
ad-hoc score to identify SNPs that likely arose on haplotypes contributed from a deeply diverged population,
and is estimated through simulation. These SNPs will tend to be rare and in high LD, and therefore also
contribute to Dz. Thus even a small amount of archaic introgression will significantly elevate E[Dz] compared
to that in an unadmixed population. Given its conceptual relationship to S∗, it may not be so surprising that
this previously overlooked statistic is particularly well suited for model-based inference of archaic admixture.
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Model OOA (fit w/o Dz) Archaic Introgression
Parameter Estimates 95% CI Estimates 95% CI
N0 2360 2190− 2530 3600 2380− 3920
NYRI 13030 12200− 13900 13900 12800− 15000
NB 1080 810− 1350 880 670− 1090
NCEU0 1450 980− 1920 2300 1810− 2790
rCEU(%) 0.202 0.184− 0.217 0.125 0.113− 0.135
NCHB0 410 340− 480 650 540− 750
rCHB(%) 0.498 0.445− 0.531 0.372 0.333− 0.398
mAF - B(×10−5) 51.5 41.1− 61.8 52.2 41.7− 62.6
mYRI - CEU(×10−5) 1.72 0.54− 2.9 2.48 1.84− 3.13
mYRI - CHB(×10−5) 0 — 0 —
mCEU - CHB(×10−5) 15.3 11.5− 19.1 11.3 8.70− 13.8
TAF (kya) 208 196− 220 300 277− 323
TOOA (kya) 65.7 52.4− 79.0 60.7 50.3− 64.2
TCEU - CHB (kya) 31.9 28.8− 35.0 36.0 32.3− 39.6
TArch. Af. split (kya) 499 460− 538
TArch. Af. mig. (kya) 125 89.2− 160
mAF - Arch. Af.(×10−5) 1.98 1.15− 2.82
TNean. split (kya) 559 470− 648
mOOA - Nean(×10−5) 0.825 0.379− 1.27
TArch. adm. end (kya) 18.7 15.1− 22.4

Table 1: Inferred parameters for OOA models. Two models for the out-of-Africa expansion. We fit
the commonly used 13-parameter model to the multi-population Hill-Robertson statistics (left). The best fit
parameters shown here were fit to the set of statistics without the E[Dz] terms, because the inclusion of those
terms led to runaway parameter behavior in the optimization. This is often a sign of model mis-specification.
On the right, the same 13-parameter model is augmented by the inclusion of two archaic branches, putatively
Neanderthal and an unknown archaic African branch. We inferred that these branches split from the branch
leading to modern humans roughly 500− 700 kya, and contributed migrants until quite recently (∼14 kya).
Times reported here assume a generation time of 29 years and are calibrated by the recombination (not
mutation) rate.

Conclusion

We described an infinite hierarchy of multi-locus summaries of genomic diversity that are easy to compute
under arbitrary, multi-population demographies. Some of these statistics are familiar, including expected
heterozygosity, F -statistics, and LD decay, while others have been largely unexplored in multi-population
models, such as the degree of LD between rare alleles (Dz) and the joint heterozygosity across sites and
populations (π2). The one-population Dz statistic, in particular, has an interesting history, as it has come
up in early work as a mathematical stepping-stone on the way to computing D2 (Hill and Robertson, 1968),
but was, to our knowledge, never used in data analysis. As it happens, this ‘ghost’ statistic provides a unique
window into human history.

Using this set of summary statistics, we explored a commonly used model of human demographic history
derived from single-site AFS and validated using LD decay curves. While many statistics under this model
fit the data well, the model dramatically underestimates levels of LD among rare alleles. Modeling archaic
introgression worldwide resolved this discrepancy. We recovered the signal of Neanderthal introgression in
Eurasian populations, and found evidence for substantial and long-lasting archaic admixture in two African
populations.

This model deserve a more thorough investigation, including data from archaic humans and additional
contemporary African populations. We leave this to future work for three reasons. First, proposing a
detailed multi-population model of evolution in Africa will require carefully incorporating anthropological
and archaeological evidence, which is a substantial endeavor. Second, the inclusion of two-locus statistics
from ancient genomes will require vetting possible biases associated with ancient DNA sequencing, although
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we see no problem with using two-locus statistics in modern populations jointly with one-locus statistics in
ancient DNA.

Third, and more importantly, archaic admixture can hide in the blind spot of classical statistics, and
widely used demographic models for simulating genomes underestimate LD between rare variants in pop-
ulations around the globe, especially in Africa. This large bias affects neither the distribution of allele
frequencies nor the amount of correlation measured by D2, but it may impact analyses aiming to identify
disease variants based on overrepresentation of rare variants in specific genes or pathways. Thus both sta-
tistical and population geneticists would benefit from including archaic admixture into baseline models of
human genomic diversity.
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Prüfer, K., F. Racimo, N. Patterson, F. Jay, S. Sankararaman, et al., 2014 The complete genome sequence
of a Neanderthal from the Altai Mountains. Nature 505: 43–49.

Ragsdale, A. P. and R. N. Gutenkunst, 2017 Inferring Demographic History Using Two-Locus Statistics.
Genetics 206: 1037–1048.

Reich, D., K. Thangaraj, N. Patterson, A. L. Price, and L. Singh, 2009 Reconstructing Indian population
history. Nature 461: 489–494.

Rogers, A. R., 2014 How population growth affects linkage disequilibrium. Genetics 197: 1329–1341.

Schiffels, S. and R. Durbin, 2014 Inferring human population size and separation history from multiple
genome sequences. Nature Genetics 46: 919–925.

Song, Y. S. and J. S. Song, 2007 Analytic computation of the expectation of the linkage disequilibrium
coefficient r2. Theoretical Population Biology 71: 49–60.

Sved, J. A., 2009 Correlation measures for linkage disequilibrium within and between populations. Genetics
Research 91: 183–192.

Tennessen, J. A., A. W. Bigham, T. D. O’Connor, W. Fu, E. E. Kenny, et al., 2012 Evolution and Functional
Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science 337: 64–69.

The 1000 Genomes Project Consortium, 2015 A global reference for human genetic variation. Nature 526:
68–74.

Villanea, F. A. and J. G. Schraiber, 2018 Multiple episodes of interbreeding between Neanderthal and modern
humans. Nature Ecology & Evolution p. 1.

Wall, J. D. and D. Y. C. Brandt, 2016 Archaic admixture in human history. Current Opinion in Genetics
and Development 41: 93–97.

Wall, J. D., K. E. Lohmueller, and V. Plagnol, 2009 Detecting ancient admixture and estimating demographic
parameters in multiple human populations. Molecular Biology and Evolution 26: 1823–1827.

Weir, B. S., 1979 Inferences about Linkage Disequilibrium. Biometrics 35: 235–254.

Wright, S., 1931 Evolution in mendelian populations. Genetics 16: 97–159.
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A Appendix

A.1 Computing moment equations

Here we describe a systematic approach for computing transition functions for a system of statistics that
include E[Dm]. For any term E[f(D, p, q)], we change variables to the space of haplotype frequencies. c1
is the frequency or count of type AB haplotype, c2 for Ab, c3 for aB, and c4 for ab, so D = c1c4 − c2c3,
p = c1 + c2, q = c1 + c3. We then compute transition probabilities on the monomial expansion of this
transformation in ‘c’-space, and then change variables back to (p, q,D)-space and simplify.

For example, for E[D], we transform the expectation to

E[D] = E[c1c4 − c2c3] = E[c1c4]− E[c2c3].

Then for each of the expectations, we calculate its change over one generation due to drift, recombination,
mutation, or migration. For example, in the case of drift we find expectations after one generation by
considering copying probabilities (described in section A.1.1). Then

E[c1c4]t+1 =

(
1− 1

2N(t)

)
E[c1c4]t (A1)

and

E[c2c3]t+1 =

(
1− 1

2N(t)

)
E[c2c3]t. (A2)

We then convert back to (p, q,D)-space and simplify, obtaining

E[D]t+1 = E[c1c4]t+1 − E[c2c3]t+1 =

(
1− 1

2N(t)

)
E[D]t. (A3)

Throughout, we assume populations are in Hardy-Weinberg equilibrium and randomly mating. In addi-
tion, we assume that the recombination rate r, migration rates mij , and mutation rate u are small enough,
and population sizes Ni large enough, so that the product of r, mij , u, and 1

Ni
may be ignored. In other

words, we assume copying, recombination, mutation, and migration rates are small enough so that at most
a single event occurs within the n� N tracked lineages in a given generation.

A.1.1 Drift

We compute how E[ck11 c
k2
2 c

k3
3 c

k4
4 ] is expected to change in a given generation under the action of drift. We let

k =
∑4
i=1 ki. We imagine tracking k lineages in the population, each of which is one of the four haplotypes.

The expectation is proportional to the probability that k1 of the lineages are in state c1, k2 are of type c2,
etc. We assume k � N(t) so that the probability of a drift event (where one lineage copies itself over another
within the k tracked lineages) is small, and we may assume that at most one such event occurs in any given
generation.

The probability of a copying event among k lineages in generation t is

P (copying event) =
1

2N(t)

(
k

2

)
. (A4)

Given that a drift even occurs, we can compute the probability of any possible transition. For example,

P ((k1, k2, k3, k4)→ (k1 + 1, k2 − 1, k3, k4)) = P (choose one of each c1 and c2) · P (c1 copies over c2)

=
1

2

(
k1
1

)(
k2
1

)(
k
2

)
=

k1k2
k(k − 1)

. (A5)

16

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/489401doi: bioRxiv preprint 

https://doi.org/10.1101/489401
http://creativecommons.org/licenses/by-nc-nd/4.0/


We combine all possible copying events and find E[ck11 c
k2
2 c

k3
3 c

k4
4 ]t+1 under drift

E
[
ck11 c

k2
2 c

k3
3 c

k4
4

]
t+1

= (1− P (copying event))E
[
·ck11 c

k2
2 c

k3
3 c

k4
4

]
+ P (copying event)E

·ck11 ck22 ck33 ck44 · ∑
1≤i,j≤4

(
kikj

k(k − 1)

ci
cj
δi 6=j +

ki(ki − 1)

k(k − 1)
δi=j

) .
(A6)

We wrote the D2 drift matrix in the main text. The system of statistics for D3 is

y =



E[D3]
E[D2z]
E[Dπ2]
E[πz]
E[Dσ1]
E[zσ1]
E[D[
E[z]


,

where σ1 = p(1− p) + q(1− q), and has transition matrix

D =
1

2N



−6 3 3 0 0 0 0 0
4 −11 16 1 −4 0 1 0
0 1 −11 0 1 0 0 0
0 0 36 −6 −6 0 1 0
0 0 0 0 −6 0 2 0
0 0 0 0 12 −3 −4 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 4 0


.

For the D4 system, with terms

y =



E[D4]
E[D3z]
E[D2π2]
E[Dπz]
E[π2

2 ]
E[D2σ1]
E[Dzσ1]
E[π2σ1]
E[σ2]
E[D2]
E[Dz]
E[π2]
E[σ1]



,
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the transition matrix is

D =
1

2N



−10 6 6 0 0 0 0 0 0 0 0 0 0
4 −18 48 3 0 −12 0 0 0 3 0 0 0
0 1 −21 1 1 2 0 0 0 0 0 0 0
0 0 36 −19 0 −6 1 0 0 1 0 0 0
0 0 0 4 −12 0 0 1 0 0 0 0 0
0 0 0 0 0 −12 1 1 0 4 0 0 0
0 0 0 0 0 12 −12 0 0 −4 2 0 0
0 0 0 0 0 0 2 −7 0 0 0 2 0
0 0 0 0 0 0 0 0 −6 0 0 0 1
0 0 0 0 0 0 0 0 0 −3 1 1 0
0 0 0 0 0 0 0 0 0 4 −5 0 0
0 0 0 0 0 0 0 0 0 0 1 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 −1



.

In general, the block upper diagonal structure reflects the hierarchy of the moments system (Figure A1),
and the sparseness allows for rapid integration.

A.1.2 Recombination

Recombination changes D in one generation at rate directly proportional to the recombination distance
between the two loci, and so the haplotype frequencies change over one generations according to

c′1 = c1 − rD
c′2 = c2 + rD

c′3 = c3 + rD

c′4 = c4 − rD.

Then E[
∏
ckii ]t+1 = E[

∏
c′kii ]. For any moments E[Dαf(p, q)], this simplifies to the recursion

E[Dαf(p, q)]t+1 = (1− αr)E[Dαf(p, q)]t. (A7)

A.1.3 Mutation

In the infinite-sites model, mutations are assumed to occur once at any given locus (i.e., no recurrent or
back mutation). Recurrent and reversible mutations are described in the next section. A two-locus pair
that is observed to be polymorphic at both loci must have experienced a mutation first at one locus, and
then a second to occur at the paired locus. Thus, while E[H] = E[2p(1 − p)] ∝ θ, the joint heterozygosity
E[p(1− p)q(1− q)] ∝ θ2.

In the Hill-Robertson system, a mutation can ”create” one-locus diversity from an invariant sites, and
create two-locus diversity from one-locus diversity:

∆UE[p(1− p)] =
θ

2
,

∆UE[p(1− p)q(1− q)] =
θ

2
E[p(1− p)] +

θ

2
E[q(1− q)],

where, ∆U is used to denote E[·]t+1 − E[·]t due to mutation. Other terms in the Hill-Robertson system are
unchanged by mutation.

For higher order systems, we have terms of the form E[π2σi] = E[p(1− p)q(1− q)(pi(1− p)i + qi(1− q)i)],
which change due to mutation as

∆UE[p(1− p)q(1− q)(pi(1− p)i + qi(1− q)i)] =
θ

2
E[pi(1− p)i + qi(1− q)i].
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Here, we have assumed that the mutation rates are equal at the left and right locus, although this approach
allows for differing mutation rates between the two loci, as in Ohta and Kimura (1969a).

Reversible mutations are also handled in a similarly straightforward manner. Under reversible mutations,
we have the same terms as above, and each moment in the system also decays as

∆UE[f(p, q,D)] = −k θ
2
E[f(p, q,D)],

where k is the sample-size order of the term (that is, the number of sampled haplotypes required to estimate
that term, as described in the Drift section above) (Ohta and Kimura, 1969a).

A.1.4 Selection in the Hill-Robertson system

While the Hill-Robertson system closes under drift and recombination, the D2 system (and all other orders)
does not close under selection. Here, we consider a simple selection model, with additive selection acting on
the A allele at the left locus (with selection strength s, |s| � 1), while the right locus remains neutral. Thus,
selection acts for or against AB and Ab haplotypes, with strength 1 + s relative to aB and ab haplotypes.
This selection model is relevant to computing the expect LD between a selected site and a neutral marker
separated by recombination distance r.

In this setting, we compute how selection is expected to change D2, D(1−2p)(1−2q), and p(1−p)q(1−q),
in expectation. Again we change variables to c-space and compute how selection is expected to change terms
in the monomial expansion. We denote c′i to be the expected frequency of type i after one generation. For
example,

c′1 =
c1(1 + s)

(c1 + c2)(1 + s) + c3 + c4

=
c1(1 + s)

1 + (c1 + c2)s

≈ c1(1 + s)(1− (c1 + c2)s) ≈ c1(1 + (1− p)s), (A8)

to first order in s. Similarly,

c′2 ≈ c2(1 + (1− p)s),
c′3 ≈ c3(1− ps),
c′4 ≈ c4(1− ps).

Then in one generation,

E
[
c′1
k1c′2

k2c′3
k3c′4

k4
]
≈ c1k1c2k2c3k3c4k4 (1 + k1(1− p)s+ k2(1− p)s− k3ps− k4ps)

≈ c1k1c2k2c3k3c4k4 (1 + (k1 + k2 − kp)s) ,

where k =
∑
i ki.

In one generation, the change in moments ∆SE[·] = E[·]t+1 − E[·]t due to selection is

∆SE[D2] = 2sE[D2(1− 2p)]

∆SE[D(1− 2p)(1− 2q)] = −2sE[D2(1− 2p)] +
3

2
sE[D(1− 2p)2(1− 2q)]− s

2
E[D(1− 2p)]

∆SE[p(1− p)q(1− q)] = sE[p(1− p)q(1− q)] + sE[Dp(1− p)(1− 2q)],

Thus we need to include additional terms: E[D2(1− 2p)], E[D(1− 2p)2(1− 2q)], etc. These additional terms
require their own additional terms, so that this system grows and includes all terms (in expectation) D2pi(1− p)i(1− 2p)j

Dpi(1− p)i(1− 2p)j(1− 2q)
pi(1− p)i(1− 2p)jq(1− q)

 ,∀i, j ≥ 0.
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To solve this system, we will require a moments closure approximation. This could be achieved, for ex-
ample, by approximating D2pi(1− p)i(1− 2p)j as a linear combination of terms of lower order, {D2pi−k(1−
p)i−k(1− 2p)j−l}, through a jackknife approximation. Alternatively, we could choose some values i and j to
truncate the system and approximate the necessary higher order terms as E[f(p, q,D)] as E[g(p, q,D)]E[h(p, q,D)]
where gh = f , which leads to a nonlinear system of ODEs. While beyond the scope of this paper, work is on-
going to assess accuracy of closure approximations and incorporate models of selection into multi-population
LD models.

A.2 Multiple populations

In this section, we describe the multi-population basis analogous to the Hill-Robertson system for a single
populations. We derive recursion equations for the multi-population basis under migration and admixture
events.

A.2.1 Population splits

Consider a single populations (denoted 0) that splits into two populations (denoted 1 and 2). In the time of
the population split (t0), expected two-locus statistics in populations 1 and 2 are equal to those in population
0. This can be seen by considering the probability of sampling haplotypes in the two split populations. We
compute terms of the form

∏2
j=1

∏4
i=1 cj,i

kj,i , where cj,i denotes the probability of sampling haplotype i in
population j. We observe that at the time of the split, cj,i = c0,i, since expected haplotype frequencies in
the split populations are equal to expected haplotype frequencies in the parental population. Then,

2∏
j=1

4∏
i=1

cj,i
kj,i =

2∏
j=1

4∏
i=1

c0,i
kj,i =

4∏
i=1

c0,i
k1,i+k2,i . (A9)

Thus
E[D2

1]t0 = E[D2
2]t0 = E[D2

0]t0 ,

E[D1(1− 2p1)(1− 2q1)]t0 = E[D2(1− 2p2)(1− 2q2)]t0 = E[D0(1− 2p0)(1− 2q0)]t0 ,

and so on. Additionally, we consider E[D1D2], the covariance of D across populations 1 and 2, which initially
is

E[D1D2]t0 = E[(c1,1c1,4 − c1,2c1,3)(c2,1c2,4 − c2,2c2,3)]t0
= E[c1,1c1,4c2,1c2,4]t0 − E[c1,1c1,4c2,2c2,3]t0 − E[c1,2c1,3c2,1c2,4]t0 + E[c1,2c1,3c2,2c2,3]t0

= E[c20,1c
2
0,4]t0 − 2E[c0,1c0,2c0,3c0,4]t0 + E[c20,2c

2
0,3]t0

= E[D2
0]t0 .

In the absence of migration, the D2-systems in each of the populations evolves according to the Hill-
Robertson equations, while

E[D1D2]t+1 =

(
1− 1

2N1
− 1

2N2
− 2r

)
E[D1D2]t. (A10)

A.2.2 Migration

With the inclusion of migration, additional moments are needed to obtain a closed system. We write the
full basis with migration as

z =


E[DiDj ]
E[Dizj,k]

E[π2(i, j; k, l)]
E[Hi,j ]

 ,

where i, j, k, l index populations, and

Dizj,k = Di(1− 2pj)(1− 2qk),

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 7, 2018. ; https://doi.org/10.1101/489401doi: bioRxiv preprint 

https://doi.org/10.1101/489401
http://creativecommons.org/licenses/by-nc-nd/4.0/


π2(i, j; k, l) =



pi(1− pi)qk(1− qk), i = j, k = l
1
2pi(1− pj)qk(1− qk) + 1

2pj(1− pi)qk(1− qk), i 6= j, k = l
1
2pi(1− pi)qk(1− ql) + 1

2pi(1− pi)ql(1− qk), i = j, k 6= l
1
4pi(1− pj)qk(1− ql) + 1

4pi(1− pj)ql(1− qk)

+ 1
4pj(1− pi)qk(1− ql) + 1

4pj(1− pi)ql(1− qk), i 6= j, k 6= l

,

Hi,j =

{
pi(1− pi), i = j
1
2pi(1− pj) + 1

2pj(1− pi), i 6= j
.

Initial values for each cross term are found using Equation A9 in the above section Population splits.

The number of terms in the system grows in the number P of populations, as P 3+
(
P (P+1)

2

)2
+3· P (P+1)

2 .

While the size of the full joint AFS grows exponentially in P , the multi-population Hill-Robertson system
remains manageable for even large P : for example, the 10-population system has 4,190 terms, which is not
at all computationally burdensome for a sparse, linear system. When the left and right loci have equal
mutation rate, as we assume in most of our models, redundant terms exist in this basis so the system may
be further reduced in size.

We want to know how migration changes expected statistics in our system. We again work in c-space,
where ci1 represents the haplotype AB in population i, ci2 represents Ab in population i, ci3 represents aB
in i, and ci4 represents ab in i. We consider terms of the general form

E

[
P∏
i=1

4∏
l=1

ckilil

]
,

and set k =
∑
i,l kil as the total number of tracked lineages in our subsample across all populations, corre-

sponding to the sample size (order) of the moment.
We denote migration rates mij as the probability that a lineage in population j is replaced by a migrant

lineage from population i. We assume mij � 1 so that at most a single migrant replaces a lineage among
the sample of size k � Nj in population j in any generation. Then in one generation, the change due to
migration is

∆ME

[
P∏
i=1

4∏
l=1

ckilil

]
t

=
P∑
i=1

P∑
j=1

δi 6=jmij

(
4∑
l=1

kil(cil − cjl)
cjl

)
. (A11)

In words, we sum over each pair of populations i, j and consider the probability that lineages of each type
migrate from population i and copies over a lineage within our sample in population j.

As a simple example, consider the expected frequency at a single locus p1 in population 1 (among P total
populations). Using the above formula, after one generation we find

∆ME[p1] =
P∑
i=2

mi1(E[pi]− E[p1]).

Expected changes due to migration may be found for each term in the system.
For two populations, with migration rates m12 from population 1 to 2, and m21 from population 2 to 1,
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on the terms (in expectation) in the system

z =



D2
1

D1D2

D2
2

D1z1,1
D1z1,2
D1z2,1
D1z2,2
D2z1,1
D2z1,2
D2z2,1
D2z2,2

π2(1, 1; 1, 1)
π2(1, 1; 1, 2)
π2(1, 1; 2, 2)
π2(1, 2; 1, 1)
π2(1, 2; 1, 2)
π2(1, 2; 2, 2)
π2(2, 2; 1, 1)
π2(2, 2; 1, 2)
π2(2, 2; 2, 2)

H1,1

H1,2

H2,2



,

we obtain the migration operator

M =m12



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 −2 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 −2 0 0 0 0 4 −4 0 −4 4 0 0 0 0
0 0 0 0 0 0 1 0 1 1 −3 0 0 0 0 4 −4 0 −4 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 −2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 −3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 −3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 −4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 −2



+m21



−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −3 1 1 0 1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0 0
0 0 0 0 −2 0 1 0 1 0 0 0 4 −4 0 −4 4 0 0 0 0 0 0
0 0 0 0 0 −2 1 0 0 1 0 0 0 0 4 −4 0 −4 4 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 1 0 0 0 0 4 −4 0 −4 4 0 0 0
0 0 0 0 0 0 0 −2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −4 2 0 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −3 1 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 2 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.
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The two-population drift operator in the migration basis is

D =
1

2N1



−3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



+
1

2N2



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



.

For any number of populations, we have the closed recursion

zt+1 − zt = (DN +Mm +Rr + Uu) zt, (A12)

whereD,R, U , andM are sparse matrices for drift, recombination, mutation, and migration, with population
sizes N and migration rates m.

A.2.3 Admixture

We find the expected value for terms in basis (5) that include a new admixed population. We assume the
admixed population arises from two parental populations, with lineages arriving from the two populations
with probability f and 1−f . Computing terms involving the admixed population simply requires enumerating
over the haplotype probabilities of lineages arising from each parental population, which have been computed
up to the time of admixture, and then simplifying.

Suppose an admixture event between populations 1 (with proportion f) and 2 (with proportion 1− f),
with P total populations, forms a new population indexed P + 1. Expected haplotype frequencies in the
admixed population are given by f and the expected haplotype frequencies in the source populations. For
example, cP+1,1 (c1 in the admixed population) equal to fc1,1 + (1 − f)c2,1, cP+1,2 = fc1,2 + (1 − f)c2,2,
and so on. Cavalli-Sforza and Bodmer (1971) (page 69) used this approach to compute E[D] in an admixed
population (Equation 7).
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For any statistic f(p,q,D), we first convert to c-space variables. Then for each term in the c-space

expansion
∏P+1
i=1

∏4
l=1 ci,l

ki,l , where ci,l represents haplotype l in population i, we compute

P+1∏
i=1

4∏
l=1

ci,l
ki,l =

(
P∏
i=1

4∏
l=1

ci,l
ki,l

)
(fc1,1 + (1− f)c2,1)

kP+1,1 (fc1,2 + (1− f)c2,2)
kP+1,2

· (fc1,3 + (1− f)c2,3)
kP+1,3 (fc1,4 + (1− f)c2,4)

kP+1,4 .

We then convert back to the (p,q,D) variables and simplify. If a term does not include any term with pP+1,
qP+1 or DP+1, it remains remains unchanged. Otherwise, the term can be written as a linear combination
of terms in the P -population basis.

For example, with two populations, with contribution f from population 1 and 1− f from population 2,

E[D2
adm] =f2E[D2

1] + (1− f)2E[D2
2] + 2f(1− f)E[D1D2]

+ 2f2(1− f)E[D1δ] + 2f(1− f)2E[D2δ] + f2(1− f)2E[δ2]. (A13)

E[Diδ] and E[δ2] can be written as linear combinations of terms in the multi-population basis (5). Similar
equations exist for each new term in the basis with the additional admixed population, and this system can
then be integrated forward in time using Equation 6.

A.3 Haplotype frequency spectrum

The allele frequency spectrum (AFS) is the distribution of allele counts in a sample of size n, denoted Φn.
Because Φn is sensitive to demographic and evolutionary processes, it is widely used to infer demographic
history, patterns of selection, and mutation rates. While the coalescent computes expectations of the entries
of Φn looking backward in time through the branch lengths of a genealogy, forward in time approaches solve
the underlying diffusion equation, which describes the time-evolution of the distribution of allele frequencies
in one or more populations. In one populations, this takes the form

∂φ

∂t
=

1

2N

∂2

∂x2
x(1− x)φ− s ∂

∂x
(h+ (1− 2h)x)x(1− x)φ, (A14)

where N is the effective population size and can change over time. Φn can then be found by integrating φ
against the binomial sampling distribution.

Analytic solutions to Equation A14 have only been found for simple scenarios, such as steady-state
solutions. To compute Φn for non-equilibrium demography, we turn to numerical solutions, e.g. (Evans
et al., 2007; Gutenkunst et al., 2009; Lukic and Hey, 2012). Recently, Jouganous et al. (2017) recognized
that the entries of Φn themselves comprise a moments system that allows for direct integration of Φn
without having to numerically solve Equation A14. This system closes under drift, while selection requires
a moment-closure approximation.

The two-locus frequency spectrum (Ψn) is defined similarly to the single locus AFS, but instead tracks
the haplotype frequencies of two-locus pairs. We consider a model that permits two alleles at each of the
two loci: A/a at the left locus, and B/b at the right. Four haplotypes are possible in the two-locus model
(AB,Ab, aB, ab) whose frequencies in the population sum to one. Then Ψn(i, j, k) is the expected number
of two-locus pairs in a sample of size n in which we observe i copies of type AB, j of type Ab, k of type aB,
and n− i− j − k of type ab.

The two-locus frequency spectrum can be found at steady-state using a recursion due to Golding (1984).
For non-equilibrium demography, Kamm et al. (2016) presented a coalescent approach for Ψn via a Moran
model closely related to the look-down approach of Donnelly and Kurtz (1999a). Alternatively, Ψn can
be found by first solving the associated two-locus diffusion equation ψ (Kimura, 1955; Hill and Robertson,
1966), the density of two-locus haplotype frequencies in the population,

∂ψ

∂t
=

1

2

∑∑
1≤i,j≤3

∂2

∂xi∂xj

xi(δi,j − xj)ψ
N(t)

+
ρ

2

(
∂

∂x1
Dψ − ∂

∂x2
Dψ − ∂

∂x3
Dψ

)
, (A15)
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shown here without terms for selection and D = x1(1−x1−x2−x3)−x2x3, and then integrating ψ against
the multinomial sampling distribution. Ragsdale and Gutenkunst (2017) solved Equation A15 using finite
differences, which they used in single-population demographic inference. The advantage to the diffusion
approach is that selection is easily incorporated at one or both loci, which allows us to directly model the
effect of linked selection with any recombination recombination rate and non-equilibrium demography.

Here, instead of finding a numerical solution to Equation A15, we show that we can directly solve for
Ψn through a recursion on its entries just as Jouganous et al. (2017) proposed for the single-locus AFS.
By considering how haplotype frequencies within n tracked lineages are expected to change due to drift,
recombination, selection, and mutation, we obtain the recursion

Ψt+1
n (i, j, k)−Ψt

n(i, j, k) =D2N(t),n;i,j,kΨt
n + UuΨt

n +RrΨt
n+1 + Ss,hΨt

n+2. (A16)

Here, D is a sparse matrix to account for drift, R accounts for recombination with rate r, S for selection
with arbitrary selection and dominance coefficients for each haplotype, and U is a mutation operator for
either an infinite sites or reversible mutation model.

Under drift and mutation, in the neutral case and with no recombination, Equation A16 is closed and can
be solved exactly. With selection and recombination Ψn relies on the slightly larger frequency spectra Ψn+1

and Ψn+2, and so the system does not close. Intuitively, drift closes because we are just concerned with
lineages copying over each other within the subsample of n tracked lineages. However, we require additional
lineages in the case of non-zero recombination and selection. If a recombination event occurs within our n
tracked lineages, we require an additional lineage to be drawn from the full population for the recombining
lineage to be paired with. And in the case of selection, a replacement lineage must be drawn from the
entire population, so we need to know the expected distribution of a larger size sample. We close the system
using a jackknife extrapolation, which estimates Ψn+l using the known Ψn, as was done for the single locus
frequency spectrum in Jouganous et al. (2017). In practice, we find the jackknife to be reasonably accurate
for moderate sample sizes (n & 20), with accuracy increasing in n (Table A1).

Below, we derive each operator in turn. We consider tracking a subsample of n lineages in the population
and find how drift, mutation, recombination, and selection are each expected to change probabilities of
two-locus haplotype frequencies in a given generation.

A.3.1 Drift

Just as in the Hill-Robertson section above (A.1.1), transition probabilities for Ψn are derived by considering
haplotype frequencies within a sample of size n. Allele frequencies within the subsample of n lineages change
due to drift in one generation if one lineage within the n subsampled lineages copies itself onto another
lineage within our subsample. For simplicity, we assume n � N , so that at most a single copying event
occurs between two of the n lineages in any given generation. Generalization to multiple coalescences per
generation could be performed as in Jouganous et al. (2017).

The probability of a single copying event within the sample in a single generation at time t (to leading
order in 1/N) is

Pn,N (1→ 2) =
1

2N(t)

(
n

2

)
, (A17)

the classical large-population limit from coalescence theory. In the case of a copying event, one lineage is
drawn twice and another is not drawn. Haplotype frequencies will only change if the two drawn lineages
differ in state.

We compute the probability of all possible haplotype frequency changes ((i, j, k) → (i′, j′, k′)) in one
generation, given a coalescent event occurs. For example, frequencies change from (i, j, k) to (i+ 1, j − 1, k)
if an AB lineage is chosen to copy over an Ab lineage. For a given frequency bin (i, j, k), this occurs if we
first choose an AB lineage that copies itself twice (with probability i/n), then choose an Ab lineage to be
copied over (with probability j/(n− 1)), scaled by the density of two-locus haploypes with those frequencies
(Ψn(i, j, k)). Together we get

P1→2((i, j, k)→ (i+ 1, j − 1, k)) =
i

n

j

n− 1
Ψn(i, j, k). (A18)
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We account for all possible changes in haplotype frequencies due to copying events in this way:

P1→2((i, j, k)→ (i+ 1, j, k)) =
i

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j, k)) =
i

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j + 1, k)) =
j

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j − 1, k)) =
j

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j, k + 1)) =
k

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i, j, k − 1)) =
k

n

n− i− j − k
n− 1

Ψn(i, j, k)

P1→2((i, j, k)→ (i+ 1, j − 1, k)) =
i

n

j

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i+ 1, j, k − 1)) =
i

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j + 1, k)) =
i

n

j

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i− 1, j, k + 1)) =
i

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i, j + 1, k − 1)) =
j

n

k

n− 1
Ψn(i, j, k)

P1→2((i, j, k)→ (i, j − 1, k + 1)) =
j

n

k

n− 1
Ψn(i, j, k)

P1→2((i− 1, j, k)→ (i, j, k)) =
i− 1

n

n− i− j − k + 1

n− 1
Ψn(i− 1, j, k)δi>0

P1→2((i+ 1, j, k)→ (i, j, k)) =
i+ 1

n

n− i− j − k − 1

n− 1
Ψn(i+ 1, j, k)δi<n

P1→2((i, j − 1, k)→ (i, j, k)) =
j − 1

n

n− i− j − k + 1

n− 1
Ψn(i, j − 1, k)δj>0

P1→2((i, j + 1, k)→ (i, j, k)) =
j + 1

n

n− i− j − k − 1

n− 1
Ψn(i, j + 1, k)δj<n

P1→2((i, j, k − 1)→ (i, j, k)) =
k − 1

n

n− i− j − k + 1

n− 1
Ψn(i, j, k − 1)δk>0

P1→2((i, j, k + 1)→ (i, j, k)) =
k + 1

n

n− i− j − k − 1

n− 1
Ψn(i, j, k + 1)δk<n

P1→2((i− 1, j + 1, k)→ (i, j, k)) =
i− 1

n

j + 1

n− 1
Ψn(i− 1, j + 1, k)δi>0

P1→2((i− 1, j, k + 1)→ (i, j, k)) =
i− 1

n

k + 1

n− 1
Ψn(i− 1, j, k + 1)δi>0

P1→2((i+ 1, j − 1, k)→ (i, j, k)) =
i+ 1

n

j − 1

n− 1
Ψn(i+ 1, j − 1, k)δj>0

P1→2((i+ 1, j, k − 1)→ (i, j, k)) =
i+ 1

n

k − 1

n− 1
Ψn(i+ 1, j, k − 1)δk>0

P1→2((i, j − 1, k + 1)→ (i, j, k)) =
j − 1

n

k + 1

n− 1
Ψn(i, j − 1, k + 1)δj>0

P1→2((i, j + 1, k − 1)→ (i, j, k)) =
j + 1

n

k − 1

n− 1
Ψn(i, j + 1, k − 1)δk>0

Taken together, we obtain Dn(i, j, k).

A.3.2 Mutation

The moment system for Ψn allows for flexible mutation operators. Both the infinite sites model (ISM) and
a reversible mutation model are straightforward to derive and implement.
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For the ISM model, mutations at each locus occur only once from ancestral to derived state. We suppose
the mutation rate at the left locus is u1 (for a → A) and at the right locus is u2 (b → B). For a two-locus
pair to segregate at both loci, a mutation must first occur at one of the loci, and then a mutation must occur
at the second locus while the first locus is still segregating. For the first mutation, we introduce density in
the singleton bins (one copy of either Ab or aB) as

UΨn(0, 1, 0) = nu1, (A19)

UΨn(0, 0, 1) = nu2. (A20)

The second mutation, which occurs while the first locus is already segregating, introduces pairs of seg-
regating loci proportional to the marginal single locus AFS at each locus. We account for whether, for
example, a mutation a→ A occurs on a B or b background:

UΨn(1, j, 0) = u2(j + 1)Ψn(0, j + 1, 0) ∀j ∈ {0, 1, . . . , n− 1} (A21)

UΨn(0, j, 1) = u2(n− j)Ψn(0, j, 0) ∀j ∈ {1, 2, . . . , n} (A22)

UΨn(1, 0, k) = u1(k + 1)Ψn(0, 0, k + 1) ∀k ∈ {0, 1, . . . , n− 1} (A23)

UΨn(0, 1, k) = u1(n− k)Ψn(0, 0, k) ∀k ∈ {1, 2, . . . , n}. (A24)

We can allow recurrent, reversible mutations, with rates

a
u1−⇀↽−
v1

A and b
u2−⇀↽−
v2

B. (A25)

In this case, there are no absorbing states. For example, the probability that a mutation event a → A
occurs (u1) that changes an aB haplotype to an AB haplotype depends on the number of aB haplotypes
present in the sample (k) and the probability of observing the required haplotype frequencies Ψn(i, j, k).
Then Pmut((i, j, k)→ (i+ 1, j, k − 1)) = u1(k)Ψn(i, j, k). All together, the mutation operator is

UrevΨn(i, j, k) =u1(k + 1)Ψn(i− 1, j, k + 1)− u1(k)Ψn(i, j, k)

+ u1(n− i− j − k + 1)Ψn(i, j − 1, k)− u1(n− i− j − k)Ψn(i, j, k)

+ v1(i+ 1)Ψn(i+ 1, j, k − 1)− v1(i)Ψn(i, j, k)

+ v1(j + 1)Ψn(i, j + 1, k)− v1(j)Ψn(i, j, k)

+ u2(j + 1)Ψn(i− 1, j + 1, k)− u2(j)Ψn(i, j, k)

+ u2(n− i− j − k + 1)Ψn(i, j, k − 1)− u2(n− i− j − k)Ψn(i, j, k)

+ v2(i+ 1)Ψn(i+ 1, j − 1, k)− v2(i)Ψn(i, j, k)

+ v2(k + 1)Ψn(i, j, k + 1)− v2(k)Ψn(i, j, k).

A.3.3 Recombination

Here we derive the probabilities for transitions in frequencies due to recombination events, where a lineage
in the sample is chosen to recombine with a lineage drawn from the full population, and one of the two
recombinant types replaces the chosen lineage. Because we need to choose an extra lineage from the full
population, RΨn depends on Ψn+1, leading to the system being unclosed. For example, we write the
probability of recombination between an ab type lineage from within our n subsampled lineages and an
AB haplotype from the full population, and subsequently changing frequencies from (i, j, k) to (i′, j′, k′), as
Rab×AB((i, j, k)→ (i′, j′, k′)). These probabilities are

Rab×AB((i, j, k)→ (i, j + 1, k)) =
1

2
Ψn+1(i+ 1, j, k)

n− i− j − k
n+ 1

i+ 1

n

Rab×AB((i, j, k)→ (i, j, k + 1)) =
1

2
Ψn+1(i+ 1, j, k)

n− i− j − k
n+ 1

i+ 1

n

Rab×Ab((i, j, k)→ (i, j + 1, k)) =
1

2
Ψn+1(i, j + 1, k)

n− i− j − k
n+ 1

j + 1

n

Rab×aB((i, j, k)→ (i, j, k + 1)) =
1

2
Ψn+1(i, j, k + 1)

n− i− j − k
n+ 1

k + 1

n
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RaB×AB((i, j, k)→ (i+ 1, j, k − 1)) =
1

2
Ψn+1(i+ 1, j, k)

k

n+ 1

i+ 1

n

RaB×Ab((i, j, k)→ (i+ 1, j, k − 1)) =
1

2
Ψn+1(i, j + 1, k)

k

n+ 1

j + 1

n

RaB×Ab((i, j, k)→ (i, j, k − 1)) =
1

2
Ψn+1(i, j + 1, k)

k

n+ 1

j + 1

n

RaB×ab((i, j, k)→ (i, j, k − 1)) =
1

2
Ψn+1(i, j, k)

k

n+ 1

n− i− j − k + 1

n

RAb×AB((i, j, k)→ (i+ 1, j − 1, k)) =
1

2
Ψn+1(i+ 1, j, k)

j

n+ 1

i+ 1

n

RAb×aB((i, j, k)→ (i+ 1, j − 1, k)) =
1

2
Ψn+1(i, j, k + 1)

j

n+ 1

k + 1

n

RAb×aB((i, j, k)→ (i, j − 1, k)) =
1

2
Ψn+1(i, j, k + 1)

j

n+ 1

k + 1

n

RAb×ab((i, j, k)→ (i, j − 1, k)) =
1

2
Ψn+1(i, j, k)

j

n+ 1

n− i− j − k + 1

n

RAB×Ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k)

i

n+ 1

j + 1

n

RAB×aB((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k)

i

n+ 1

k + 1

n

RAB×ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j + 1, k)

i

n+ 1

n− i− j − k + 1

n

RAB×ab((i, j, k)→ (i− 1, j, k)) =
1

2
Ψn+1(i, j, k + 1)

i

n+ 1

n− i− j − k + 1

n

and

Rab×AB((i, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j − 1, k)

n− i− j − k + 1

n+ 1

i+ 1

n

Rab×AB((i, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k − 1)

n− i− j − k + 1

n+ 1

i+ 1

n

Rab×Ab((i, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j, k)

n− i− j − k + 1

n+ 1

j

n

Rab×aB((i, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k)

n− i− j − k + 1

n+ 1

k

n

RaB×AB((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k + 1)

k + 1

n+ 1

i

n

RaB×Ab((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i− 1, j + 1, k + 1)

k + 1

n+ 1

j + 1

n

RaB×Ab((i− 1, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k + 1)

k + 1

n+ 1

j + 1

n

RaB×ab((i, j, k + 1)→ (i, j, k)) =
1

2
Ψn+1(i, j, k + 1)

k + 1

n+ 1

n− i− j − k
n

RAb×AB((i− 1, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k)

j + 1

n+ 1

i

n

RAb×aB((i− 1, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i− 1, j + 1, k + 1)

j + 1

n+ 1

k + 1

n

RAb×aB((i, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k + 1)

j + 1

n+ 1

k + 1

n

RAb×ab((i, j + 1, k)→ (i, j, k)) =
1

2
Ψn+1(i, j + 1, k)

j + 1

n+ 1

n− i− j − k
n

RAB×Ab((i+ 1, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k)

i+ 1

n+ 1

j

n

RAB×aB((i+ 1, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k)

i+ 1

n+ 1

k

n

RAB×ab((i+ 1, j − 1, k)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j − 1, k)

i+ 1

n+ 1

n− i− j − k + 1

n
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RAB×ab((i+ 1, j, k − 1)→ (i, j, k)) =
1

2
Ψn+1(i+ 1, j, k − 1)

i+ 1

n+ 1

n− i− j − k + 1

n

Multiplying by the probability that a recombination event occurs on a lineage in our sample (nr, assuming
r � 1), and then cancelling terms and simplifying, we find

Rn,rΨn(i, j, k) = nr×
[
Ψn+1(i+ 1, j − 1, k)

i+ 1

n+ 1

n− i− j − k + 1

n

+ Ψn+1(i+ 1, j, k − 1)
i+ 1

n+ 1

n− i− j − k + 1

n

+ Ψn+1(i− 1, j + 1, k + 1)
j + 1

n+ 1

k + 1

n

+ Ψn+1(i− 1, j + 1, k + 1)
j + 1

n+ 1

k + 1

n

−Ψn+1(i+ 1, j, k)
i+ 1

n+ 1

n− i− j − k
n

−Ψn+1(i, j + 1, k)
j + 1

n+ 1

k

n

−Ψn+1(i, j, k + 1)
j

n+ 1

k + 1

n

−Ψn+1(i, j, k)
i

n+ 1

n− i− j − k + 1

n

]
.

A.3.4 Selection

Here, we consider a model that allows selection at the left locus (A/a). In this setting we model a neutral
locus linked to a selected locus separated by arbitrary recombination rate. We suppose A is selected against
or for with selection and dominance coefficients s (with |s| � 1) and h, so that a diploid carrying AA has
relative fitness (1 + s) compared to a aa diploid, while the heterozygote Aa has relative fitness (1 + hs). If
h = 1/2, this reduces to the simple haploid selection model with A having fitness (1 + s) relative to a.

We consider how selection is expected to change haplotype frequencies over a given generation. As was
the case for recombination and drift events above, there are many possible haplotype frequency changes that
may occur due to a selection event.

For example, suppose that selection acts against the A allele (s < 0). We want to estimate the probability
of events where, for example, a selection event occurs in which an AB lineage fails to replicate to the
subsequent generation and is replaced by an Ab haplotype, drawn from the full population. The AB lineage
is eliminated with probability −s if the parent is a homozygote at the A/a locus (i.e. its diploid pair is
type AB or Ab), and it is eliminated with probability −sh if a heterozygote (i.e. paired with aB or ab).
To compute the probability of any such event, we must draw two additional lineages from the population
(one for the diploid pairing and one for the replacement lineage) in addition to the n tracked lineages in Ψn.
Thus, we require Ψn+2 to compute the evolution of Ψn.

Here, we write the probability that an AB lineage paired with aB is replaced by an Ab lineage as
S(aB,AB)←Ab. This event has probability

S(aB,AB)←Ab = −sh · n ·Ψn+2(i, j + 1, k + 1)

(
i
1

)(
j+1
1

)(
k+1
1

)(
n
3

) 1

6
, (A26)

where we account for choosing the three necessary lineages in the correct order. Probabilities for the other
three possible diploid pairings take a similar form:

S(AB,AB)←Ab = −s · n ·Ψn+2(i+ 1, j + 1, k + 1)

(
i+1
2

)(
j+1
1

)(
n
3

) 1

3

S(Ab,AB)←Ab = −s · n ·Ψn+2(i, j + 2, k)

(
i
1

)(
j+2
2

)(
n
3

) 1

3
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S(ab,AB)←Ab = −sh · n ·Ψn+2(i, j + 1, k)

(
j+1
1

)(
k+1
1

)(
n−i−j−k+1

1

)(
n
3

) 1

6
.

Accounting for all possible selection events (including the replaced lineage, its diploid pair, and the
replacement lineage), we find the selection operator

Sn,s,h =s

{
h

n+ 1

[
(i+ j)(k + 1)Ψn+1(i, j, k + 1)+ (A27)

+ (i+ j)(n− i− j − k + 1)Ψn+1(i, j, k)

− (i+ 1)(n− i− j)Ψn+1(i+ 1, j, k)

− (j + 1)(n− i− j)Ψn+1(i, j + 1, k)

]
+

1− 2h

(n+ 2)(n+ 1)

[
(i+ 1)(k + 1)(i+ j)Ψn+2(i+ 1, j, k + 1)

+ (i+ 1)(n− i− j − k + 1)(i+ j)Ψn+2(i+ 1, j, k)

+ (j + 1)(k + 1)(i+ j)Ψn+2(i, j + 1, k + 1)

+ (j + 1)(n− i− j − k + 1)(i+ j)Ψn+2(i, j + 1, k)

− (i+ 2)(i+ 1)(n− i− j)Ψn+2(i+ 2, j, k)

− 2(i+ 1)(j + 1)(n− i− j)Ψn+2(i+ 1, j + 1, k)

− (j + 2)(j + 1)(n− i− j)Ψn+2(i, j + 2, k)

]}
.

Here we’ve used the downsampling formula to simplify the additive terms: if h = 1/2, S only requires Ψn+1

since selection is independent of the state of the paired lineage.

A.3.5 Moment closure approximation for Ψn

Because neither recombination nor selection close in the full two-locus haplotype frequency system, we require
a moment closure approximation to integrate Equation A16 forward in time. Here we will use a jackknife
extrapolation, similar to Jouganous et al. (2017) for the single locus AFS, to express Ψn+2 and Ψn+1 as
linear combinations of Ψn, so that

Ψn+l(i, j, k) ≈
∑

(i′,j′,k′)∈I(i,j,k)

w(i′,j′,k′)Ψn(i′, j′, k′), (A28)

where l ∈ 1, 2 and the entries (i′, j′, k′) ∈ I(i,j,k) are chosen so that (i′/n, j′/n, k′/n) are close to (i/(n +
l), j/(n+ l), k/(n+ l)). Each choice l will have its own set I and weights w.

We then find the appropriate set of entries I and weights w, for a given l and entry in that frequency
spectrum. First, we note that for any continuous function ψ that solves Equation A15, we can find the
entries of Ψn(i, j, k) for any n, i, j, k, using the multinomial sampling formula

Ψn(i, j, k) =

∫∫∫
x,y,z≥0,
x+y+z≤1

ψ(x, y, z)

(
n

i, j, k

)
xiyjzk(1− x− y − z)n−i−j−k dx dy dz. (A29)

We make the assumption here that ψ can be approximated locally as a quadratic, so that

ψ(x, y, z) ≈ a1 + a2x+ a3y + a4z + a5x
2 + a6xy + a7xz + a8y

2 + a9yz + a10z
2. (A30)

Using this approximation of ψ, the multinomial sampling integral can be computed analytically, to get

Ψ̃n(i, j, k) =
1

(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)

[
a1(n+ 5)(n+ 4) + a2(n+ 5)(i+ 1) (A31)
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+ a3(n+ 5)(j + 1) + a4(n+ 5)(k + 1)

+ a5(i+ 2)(i+ 1) + a6(i+ 1)(j + 1)

+ a7(i+ 1)(k + 1) + a8(j + 2)(j + 1)

+ a9(j + 1)(k + 1) + a10(k + 2)(k + 1)
]

For a given Ψn(i, j, k) we take the ten closest values I = {(i′1, j′1, k′1), (i′2, j
′
2, k
′
2), . . . , (i′10, j

′
10, k

′
10)} as

described above, with the added condition that the sets of {i′}, {j′}, and {k′} each have size at least three.
We then set

Ψ̃n+l(i, j, k) =
∑

w(i′,j′,k′)Ψ̃n(i′, j′, k′). (A32)

This holds for any ψ, so we set (a1, a2, . . . , a10) = (1, 0, . . . , 0), (a1, a2, . . . , a10) = (0, 1, . . . , 0), etc, in turn
to get a system of equations for the weights wm = w(i′m,j

′
m,k
′
m), m = 1, . . . , 10:

(n+3)!(n+l)!
n!(n+3+l)! =

∑10
m=1 wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(i′m + 1)wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(j′m + 1)wm

(n+4)!(n+l)!
n!(n+4+l)! =

∑10
m=1(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 2)(i′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 1)(j′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(i′m + 1)(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(j′m + 2)(j′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(j′m + 1)(k′m + 1)wm

(n+5)!(n+l)!
n!(n+5+l)! =

∑10
m=1(k′m + 2)(k′m + 1)wm,

which can be solved either analytically or numerically.

A.3.6 Comparing methods to compute Ψn

We compared the accuracy and computational time needed for computing Ψn using the numerical PDE
approach presented in Ragsdale and Gutenkunst (2017) and the moment approach presented here. We per-
formed this comparison for n ∈ {30, 50} and ρ ∈ {0, 10}. We considered two demographic models for each
sample size and recombination rate: equilibrium demography with no size changes, and a bottleneck demog-
raphy. In the bottleneck demographic model the population is initially at steady state, then instantaneously
changes in size to 1/10 the original size for 0.05 time units (measured in 2Ne), and then it recovers to the
original size for 0.2 time units.

For the equilibrium Ψn, we compared to Hudson’s Monte Carlo implementation (described in Hud-
son (2001) and available from the author’s website) for n = 100 projected down to sample sizes n = 30
and n = 50. We projected from a larger sample size for improved accuracy in Hudson’s estimate and
considered this distribution the “true” distribution to compare against. For the bottleneck distribution,
we computed a numerical approximation with a larger sample size (n = 80) and 100x smaller time step
than the default using moments.TwoLocus and then projected to n = 30 and n = 50. To compute Ψn

in ∂a∂i, we numerically solve for Ψn for three grid spacings and three time steps, and then perform
Richardson extrapolation (detailed in Ragsdale and Gutenkunst (2017)). We set integration time steps
to [0.005, 0.0025, 0.001] and grid points [40, 50, 60] for n = 30 and [60, 70, 80] for n = 50. We measured
accuracy as

∑
(Ψn(model) − Ψn(True))2/Ψn(True). In general, moments performs favorably compared to

∂a∂i, with orders of magnitude improved accuracy and faster integration and evaluation (Table A1).

A.4 Deriving moment equations from the PDE

So far we have derived recursion equations in both the Hill-Robertson basis and for the full haplotype
frequency spectrum by tracking an appropriately sized subset of lineages within the full population and
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considering the effects such as drift and recombination within these lineages. The statistics in these recursion
equations are all non-canonical moments of the full two-locus distribution. Thus an alternative route to
deriving all of the recursion equations presented in this paper is directly through the partial differential
equation (PDE) describing the evolution of this full distribution.

Classically, two equivalent PDEs describing this distribution were studied, one in the variables of hap-
lotype frequencies (x1, x2, x3, x4) and the other in the variables (p, q,D) (Hill and Robertson, 1966; Ohta
and Kimura, 1969b). In this section, we outline the approach to obtain the Hill-Robertson D2 system from
the latter of these bases, do the same for the haplotype frequency spectrum Ψn, and then intuitively discuss
why recombination closes in the Hill-Robertson basis but not the haplotype frequency basis from a PDE
perspective.

Without selection, the neutral two-locus distribution ψ(p, q,D) follows the forward Kolmogorov equation,

∂ψ

∂τ
=

1

2

∂2

∂p2
(p(1− p)ψ) +

1

2

∂2

∂q2
(q(1− q)ψ) +

∂2

∂p∂q
(Dψ) +

∂2

∂p∂D
(D(1− 2p)ψ) +

∂2

∂q∂D
(D(1− 2q)ψ)

+
1

2

∂2

∂D2

((
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ
)

+
∂

∂D

(
D
(

1 +
ρ

2

)
ψ
)
, (A33)

where time τ is measured in 2N generations. To obtain the time evolution of any moment of this distribution,
we take

∂τE[f(p, q,D)] =
∂

∂τ

∫
ψf(p, q,D)

=

∫
∂ψ

∂τ
f(p, q,D)

=

∫
(RHS)f(p, q,D),

where RHS are the terms in Equation A33. Here, we have abused the integral notation, and it should be
understood to be the triple integral over the domain of the function ψ.

For the D2 system, we first find ∂τE[D2]:

∂τE[D2] =
1

2

∫
D2 ∂

2

∂p2
p(1− p)ψ +

1

2

∫
D2 ∂

2

∂q2
q(1− q)ψ +

∫
D2 ∂

∂p∂q
pqψ

+

∫
D2 ∂2

∂p∂D
D(1− 2p)ψ +

∫
D2 ∂2

∂p∂D
D(1− 2p)ψ

+
1

2

∫
D2 ∂2

∂D2

(
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ

+

∫
D2 ∂

∂D
D
(

1 +
ρ

2

)
ψ

IBP
=

∫ (
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ − 2

∫
D2
(

1 +
ρ

2

)
ψ

= − 3E[D2] + E[D(1− 2p)(1− 2q)] + E[p(1− p)q(1− q)]− ρE[D2],

which recovers, to first order, the Hill-Robertson equation for E[D2]. Surface terms vanish since the functions
decay to zero at the boundary. The other two terms in the system can by found by similarly integrating by
parts:

∂τE[D(1− 2p)(1− 2q)] = 4E[D2]− 5E[D(1− 2p)(1− 2q)]− ρ

2
E[D(1− 2p)(1− 2q)]

∂τE[p(1− p)q(1− q)] = E[D(1− 2p)(1− 2q)]− 2E[p(1− p)q(1− q)]

An equivalent PDE for ψ is expressed in haplotype frequencies (x1, x2, x3):

∂ψ

∂τ
=

1

2

3∑
i=1

3∑
j=1

∂2

∂xi∂xj
xi(δi=j − xj)ψ +

ρ

2

(
∂

∂x1
Dψ − ∂

∂x2
Dψ − ∂

∂x3
Dψ

)
, (A34)
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where δi=j = 1 if i = j and 0 otherwise, and formally D = x1(1 − x1 − x2 − x3) − x2x3. The first set of
terms in the double sum account for drift, and the second set of terms account of recombination with scaled
rate ρ.

We want to find evolution equations for Ψn(i, j, k), and we take a similar approach as above. Given the
continuous distribution ψ, we compute Ψn(i, j, k) by integrating ψ agains the multinomial distribution:

Ψn(i, j, k) =

∫∫∫ (
n

i, j, k, n− i− j − k

)
xi1x

j
2x
k
3(1− x1 − x2 − x3)n−i−j−kψ(x1, x2, x3),

where
(

n
i,j,k,n−i−j−k

)
= n!

i!j!k!(n−i−j−k)! is the multinomial coefficient. Then integrating both sizes of Equa-

tion A34 against this sampling function, we can find

∂τΨn(i, j, k) =

∫∫∫ (
n

i, j, k, n− i− j − k

)
xi1x

j
2x
k
3(1− x1 − x2 − x3)n−i−j−k1

2

3∑
i=1

3∑
j=1

∂2

∂xi∂xj
xi(δi=j − xj)ψ +

ρ

2

(
∂

∂x1
Dψ − ∂

∂x2
Dψ − ∂

∂x3
Dψ

) .

In brief, for the drift terms we integrate by parts twice, obtain a series of multinomial sampling functions
against ψ, and then simplify. This results in the same set of equations as derived above by computing copying
probabilities. This derivation follows closely the approach described in Jouganous et al. (2017) for the single
site AFS.

To understand closure properties, we can consider whether the order of terms on the RHS is always equal
or smaller to n. If so, the set of all moments of order n will only ever require moments of order less than
or equal to n, ensuring closure of the moment equation. When counting the order of terms on the RHS, we
must subtract one for each derivative: in the integration by part, each derivative reduces the degree of the
polynomial coefficient by at least one. Thus the drift term on the RHS has order n and closes, whereas the
recombination term has order n+ 1, and as a result does not close.

A.4.1 Closure of Hill-Robertson moments

Any order moment system for E[Dm] closes under drift and recombination. First, we observe that the
recombination transition matrix will be diagonal by considering the PDE without the drift terms: ψτ =
ρ
2 (Dψ)D. For any moment E[Dαf(p, q)], we get

∂τE[Dαf(p, q)] =
ρ

2

∫
Dαf(p, q)

∂

∂D
Dψ

= −αρ
2

∫
Dαf(p, q)ψ = −αρ

2
E[Dαf(p, q)].

Thus any basis of moments expressed as a functions of (p, q,D) will close under recombination.
Intuitively, for any moment f(p, q,D) we can expect to find a closed system for its evolution under drift.

This can be seen from the PDE for ψ (Equation A33): the coefficient of each spatial derivative has order
equal to the derivative. Thus integrating by parts does not result in any moments of ψ of higher order than
the original moment f . Since there are a finite number of moments of any given order, this system must also
be finite in size, and thus necessarily close.

Here we compute the recursion for the Dm system (for m even) and explicitly demonstrate that it
closes by considering the new terms required to compute E[Dm]. Again, we define π2 = p(1 − p)q(1 − q),
z = (1− 2p)(1− 2q), and σj = pj(1− p)j + qj(1− q)j .

First, suppose that the Dm−2 system closes. The Dm−2 system contains all terms{
E[Dm−2i−2j−k−2πi2z

kσj ]
}
, for k ∈ {0, 1}, j ∈

{
0, 1, . . . ,

m− 2k − 2

2

}
, i ∈

{
0, 1, . . . ,

m− 2k − 2j − 2

2

}
.

It also contains all terms in the Dm−4 system, which take the same form as above, and so on. By computing
∂τE[Dm] and its dependent terms, we find that all terms are present in the Dm−2 system or are in{

E[Dm−2i−2j−kπi2z
kσj ]

}
, for k ∈ {0, 1}, j ∈

{
0, 1, . . . ,

m− 2k

2

}
, i ∈

{
0, 1, . . . ,

m− 2k − 2j

2

}
. (A35)
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For the mth moment of D, we can use this same approach to obtain moment dependencies and compute
evolution equations, just as we did in the previous section for the Hill-Robertson system. For E[Dm] (here
showing just the terms for drift), by integrating by parts, we have

∂τE[Dm] =
1

2

∫
Dm ∂2

∂D2

(
p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ +

∫
Dm ∂

∂D
Dψ

=
m(m− 1)

2

∫
Dm−2 (p(1− p)q(1− q) +D(1− 2p)(1− 2q)−D2

)
ψ −m

∫
Dmψ

= −m(m+ 1)

2
E[Dm] +

m(m− 1)

2
E[Dm−1(1− 2p)(1− 2q)] +

m(m− 1)

2
E[Dm−2p(1− p)q(1− q)].

In the same way, we compute time derivative for each dependent moment:

∂τE[Dm−1z] = 4E[Dm]− (m+ 8)(m− 1)

2
E[Dm−1z] + 8(m− 1)(m− 2)E[Dm−2π2]

− 2(m− 1)(m− 2)E[Dm−2σ1] +
(m− 1)(m− 2)

2
E[Dm−2] +

(m− 1)(m− 2)

2
E[Dm−3π2z]

∂τE[Dm−2π2] = E[Dm−1z]− 1

2
(m2 + 13m− 26)E[Dm−2π2] + (m− 2)E[Dm−2σ1]

+
(m− 2)(m− 3)

2
E[Dm−3π2z] +

(m− 2)(m− 3)

2
E[Dm−4π2

2 ],

...

∂τE[Dm−2iπi2] = i2E[Dm−2i+1πi−1
2 z]− m2 + (1 + 12i)m− 2i(3 + 10i)

2
E[Dm−2iπi2]

(im− i(1 + 3i)/2)E[Dm−2iπi−1
2 σ1] +

(m− i+ 1)(m− i)
2

E[Dm−2i−1πi2z]

+
(m− i+ 1)(m− i)

2
E[Dm−2i−2πi+1

2 ]

∂τE[Dm−2i−1πi2z] = 4(1 + 2i)2E[Dm−2iπi2]− 2i(1 + 2i)E[Dm−2iπi−1
2 z] + i2E[Dm−2iπi−1

2 ]

− m2 + (7 + 12i)m− 2(10i2 + 13i+ 4)

2
E[Dm−2i−1πi2z]

+ (im− 3i(i+ 1)/2)E[Dm−2i−1πi−1
2 zσ1] + 8(m− 2i− 2)(m− 2i− 1)E[Dm−2i−2πi+1

2 ]

− 2(m− 2i− 2)(m− 2i− 1)E[Dm−2i−2πi2σ1] +
(m− 2i− 2)(m− 2i− 1)

2
E[Dm−2i−2πi2]

+
(m− 2i− 2)(m− 2i− 1)

2
E[Dm−2i−3πi+1

2 z]

...

∂τE[Dπ
m−2

2
2 z] =

(m− 1)2

4
E[D2π

m−2
2

2 ]− (m− 2)(m− 1)E[D2π
m−4

2
2 σ1] +

(m− 2)2

4
E[D2π

m−4
2

2 ]

− (m2 +m− 1)E[Dπ
m−2

2
2 z] +

m(m− 2)

2
E[Dπ

m−4
2

2 zσ1]

∂τE[π
m
2
2 ] =

m2

4
E[Dπ

m−2
2

2 z]−m(m− 1)E[π
m
2
2 ] +

m(m− 2)

8
E[π

m−2
2

2 σ1]

The evolution for the terms computed here require those already considered, terms in the Dm−2 system, or
additional terms of the form

{Dm−2σ1, D
m−3zσ1, D

m−4π2σ1, . . . , π
m−2

2
2 σ1}.

In general, for j > 0, k ∈ {0, 1}, i ∈ {0, . . . , (m−2j−2k)/2}, we have terms of the form E[Dm−2i−2j−kπi2z
kσj ].

We compute transition probabilities for each of these terms:

∂τE[Dm−2jσj ] = − m2 + (4j + 1)m− 4i(1 + 2i)

2
E[Dm−2jσj ] + (im+ i(1 + 3i)/2)E[Dm−2jσj−1]

+
(m− 2j − 1)(m− 2j)

2
E[Dm−2j−1zσj ] +

(m− 2j − 1)(m− 2j)

2
E[Dm−2j−2π2σj ]
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∂τE[Dm−2j−1zσj ] = 4(1 + 2i)E[Dm−2jσj ]− 2iE[Dm−2jσj−1]

− m2 + (7 + 4i)m− 4(i+ 2(1 + i)2)

2
E[Dm−2j−1zσj ]

+ (4m− 3i(i+ 1)/2)E[Dm−2j−1zσj−1] + 8(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2π2σj ]

− 2(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2π2σj−1]− 2(m− 2j − 2)(m− 2j − 1)E[Dm−2j−2σj+1]

+
(m− 2j − 2)(m− 2j − 1)

2
E[Dm−2j−2σj ] +

(m− 2j − 2)(m− 2j − 1)

2
E[Dm−2j−3π2zσj ]

...

∂τE[Dπ
m−2−2j

2
2 zσj ] = 4(m− 2j − 1)(m− 1)E[D2π

m−2j−2
2

2 σj ]− (m− 2j − 1)(m− 2)E[D2π
m−2j−2

2
2 σj−1]

− (m− 2j − 2)(m− 1)E[D2π
m−2j−4

2
2 σj+1] +

(m− 2j − 2)(m− 2)

4
E[D2π

m−2j−4
2

2 σj−1]

− (m2 − (2j − 1)m+ (2j + 1)(j − 1))E[Dπ
m−2j−2

2
2 zσj ] +

m(m− 2)

8
E[Dπ

m−2j−2
2

2 zσj−1]

+
(m− 2j − 2)(m− 2j)

8
E[Dπ

m−2j−4
2

2 zσj+1]

∂τE[π
m−2j

2
2 σj ] =

m(m− 2j)

4
E[Dπ

m−2j−2
2

2 zσj ]− (m2 − (2j + 1)m+ j(2j + 1))E[π
m−2j−2

2
2 σj ]

+
m(m− 2)

8
E[π

m−2j−2
2

2 σj ] +
(m− 2j − 2)(m− 2j)

8
E[π

m−2j−4
2

2 σj+1].

Each term appearing here belongs to the Dm−2 system or is found in the set of new moments enumerated
in (A35).

A.5 Sampling bias and the relationship between Ψn and Hill-Robertson statis-
tics

E[D] is a two-haplotype statistic, meaning we require one phased diploid genome to estimate D genome-wide.
In practice, to estimate D we count the number of times we observe a (AB|ab) pairing, subtract the counts
of observed (Ab|aB) pairings, and normalize by the total number of two-locus pairs considered. From the
two-locus haplotype frequency spectrum, computed under the appropriate per-base mutation rate,

E[D] =
1

2
(Ψ2(1, 0, 0)−Ψ2(0, 1, 1)) .

A more accurate estimate may be obtained by considering haplotype frequencies in a larger sample size
than n = 2, although the estimate would then need to be corrected due to sampling bias. Alternatively, we
can use hypergeometric projection to directly calculate an unbiased estimate of E[D] for n > 2 samples. A
two-locus pair with sample size n and observed haplotype counts (nAB , nAb, naB , nab) contributes to E[D]
by

1

2

(
nAB
1

)(
nab
1

)(
n
2

) − 1

2

(
nAb
1

)(
naB
1

)(
n
2

) =
nABnab
n(n− 1)

− nAbnaB
n(n− 1)

. (A36)

This approach not only provides an unbiased estimate of E[D], but also allows us to compute E[D] over pairs
of sites with different sample sizes (e.g. to deal with missing data).

We can express E[D2] or any other term in the Hill-Robertson system as a linear combination of entries
in Ψ4. For example,

E[D2] = E[(fABfab − fAbfaB)
2
]

= 2

(
1(
4

2,0,0,2

)Ψ4(2, 0, 0) +
1(
4

0,2,2,0

)Ψ4(0, 2, 2)− 2(
4

1,1,1,1

)Ψ4(1, 1, 1)

)

=
1

3

(
Ψ4(2, 0, 0) + Ψ4(0, 2, 2)− 1

2
Ψ4(1, 1, 1)

)
. (A37)
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The multinomial factors arise because the entries of Ψn are unsorted configuration probabilities, while E[D2]
implies a particular order of drawn haplotypes. This implies that we may obtain an unbiased estimate for
any quantity (such as E[D2]) from an arbitrary sample size n through hypergeometric projection to the
appropriate sample size. For example, in a sample of size n a two-locus pair (with observed haplotype counts
(nAB , nAb, naB , nab)) contributes to E[D2]

1

3

(
nAB
2

)(
nab
2

)(
n
4

) +
1

3

(
nAb
2

)(
naB
2

)(
n
4

) − 1

6

(
nAB
1

)(
nAb
1

)(
naB
1

)(
nab
1

)(
n
4

) . (A38)

This allows for direct comparison between observed haplotype data and expectations from the model without
having to correct for sample size bias. We discuss our approach for unphased data below in Data processing.

A.6 Low coverage data

Low coverage sequencing data is known to miss a sizable proportion of low frequency variation, so that
singleton and doubleton bins of the AFS may be significantly underestimated (Gravel et al., 2011). This
may bias demographic inference based on the AFS from low coverage data, particularly for recent population
size or growth parameters. Low order LD statistics studied in this paper are less sensitive to low coverage
data, because low frequency variants contribute relatively little to aggregate statistics in the Hill-Robertson
system across the genome (Rogers, 2014). Rogers (2014) argued that σ2

d type statistics are insensitive to
variants with low heterozygosity, and thus insensitive to low coverage data or sequencing error.

To confirm this claim with real data, we examined the effect of low coverage on 40 individuals from the
CHB population in the 1000 Genomes data that were also sequenced at high (∼80x) coverage (in the 90
Han Chinese high coverage genomes dataset (Lan et al., 2017)). By comparing statistics computed from
intergenic regions in the same individuals between the two datasets, we can see if low coverage biases our
estimates. In Figure A4, we compare σ2

d = E[D2]/E[π2], E[Dz]/E[π2], and the folded single-site AFS. We
find that the low order two-locus statistics are unaffected by low coverage data, but low frequency bins of
the AFS are underestimated in the low coverage data (17.5% fewer singletons, 7% fewer doubletons).

A.7 Data processing

A.7.1 Intergenic data

We used data from all intergenic regions on autosomal chromosomes, as identified using the GRCh37 build
from the Genome Reference Consortium. We chose intergenic regions to reduce possible biases in statistic
estimation due to selection (Figure A7). We considered only keeping SNPs at least a given distance from
the nearest gene, to further reduce selective effects, but that would come at the cost of more noise in the
statistic estimates, as we would be left with fewer loci from which to estimate statistics. We chose to use all
intergenic SNPs because there was little difference between statistics estimated using all intergenic loci and
using all loci at least a given distance from genes (Figure A8).

A.7.2 Recombination map and binning pairs by recombination distance

We considered all pairs of biallelic SNPs in intergenic regions separated by recombination distances 0.00001 ≤
r < 0.002, and binned pairs of SNPs with bin edges (0.00001, 0.00002, 0.00003, 0.00005, 0.00007, 0.0001,
0.0002, 0.0003, 0.0005, 0.0007, 0.001, 0.002). Recombination distances for each pair of SNPs were computed
using the African American recombination map from Hinch et al. (2011).

A.7.3 Computing LD statistics from unphased data and accounting for sampling bias

For a given pair of biallelic SNPs, we computed their contribution to the set of statistics in the multi-
population Hill-Robertson system (for three populations: YRI, CHB, and CEU). We determined two-locus
genotype counts within each population (nAABB , nAaBB , naaBB , nAABb, . . .), as well as allele frequencies at
the left and right loci within each population. Because we worked with genotype data instead of phased
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haplotypes, we used the estimator D̂ of Weir (1979),

D̂ =
1

2nd

(
2nAABB + nAABb + nAaBB +

1

2
nAaBb

)
− nA

2nd

nB
2nd

.

We then computed the values D̂iD̂j , D̂i(1− 2pj)(1− 2qk), and so on from genotype data.

D̂ is known to be a biased estimator. To compare model predictions to data, we treated D̂ as a statistic and
computed unbiased predictions for it. Without considering bias in estimates due to sample size, E[D̂αf(p, q)]
= 1

2αE[Dαf(p, q)].
We also needed to account for biased estimates for a given sample sizes in each population (n1, n2, . . .).

We adjusted expectations to match observed biased statistics by computing expected values for each statistic
under the multinomial sampling process.

For a given statistic, we converted the D̂ statistic to genotype frequency space (e.g., using D̂ = (g1 +
g2/2+g3/2+g5/4)−(g1+g2+g3+g4/2+g5/2+g6/2)(g1+g2/2+g4+g5/2+g7+g8/2), where (g1, g2, . . . , g9)
= (nAABB/nd, nAABb/nd, nAAbb/nd, nAaBB/nd, nAaBb/nd, nAabb/nd, naaBB/nd, naaBb/nd, naabb/nd)).

Then for each term in the expansion in g-space, we computed the expected sampling probabilities through
the multinomial moment generating function (Weir, 1979). We then converted those adjusted sampling
probabilities to expected haplotype probabilities, and then to terms in the Hill-Robertson basis. For example,
in the Hill-Robertson system, for a sample size of n diploid genomes, we have

D̃2

D̃z
π̃2
H̃

 =


(n2−n+1)(n−1)

4n3

(n−1)2
8n3

n−1
4n2 0

(n−1)2
n3

(n−1)3
2n3 0 0

(2n−1)
4n3

(2n−1)2
8n3

(2n−1)2
4n2 0

0 0 0 2n−1
2n



E[D2]
E[Dz]
E[π2]
E[H]

 ,

where tildes denote expected D̂ statistics corrected for sample size bias.
In practice, we worked with σ2

d-type statistics of the form E[·]/E[π2(YRI)] and compared to the same
statistics computed from moments.LD. To compute E[D2] or any other statistic for a given recombination
bin, we sum all contributions of pairs of SNPs with recombination distance falling within that bin, and
then divide by the total number of pairs of sites along the genome which could have contributed to that
bin, whether they are variable or not. For σ2

d-type statistics, we don’t need to compute the total possible
number of pairs per bin, and need only sum all contributions and divide by the total sum of contributions
to E[π2(YRI)].

A.7.4 Bootstraps for likelihood computation

We used a multivariate normal function to estimate likelihood from expected values. For a given recombina-
tion bin, we compared the observed vector of LD statistics to expectations computed under the model with
adjustments for phasing and sample size. To compute likelihoods, we needed to estimate the covariances
of statistics in this vector. To compute the covariance matrix, we divided the genome into 500 regions,
each with approximately the same length of intergenic regions. We computed statistics over each of the 500
regions, and then constructed 500 bootstrap replicate sets of statistics by sampling with replacement 500
times. We used these bootstrap replicates to estimate the covariance matrix Σ for each recombination bin.
This same set of bootstrap replicates and covariance matrix was used to estimate confidence intervals, as
proposed by Coffman et al. (2016), to account for non-independence of pairs of SNPs in the same region or
pairs with overlapping SNPs.
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A.8 Supplementary figures and tables
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Figure A1: Hierarchy of moments. Even and odd moments separate into distinct hierarchical systems.
Arrows indicate dependence of sets of moments.
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Figure A2: Within and between population heterozygosity. Toy model for out-of-Africa expansion,
with subsequent migration between split populations. The OOA population experiences a steady decay of
heterozygosity due to the prolonged bottleneck, and different bottleneck strengths and exponential growth
rates between more recent Eu and As populations account for differences in observed heterozygosity in
those populations. Drift does not directly affect cross-population heterozygosity, which increases linearly
in the absence of migration, and more slowly with low levels of migration. Strong migration would lead to
cross-population H intermediate between the two populations.
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Figure A3: Validation: computed LD curves match simulation. (A) We simulated 200 replicates
of 100Mb genome using msprime (Kelleher et al., 2016) under the illustrated four population demography.
Demographic parameters for this simulation were νA = 1.5, TA = 0.3, νB = 0.25, TB = 0.16, ν2,0 = 0.1,
ν2f = 4.0, ν3,0 = 0.2, ν3,f = 2.0, T3 = 0.06, ν4 = 0.5, T4 = 0.01, and f = 0.5, where νi is the relative size of
population i compared to the reference ancestral size, Ne = 104. u = 2 × 10−8 and r = 2 × 10−8 per base
pair. (B-E) Shaded regions indicate 95% confidence intervals of statistics from the 200 simulations, while
solid curves are expectations from moments.LD.
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Figure A4: Effect of low coverage on statistics in the CHB population. We used 40 individuals
that overlapped between the 1000 Genomes data and the 90 Han Chinese data to compute (A) σ2

d, (B)
E[Dz]/E[π2] and (C) the folded AFS across intergenic sites. The 90 Han Chinese data was high coverage,
while 1000 Genomes data was low coverage. The LD curves are largely unaffected by low coverage, while
the singleton bin of the AFS is significantly underestimated in the 1000 Genomes data (D).
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Figure A5: Additional statistics from model fits. Figures 3 and 4 show model fits to a handful
of statistics in the multi-population basis. Here, we show fits for the remainder of the statistics, and
each statistic is normalized by π2(1, 1, 1, 1) = π2(Y RI). Indices in the titles indicate populations: YRI is
population 1, CHB is population 2, and CEU is population 3. Red curves: standard OOA model. Green
curves: OOA model with archaic branches. Error bars on the data indicate 95% confidence intervals of
estimates. Best fit parameters and 95% confidence intervals for each are given in Table A2.
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Figure A6: Alternate topology of archaic branches. (A) In addition to the scenario where each archaic
branch splits independently from the modern human branch (Figure 4), we considered a model where a single
archaic lineage splits from modern humans, and then some time later splits into the Eurasian and African
archaic branches. Aside from the archaic split times and topology, parameterization was the same between
the two models. (B-E) This archaic admixture model provided a good fit the LD data, roughly equal to the
archaic admixture model shown in the main text.
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Figure A7: LD statistics from genome regions. We compared intergenic data, which we used in our
analyses, to LD decay curves from intron and exon regions. Each statistic is normalized by π2(Y RI). Exon
regions have LD decay curves that differ significantly from intron and intergenic regions, and intron and
intergenic regions also differ. Selection is known to affect the expected AFS and LD, so we excluded genic
regions from our analyses.
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Figure A8: LD statistics from intergenic regions. We compared statistics for SNPs across all intergenic
regions to SNPs from intergenic regions at least a given distance from the nearest gene. Overall, statistics
were similar for each choice. We chose to include all intergenic SNPs in order to increase the number of
observed pairs in our data.
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Relative error(×10−3) Comp. time (minutes)
Model ∂a∂i moments ∂a∂i moments
Equilibrium, n = 30, ρ = 0 1.8 0.0017 0.25 < 10−3

Equilibrium, n = 30, ρ = 10 15.6 0.40 0.25 < 10−3

Equilibrium, n = 50, ρ = 0 4.6 0.0033 3.5 < 10−3

Equilibrium, n = 50, ρ = 10 34 0.11 3.5 < 10−3

Bottleneck, n = 30, ρ = 0 0.41 0.031 7.8 0.037
Bottleneck, n = 30, ρ = 10 38.32 0.25 7.9 0.054
Bottleneck, n = 50, ρ = 0 3.97 0.036 21.8 0.60
Bottleneck, n = 50, ρ = 10 63.53 0.058 22.3 0.94

Table A1: Comparison of moments.TwoLocus and ∂a∂i.TwoLocus. For the equilibrium distribution,
we compared to Hudson’s 2001 implementation for n = 100 projected down to sample sizes n = 30 and
n = 50. For the bottleneck distribution, we computed a numerical approximation with a larger sample
size (n = 80) and shorter integration time step using moments and then projected to the required size. We
measured relative error as

∑
(Ψn(model)−Ψn(True))2/Ψn(True). Equilibrium solutions were cached, as is

default in both programs, but ∂a∂i still needs to integrate ψ against the multinomial distribution to obtain
Ψn, accounting for the time differences in the Equilibrium case. With recombination, moments improves in
accuracy as n increases, since the Jackknife approximation becomes more and more accurate with larger n.
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Model Archaic Introgression B
Parameter ML Estimates 95% CI
N0 3700 3020− 4370
NYRI 14000 11800− 16100
NB 860 110− 1610
NCEU0 2300 1430− 3210
rCEU(%) 0.122 0.081− 0.149
NCHB0 650 340− 960
rCHB(%) 0.362 0− 0.435
mAF - B(×10−5) 53.4 11.8− 95.0
mYRI - CEU(×10−5) 2.43 1.62− 3.24
mYRI - CHB(×10−5) 0 —
mCEU - CHB(×10−5) 11.6 7.27− 15.9
TAF (kya) 296 244− 347
TOOA (kya) 57.7 35.4− 80.0
TCEU - CHB (kya) 36.3 28.8− 43.8
TArch. split (kya) 487 167− 807
TArch. Af. - Nean. split (kya) 374 25.5− 723
TArch. Af. mig. (kya) 110 0− 476
mAF - Arch. Af.(×10−5) ... 2.43 0− 5.24
mOOA - Nean(×10−5) 1.51 0− 3.19
TArch. adm. end (kya) 20.7 16.3− 25.1

Table A2: Maximum likelihood parameters for alternate archaic topology. For the most part,
estimates were qualitatively similar to the archaic model presented in the main text. In each model, the
split between modern humans and the branch leading to the archaic African population occurred about 500
kya. However, here the Neanderthal lineage split from this branch more recently than 500 kya, which is
considerably more recent than most estimates or our estimate from the alternative model. This is expected,
as the largest discrepancy between the non-archaic model and data occurred for Dz in African populations,
so the inference of the split date in this model is primarily driven by the signal in YRI. Without including
archaic genomes in this analysis, we did not have statistical power to discriminate between the two proposed
topologies, although we speculate that the model independent splits (Figure 4(A)) will prove to be the more
likely topology.
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Model OOA (fit w/o Dz) Archaic Introgression
Parameter Estimates 95% CI Estimates 95% CI
N0 2360 2140− 2580 2860 2460− 3260
NLWK 14600 11500− 17700 15300 10400− 20300
NB 1130 700− 1570 1020 730− 1310
NGBR0 1560 760− 2370 2210 1500− 2920
rGBR(%) 0.229 0.011− 0.293 0.157 0.135− 0.175
NKHV0 390 0− 980 630 480− 790
rKHV(%) 0.680 0− 0.888 0.471 0− 0.545
mAF - B(×10−5) 48.9 29.2− 68.6 50.7 41.2− 60.2
mLWK - GBR(×10−5) 2.71 0− 8.92 2.87 1.45− 4.29
mLWK - KHV(×10−5) 0 0− 1.32 0 —
mGBR - KHV(×10−5) 9.94 4.41− 15.5 7.29 0− 16.8
TAF (kya) 215 139− 290 249 219− 279
TOOA (kya) 68.2 52.6− 83.7 61.5 44.0− 79.0
TGBR - KHV (kya) 28.3 21.9− 34.8 30.9 26.2− 35.5
TArch. Af. split (kya) — 511 456− 566
TArch. Af. mig. (kya) — 250 160− 341
mAF - Arch. Af.(×10−5) — 0.752 0.288− 1.22
TNean. (kya) — 540 381− 700
mOOA - Nean(×10−5) — 0.414 0− 0.993
TArch. end (kya) — 13.0 4.3− 21.7

Table A3: Models fits to alternate trio. We fit the same out-of-Africa model with and without archaic
branches to a separate trio in the 1000 Genomes data: (Luhya from Kenya (LWK), Kinh from Vietnam
(KHV), and British from England and Scotland (GBR)). Best fit parameters compare qualitatively to those
fit to the YRI-CHB-CEU data, although confidence intervals were wider for this trio.
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