
Tax4Fun2: a R-based tool for the rapid prediction of habitat-specific functional profiles 

and functional redundancy based on 16S rRNA gene marker gene sequences 

 

Franziska Wemheuer1,2, Jessica A. Taylor3, Rolf Daniel4, Emma Johnston1,2, Peter Meinicke5, 

Torsten Thomas3 and Bernd Wemheuer3,4* 

 

1Evolution and Ecology Research Centre, School of Biological, Earth and Environmental 

Sciences, University of New South Wales, NSW 2052, Australia 

2Sydney Institute of Marine Science, Mosman, NSW 2088, Australia 

3Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, 

University of New South Wales, NSW 2052, Australia 

4Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of 

Microbiology and Genetics, University of Göttingen, Göttingen, Germany 

5Department of Bioinformatics, Institute of Microbiology and Genetics, University of 

Göttingen, Göttingen, Germany 

 

* Correspondence: 

Bernd Wemheuer 

bwemheu@gwdg.de  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 9, 2018. ; https://doi.org/10.1101/490037doi: bioRxiv preprint 

https://doi.org/10.1101/490037
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main text 

 

Assessing the functional capability and redundancy of a microbial community is a major 

challenge in environmental microbiology. To address this challenge, we developed Tax4Fun2, 

a R-based tool for the rapid prediction of functional profiles and functional redundancy of 

prokaryotic communities from 16S rRNA gene sequences. By incorporating user-defined, 

habitat-specific genomic information, the accuracy and robustness of predicted functional 

profiles can be substantially enhanced. 

Microorganisms play a key role in ecosystem functioning1. High-throughput 

sequencing of 16S rRNA genes is a powerful and widely used approach to study the 

composition and structure of microbial communities in a variety of marine2-4, terrestrial5,6 and 

host-associated7,8 environments. However, numerous questions in biogeochemistry and 

ecosystem ecology require knowledge of community functions rather than the taxonomic 

composition9. In recent years, several freely available tools such as PICRUSt10, Tax4Fun11, 

Piphillin12, Faprotax13 and paprica14 have been developed. Although these tools cannot replace 

the functional assessment via metagenomic shotgun sequencing, they have provided unique 

insights into functional capabilities of prokaryotic communities in diverse habitats, such as 

soil5,6, marine seawater2,13,14, microbial mats15 and the plant endosphere7. 

The predictive power of these tools relies on functional information derived from 

genomes available in public databases. However, available genomes do not necessarily 

represent the total functional diversity present in the ecosystem investigated. This problem has 

motivated the development of predictive tools specific for the rumen microbiome16 or marine 

microorganisms13. Given the rapidly increasing number of available genomes, in particular 

through metagenome-assisted genome binning17, and that many research groups have access 
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to unpublished, habitat-specific genomic information, the incorporation of this data should 

enhance the accuracy of functional inferences.  

To address these challenges, we developed Tax4Fun2, a novel version of Tax4Fun11. 

Tax4Fun2 is a fast and user-friendly R package (https://sourceforge.net/projects/tax4fun2/) 

with a current default reference dataset of 275 archaeal and 12,002 bacterial genomes available 

through NCBI RefSeq database (assessed on 19 August 2018). A novel feature is that 

Tax4Fun2 can incorporate habitat-specific and user-defined data to increase the robustness and 

specificity of functional profiles (Fig. 1). Although Tax4Fun2 focuses on prokaryotic data, 

eukaryotic data can also be incorporated. Tax4Fun2 is platform-independent and highly 

memory-efficient, enabling researchers without extensive bioinformatics knowledge to predict 

functional profiles on almost every computer. 

We first applied Tax4Fun2 in comparison to Tax4Fun11 and PICRUSt10 using the same 

paired samples (16S rRNA and metagenomic data available), which were used to validate 

Tax4Fun11 and PICRUSt10, i.e. samples derived from the human microbiome, mammalian guts, 

soil and from a hypersaline microbial mat (Table 1). In addition, we evaluated the predictive 

power (defined as high Spearman correlation coefficient) of Tax4Fun2 using ten marine 

seawater4 samples taken in the North Sea and 90 kelp-associated samples collected within the 

Marine Microbes Framework Data Initiative (http://www.bioplatforms.com/marine-microbes). 

Tax4Fun2 outperforms PICRUSt and Tax4Fun across all these datasets (Fig. 2a). Functional 

profiles predicted by Tax4Fun2 were highly correlated to functional profiles derived from the 

metagenomes. Although the predicted profiles for the kelp-associated communities were 

significantly correlated to functional profiles, the median Spearman correlation coefficient was 

only 0.72, indicating that a lack of suitable reference genomes limits Tax4Fun2’s performance. 

To address this issue, we used 68 metagenome-assembled genomes (MAGs) derived 

from the 90 kelp-associated metagenomes to build a kelp-specific genomic dataset. This 
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substantially increased the accuracy of the prediction (median Spearman correlation coefficient 

with user data added = 0.86) and reduced the fraction of the sequences not used in the 

predictions (Fig. 2b). Moreover, using the kelp-specific dataset allowed to predict functional 

profiles for samples, which failed when using only the default reference data because next 

neighbour search resulted in no close matches. These results demonstrate the benefits of 

incorporating habitat-specific reference databases, which distinguishes Tax4Fun2 from all 

other published tools. 

A major question in microbial ecology is whether, and to what degree, microbial 

communities contain functionally redundant members, that may provide stability of ecosystem 

processes in the face of environmental perturbations18,19. In Tax4Fun2, we introduced a 

functional redundancy index (FRI) with respect to single functions. The FRI is based on the 

proportion of species capable of performing a particular function and their phylogenetic 

relationship to each other. A high FRI indicates that a specific function is almost ubiquitous in 

all community members, whereas a low FRI suggests that the function is present in a few 

closely related species or has been detected in only one community member. A FRI of 0 

indicates that a function is not present at all. Tax4Fun2 calculates a relative FRI (rFRI), which 

is normalized by the average phylogenetic distance of the community analysed in a specific 

survey, and the absolute FRI (aFRI), which is normalized by the average phylogenetic distance 

of all prokaryotes in the reference tree provided with Tax4Fun2. The rFRI can be used to 

compare samples within one survey, whereas the aFRI allows the comparison of functional 

redundancy indices across different, unrelated ecosystems. 

To test the accuracy of the FRI calculation, we simulated 1,000 communities, each 

consisting of 100 prokaryotic genomes. We extracted the 16S rRNA gene sequences from each 

simulated community, clustered them at 97% similarity and calculated the FRI values. We 

subsequently compared these values to FRI values based on the actual genomic information of 
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the simulated communities. This comparison revealed that Tax4Fun2 provided a good estimate 

of the functional redundancy present in the microbial community (Spearman rank correlation 

> 90%) (Fig. 2b). We further tested this approach using the marine sea water samples4. Six of 

these samples were taken inside a phytoplankton bloom and three samples served as reference 

that were taken outside the bloom. Nearly 7,000 functions displayed a higher functional 

redundancy in the reference samples, whereas only 1,468 functions had higher redundancies 

inside the bloom (Fig. 2c). This indicates that the functional redundancy greatly shifts during 

the phytoplankton bloom. Phytoplankton blooms are usually characterized by a substrate-

controlled succession, i.e. distinct bacterial clades dominate the bacterioplankton community 

at different stages during and shortly after the bloom20. Consequently, community members 

involved in the turnover of certain substrates at a specific stage are predominant and thus their 

genomes and associated functions will be more redundant, whereas the opposite can be 

observed for all other community members. 

Tax4Fun2 provides researchers with a unique tool to predict and investigate functional 

profiles of prokaryotic communities based on 16S rRNA gene data. We demonstrated the high 

predictive power of Tax4Fun2, which can be further enhanced by the incorporation of user-

defined and habitat-specific data. Another unique feature of Tax4Fun2 is that it enables 

researchers to calculate the redundancy of specific functions, which is critical for the prediction 

how likely a specific function is lost during environmental perturbation. Tax4Fun2 with its 

user-friendly, simplified workflow will assist researchers considerably in the functional 

analysis of microbial communities. 

 

Methods 
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Datasets used in this study. To compare Tax4Fun2 with Tax4Fun11 and PICRUSt10, we used 

the same 16S rRNA datasets which were originally used to validate Tax4Fun and PICRUSt 

(for details see 11). We further assessed the accuracy of Tax4Fun2 using 10 marine water (taken 

from 4) and 90 kelp-derived metagenomes (for details see 

https://data.bioplatforms.com/organization/about/australian-microbiome). A list with all 

accession number is provided in Table 1. 

 

Processing of 16S rRNA gene data from marine water samples. Pyrosequencing data were 

processed using QIIME version 1.821. After raw data extraction, reads shorter than 600 bp or 

longer than 900 bp, exhibiting low quality (<25), possessing long homopolymer stretches 

(>8 bp), or showing primer mismatches (>2 bp) were removed. Remaining reverse primer 

sequences were truncated employing cutadapt version 1.1822. Processed sequences of all 

samples were concatenated and denoised employing Acacia version 1.53b23. Denoised 

sequences were sorted by decreasing length and clustered at 97% sequence identity in 

operational taxonomic units (OTUs) employing the UCLUST algorithm implemented in 

USEARCH version 8.1.186124. Chimeric sequences were removed using UCHIME25 

implemented in USEARCH in denovo and reference mode with the SILVA database 

(SILVA_132_SSURef_Nr99) as reference dataset26. 

 

Processing of 16S rRNA gene data derived from kelp samples. Paired reads were merged 

with Flash27 and subsequently processed with USEARCH version 10.24024. Merged reads were 

quality-filtered; the filtering included the removal of low-quality reads (maximum number of 

expected errors >2 and more than 1 ambiguous base) and those shorter than 400 bp. Processed 

sequences of all samples were concatenated into one file, dereplicated, and obtained unique 

sequences were denoised and clustered into zero-radius OTUs (zOTUs) with the unoise3 
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algorithm. A de novo chimera removal was included in the unoise step. Afterwards, remaining 

chimeric sequences were removed using the uchime2 algorithm25 in high confidence mode with 

the SILVA database as reference dataset26. Subsequently, processed sequences were mapped 

onto zOTU sequences to calculate the presence and abundance of each zOTU in every sample 

using the otutab command with maxrejects and maxaccepts options disabled. 

 

Functional predictions based on 16S rRNA data. Functional profiles were predicted with 

PICRUSt10, Tax4Fun11 and Tax4Fun2. For PICRUSt, processed sequences were clustered 

using QIIME21,28 by close reference picking against greengenes (13_5), PICRUSt’s default 

database. OTU abundances were normalized by 16S rRNA copy numbers prior to the 

calculation of functional profiles. For Tax4Fun, OTU sequences were aligned against the 

SILVA database (SILVA_123_SSURef_Nr99) 26 using BLAST version 2.7.129. The OTU 

table and the taxonomic classification were subsequently merged and used to predict functional 

profiles in Tax4Fun using default settings. For Tax4Fun2, functional profiles were initially 

aligned against the supplied 16S rRNA reference sequences by BLAST using the runRefBlast 

function. Functional predictions were subsequently calculated using the 

makeFunctionalPrediction function. 

 

Generation of reference datasets. Tax4Fun2 is supplied with two reference datasets 

(Ref99NR and Ref100NR) refereeing to the similarity threshold used during 16S rRNA 

clustering. Each dataset consists of an association matrix with 16S rRNA reference sequences 

associated with functional reference profiles (number of entries in the association matrix: 4,584 

and 18,479 for Ref99NR and Ref100NR, respectively). 

Reference datasets were generated as follows: we downloaded all complete genomes 

and all genomes with the status ‘chromosome’ from NCBI RefSeq (assessed on 18 August 
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2018), resulting in 275 archaeal genomes and 12,102 bacterial genomes. Barrnap version 0.9 

(https://github.com/tseemann/barrnap) was used to identify and extract all 16S rRNA gene 

sequences. All obtained sequences were subsequently concatenated into a single file, sorted by 

decreasing length and clustered using the UCLUST algorithm implemented in USEARCH 

version 10.24024 at 99% and 100% sequence similarity, respectively. The longest sequence of 

each cluster served as 16S rRNA reference sequence. 

Functional profiles were generated for each genome as follows: open-reading-frames 

were identified with prodigal version 2.6.330. Functional profiles were calculated based on 

deduced protein sequences with UProC version 1.2.031 using the KEGG database for 

prokaryotes (July 2018 release) as reference32. To account for differences in rRNA copy 

numbers, functional profiles were normalized by the number of 16S rRNA genes identified in 

each genome. Due to the heterogeneity of 16S rRNA genes within a genome, the functional 

reference profile for each 16S rRNA reference sequence was generated based on the 16S rRNA 

clustering results: a single functional reference profile is the average normalized functional 

profiles of each genome with at least one 16S rRNA gene affiliated to the cluster. If more than 

one 16S rRNA gene sequence of a genome was assigned to the cluster, the normalized profile 

of the genome was multiplied by the number of 16S rRNA genes before calculating the mean 

profile. 

The algorithm which was used to generate the reference data is implemented in the 

Tax4Fun2 package (function = addUserDataByClustering). Note that a 32-bit version of 

USEARCH is required to use this function. USEARCH is freely available at 

https://www.drive5.com/usearch/. 

 

Testing the predictive power of Tax4Fun2. To test the predictive power of Tax4Fun2 

compared to PICRUSt and Tax4Fun, we used the same paired samples (16S rRNA and 
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metagenomic data), which were originally used to validate Tax4Fun’s accuracy. Functional 

profiles for each metagenome used in the validation process were generated as follow: protein 

sequences were extracted with prodigal version 2.6.330 and functional annotations were made 

with UProC version 1.2.031 as described above for the functional genome annotation. We 

validated the accuracy of PICRUSt, Tax4Fun and Tax4Fun2 by comparing the functional 

profiles predicted to the metagenomic profile using Spearman correlation (see Figure 2). Due 

to several changes in the KEGG orthology since PICRUSt and Tax4Fun were developed 

(deprecated and new functional orthologs), a direct comparison of functional profiles predicted 

with all three tools is difficult. Hence, functional profiles were converted to relative abundances 

prior to comparison. Only functions present in the metagenomic profile and in the predictions 

were considered in the comparison. 

 

Generation of metagenome-assembled genomes (MAGs). The incorporation of user-derived 

genomes is a key feature of Tax4Fun2, allowing users to build their own reference data. To 

exploit the accuracy of Tax4Fun2 with default settings (without user data) and with a user-

defined reference database, we added 68 MAGs obtained from the 90 kelp metagenomes. The 

genomes were extracted from the metagenomes as follows: raw data were quality trimmed with 

Trimmomatic version 0.3633 and subsequently assembled with metaSPAdes version 3.11.134. 

The coverage of each scaffold was determined by mapping the processed data on the assembled 

scaffolds using bowtie version 2.3.235. Scaffolds smaller than 2,500 bp were removed. After 

converting to bam format and sorting using samtools 36, the coverage was determined with the 

jgi_summarize_bam_contig_depths script. Genomes were extracted using MetaBAT version 

0.32.537 and MyCC38 and subsequently refined using the binning_refiner version 1.239. 16S 

rRNA gene sequences were identified using barrnap version 0.9. The completeness and 

contamination was determined with checkM version 1.0.740. All genomes with more than 50% 
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completeness, less than 5% contamination and possessing at least one 16S rRNA gene were 

included as user data in the Tax4Fun2 prediction. A functional profile was generated with 

UProC version 1.2.031 and KEGG as described above for the functional genome annotation. 

 

Calculation of the functional redundancy index (FRI). In Tax4Fun2, we introduced the 

functional redundancy index (FRI). The FRI describes the redundancy of any given function 

in the investigated community. It incorporates the phylogenetic distribution (distance) of 

community members harbouring the function and their proportion in the community (see 

Formula 1). 

 

𝐹𝑅𝐼 =  
𝑃𝐷𝑥

𝑃𝐷
×

𝑁𝑥

𝑁
 

 

𝑃𝐷𝑥

𝑃𝐷

= 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑥 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑒𝑡𝑖𝑐 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠  

𝑁𝑥

𝑁
= 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑥 𝑖𝑛 𝑎 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 𝑤𝑖𝑡ℎ 𝑁 𝑠𝑝𝑒𝑐𝑖𝑒 

 

To account for differences in phylogenetic distance, we introduced the absolute and relative 

FRI (aFRI and rFRI). The difference between them is the average phylogenetic distance used 

for its normalization. To calculate the aFRI, the average phylogenetic distance of all species in 

the full 16S rRNA reference tree is used, whereas the rFRI is normalized by the average 

phylogenetic distance of those species in the 16S rRNA reference tree observed in a sample. 

The tree for each of the two reference datasets was generated as follows: all 16S rRNA 

reference sequences were aligned with SINA version 1.2.1141 and the latest Silva ARB release 

(SILVA_132_SSUREF_NR99). The phylogenetic tree was calculated using RaxML version 

8.2.1142 under a GTRGAMMA model and a random seed of 12345. 
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Testing the functional redundancy index using simulated datasets. To test the FRI 

accuracy, we simulated 1,000 communities each consisting of 100 genomes randomly selected 

from the 12,377 genomes used to generate the reference data. The genomes were selected based 

on random numbers generated with the sample function in R. To assess the phylogenetic 

distance between the genomes, we extracted 59 marker protein sequences based on hmm 

profiles derived from PFAM version 3143 and TIGRFAM version 1544. The 59 marker proteins 

were selected because their corresponding genes were present in 90% of all 12,377 genomes 

and, if present, were single-copy genes in 99% of them. These criteria were applied to archaea 

and bacteria independently. The extracted protein sequences of each hmm profile were aligned 

using mafft version 7.3.1145. Afterwards, aligned protein sequences for each genome were 

concatenated. The phylogenomic tree was calculated under a WAGGAMMA model using 

FastTree version 2.1.1046. An initial attempt to use RaxML42 failed due to the size of the 

alignment. Functional profiles for each genome were converted to presence absence data and 

the FRI was calculated for each function using the genome tree and the presence-absence data. 

To calculate the FRI in Tax4Fun2, the 16S rRNA gene sequences present in the 100 

genomes of each subset were clustered in operational taxonomic units (OTUs) at 97% 

similarity with UCLUST implemented in USEARCH version 10.240. The longest sequence of 

each cluster was used to represent each OTU. The FRI was subsequently calculated using 

Tax4Fun2. The FRIs calculated for each function by Tax4Fun2 were compared to the FRIs 

calculated directly from the genomes of each simulation by Spearman rank correlation in R. 

The OTU table necessary for the calculation contained the id and size of each OTU. 

 

Statistical data analysis. All statistical tests were performed in R version 3.5.147.  
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Data availability. Tax4Fun2 is feely available at https://sourceforge.net/projects/tax4fun2/. 
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Figure legends 

 

Fig. 1 | The Tax4Fun workflow. 16S rRNA gene sequences are initially aligned against the 

reference sequences to identify the nearest neighbour. If user-defined data is supplied, the 16S 

rRNA gene sequences are additionally aligned against the sequences added by the user. The 

nearest neighbour in the user data is preferred if both search attempts result in significant hits. 

The OTU abundances for each sample are summarized based on the results from the nearest 

neighbour search. An association matrix (AM) containing the functional profiles of those 

references identified in the 16S rRNA search is generated. The summarized abundances and 

the functional profiles stored in the AM are merged and a metagenome is predicted for each 

sample. The amount of sequences/OTUs unused in the prediction is provided in a log file. 

 

Fig. 2 | Tax4Fun2 validation. a) Correlations between functional profiles obtained from 

metagenomic datasets and those predicted from 16s rRNA data. Predictions were made with 

PICRUSt, Tax4Fun, and Tax4Fun2 using both supplied default reference datasets (Ref99NR 

and Ref100NR). Note that PICRUSt did not generate any prediction for the Kelp data. b) 

Correlations between functional profiles retrieved from 90 kelp metagenomes and those 

predicted with Tax4Fun2 without and with user data added and the fraction of zOTUs and 

sequences unused in the prediction. C) Functional redundancy indices inside and outside a 

phytoplankton bloom. A log ratio greater than 0 indicates that a function is more redundant 
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outside the bloom. All predictions were made using a 97% similarity cut off. Correlations are 

Spearman rank correlations based on relative abundances of KO functions. Only functions 

present in the metagenome and the predictions were used for comparison. Note that a direct 

comparison between PICRUSt, Tax4Fun and Tax4Fun2 is difficult due to changes in the 

KEGG database. Currently, the KEGG databases includes information for more than 10,000 

protein-related KO orthologs, whereas PICRUSt and Tax4Fun only provide predictions for 

around 7000 KO terms.  
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Tables 

 

Table 1: Accession numbers of samples/studies used to validate Tax4Fun2. 

Origin Sample 

number 

Accession numbers 

Human 

Microbiome 

41 SRS011271, SRS011452, SRS011529, SRS011584, SRS011586, 

SRS013234, SRS013252, SRS013258, SRS013506, SRS013687, 

SRS013711, SRS013723, SRS014235, SRS014287, SRS014343, 

SRS014613, SRS014629, SRS014923, SRS015133, SRS015190, 

SRS015425, SRS015450, SRS015574, SRS015578, SRS015762, 

SRS015782, SRS015854, SRS015960, SRS016002, SRS016018, 

SRS016095, SRS016111, SRS016203, SRS016225, SRS016331, 

SRS016335, SRS016349, SRS016434, SRS016533, SRS016553, 

SRS016559 

Mammalian Gut 56 4461284-301, 4461341-55, 4461357-58, 4461360-80, 4461383  (MG-

RAST) 

Microbial Mat 10 4440963-71 (MG-RAST) 

Soil 14 4477803-5, 4477807, 4477872-7, 4477899, 4477902-4 (MG-RAST) 

Water 10 SRA060677 

Kelp 90 57884-936, 57938-56, 87958-74, 58019-20 

(https://data.bioplatforms.com/organization/about/australian-

microbiome).) 
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