
1 The algae community in taxon Haptophyceae at the early bloom stage of 
2 Phaeocystis globosa in Northern Beibu Gulf in winter 

3

4 Bin Gong1,2*，Haiping Wu*2，Jixian Ma4，Meimiao Luo2，Xin Li2 

5

6 1. Institute of Marine Drugs, Guangxi university of chinese medicine, Nanning, Guangxi, China, 

7 530200

8 2. Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation，Qinzhou University, 

9 Qinzhou, China, 535000

10 3. Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Qinzhou University, Qinzhou, 

11 China, 535000

12 4. Marine Environment Monitoring Center, Qinzhou Oceanic administration,Qinzhou, China, 

13 535000 

14

15 *Correspondent author

16 Haiping Wu: wuhaipingsky@163.com

17 Bin Gong: 342965691@aliyun.com

18

19 Abstract:

20 Phaeocystis globosa (Order Phaeocystales, family Phaeocystaceae) caused significant impact on 

21 aquaculture farming, global climate change and industry. Since the year 2010, intensive red tides 

22 of P. globosa began to appear in Beibu Gulf, where previously free of harmful algal blooms, and 

23 posed great threats to the cooling systems of a nuclear power plant in 2014 and 2015. In order to 

24 discover the bloom mechanism, the community structure of marine microalgae, with a focus on 

25 Haptophyceae taxa, in winter in the northern Beibu Gulf near the Qinzhou Bay, Sanniang Bay 

26 (SNB) and Dafenjiang River Estuary (DRE), were explored via 18S ribosomal DNA analysis of the 

27 V4 region using the Illumina-Based Sequencing platform. The correlation between the relative 

28 abundance of five kinds of Haptophyceae algae and environmental factors of seawater were 
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29 analyzed. The most abundant Haptophyceae-related OTU in terms of number of reads was 

30 identified as Phaeocystis and Chrysochromulina. The abundance for other Haptophyceae class 

31 was relatively low, such as Haptolina, Prymnesium and Isochrysis. Phaeocystis was present in all 

32 samples sites except S6, S11, S12, S14 and S15, and particularly abundant at S8, nearly 29 times 

33 more than the second most abundant site. Most notably, the results showed that Phaeocystis 

34 displayed highly positive linear correlation with the concentration of NO3
--N (Pearson r=0.856, 

35 p<0.01). Linear regression analysis indicated that Phaeocystis was significantly linearly related to 

36 the NO3
--N (R2=0.732; Y=-0.005 + 0.410*X, Y is the relative abundance of P.globosa, X is the 

37 concentration of NO3
--N; F=38.227, P<0.05) and NO3

--N has a significant positive effect on 

38 P.globosa (regression coefficient is 0.410, P=0.000). Moreover, the relative abundance of 

39 Phaeocystis was significant related to temperature of sea water (Pearson r=-0.882， p<0.01). 

40 Water temperature can explain the 77.8% change reason for the P.globosa (R2=0.778), and has a 

41 significant effect on P. globosa (Y=0.169-0.009*X, F=49.031， P<0.05), and the regression 

42 coefficient is -0.009 (P=0.000) which indicated a significant negative impact relationship between 

43 them. Our high throughput sequencing (HTS) based research illustrated how the P. globosa 

44 bloom generated and its relationship with NO3
--N and temperature of sea water in northern 

45 Beibu Gulf for the first time, and bringing hope for solving this big problem. 

46
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51 Introduction:

52 Haptophyceae (or Prymnesiophyceae), a class of the phylum Chrysophyta, contained the Order 

53 Prymnesiales, Discoasterales, Phaeocystales, Isochrysidales. The bloom of some Haptophyceae 

54 algae had occurred frequently worldwide and led to great ecological disaster and substantial 

55 economic losses. For instance, Prymnesium parvum, a species of Haptophyceae algae (Order 
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56 Prymnesiales, family Prymnesiaceae), is capable of producing a toxin, prymnesin, and kills fish 

57 [1]. Similarly, large area bloom of the Chrysochromulina polylepis (Order Prymnesiales, family 

58 Prymnesiaceae) have resulted in mortality of trout and salmon in Scandinavian waters during 

59 Spring 1988 [2]. Further more, the bloom of Phaeocystis globosa (Order Phaeocystales, family 

60 Phaeocystaceae) caused mortality of cultured fish [3], Mussel Mortalities [4], higher 

61 concentration of DMS [5] and Clogging of Cooling System of Power Plant [6], so both significantly 

62 impact aquaculture farming, global climate change and industry. 

63 Beibu Gulf is an important habitat for protection and propagation of marine organisms, 

64 known for Indo-Pacific humpback dolphins [7], horseshoe crabs [8], and also an ecologically 

65 sensitive region [9]. Recently, rapid economic development and human activities had already 

66 resulted in great degradation of marine environment [10,11]. Most noticeably, human-induced 

67 nutrient enrichment is becoming a serious problem for coastal marine areas of Beibu Gulf [9,12]. 

68 Since the year 2010, intensive red tides of P. globosa began to appear in Beibu Gulf, where 

69 previously free of harmful algal blooms, and posed great threats to the cooling systems of a 

70 nuclear power plant in 2014 and 2015 [6]. Up to now, knowledge on where the P. globosa 

71 originated and the bloom mechanism is still quite limited. In our opinion, in order to solve the 

72 great confusion above, special attention should be paid to the early bloom stage and the 

73 environmental characteristics leading to the bloom. For this purpose, many methods had been 

74 utilized, such as automatic monitoring buoy [13], satellite remote sensing [14], “molecular 

75 probes” [15], methods to detect and quantify toxins [16] and a combination of methods above 

76 [17].  

77 Environmental DNA-based Techniques (EDT) was utilized in monitoring Prokaryote and 

78 Eukaryotes in water environments for many years and significantly gained impetus over 

79 traditional approaches presently [18]. Recently, there are many EDT methods advented for this 

80 object; for instance, DNA metabarcoding [19,20], Microsatellite DNA marker [21], and high 

81 throughput sequencing (HTS) techniques based metagenomics [22,23] and amplicons [24,25]. In 

82 recent years, the HTS techniques has been widely used and remarkably promoted the ecological 

83 studies of bacteria [26], fungi [27], algae [28] and animals [29]. However, to date, molecular 

84 diversity of microeukaryotes, including algae, in the Beibu Gulf marine region, remains 
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85 unexplored. Thus, the recent study about the community and diversity structure of marine 

86 microalgae, with a focus on Haptophyceae taxa in winter in the northern Beibu Gulf near the 

87 Qinzhou Bay, Sanniang Bay (SNB) and Dafenjiang River Estuary (DRE), were explored via 18S 

88 ribosomal DNA analysis of the V4 region using the Illumina-Based Sequencing platform. This 

89 study provides a valid taxonomic reference dataset for future microeukaryotic community 

90 structure and diversity studies, aimed at monitoring environmental change in the northern Beibu 

91 Gulf.

92

93 Materials and Methods

94 Sample Collection

95 The samples were collected on 27 Dec 2017, when large Phaeocystis bloom was observed 

96 between eastern Qinzhou Bay (EQB) and Dafenjiang River Estuary (DRE), during the middle 

97 several days of Jan to the end of Mar in 2018. Seawater was collected from surface, middle and 

98 deep using a CTD Rosette Water Sampling System (Sea-Bird Electronics, USA) between eastern 

99 Qinzhou Bay (EQB) and Dafenjiang River Estuary (DRE) (21°32’58’’N, 108°39’56’’E-21°37’39’’N, 

100 108°55’57’’E) and mixed evenly. A total of 16 seawater samples (S1-S16, Figure 1) were collected 

101 in 3L sterile polyethylene bottles, kept in the dark at 4-8 ℃, and filtered at laboratory within 4h. 

102 Each 3000 ml seawater sample was filtered through a 1.2 µm mixed cellulose membrane filter 

103 (Advantec, Japan) and filtrates were frozen immediately at -20℃ for subsequent molecular 

104 analyses. 
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105

106 Figure 1. Locations of the the 16 sites (S1-S16) where seawater samples were collected on 27 Dec 

107 2017, including six sites near Sandun Dock (S1-S6), six sites near Sanniang Bay (SNB, S7-S12) and 

108 four sites in the Dafengjiang River Estuary (DRE,S13-S16). 

109 DNA Extraction, PCR and illumina sequencing

110 The PowerWater DNA isolation kit (MoBio Laboratories Inc., CA, USA) was used to extract the 

111 DNA of the total organisms on the 1.2 µm filters following the manufacturer’s protocol. The DNA 

112 samples were detected by 1% agarose gels and NanoDrop One spectrophotometer (Thermo 

113 Fischer Scientific Inc., USA), and then were amplified using the primers 528F and 706R [30,31] 

114 which was designed to amplify the hypervariable region V4 of eukaryote 18S rRNA gene. Illumina 

115 sequencing was carried out by the Novogene Company (Beijing, China). Sequencing libraries 

116 were generated using TruSeq® DNA PCR-Free Sample Preparation Kit (Illumina, USA) following 

117 manufacturer's recommendations and index codes were added. The library quality was assessed 

118 on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 system. At last, 

119 the library was sequenced on an Illumina HiSeq2500 platform and 250 bp paired-end reads were 

120 generated. The raw data sequences were assigned to samples by their unique barcodes. The 18S 

121 rDNA primers and barcodes were cut off to generate pair-end (PE) reads. Paired-end reads were 

122 merged using FLASH (V1.2.7) [32]; the raw tags were filtered to obtain the high-quality clean tags 

123 using QIIME software package (V1.7.0) [33]. Sequences analysis were performed by Uparse 

124 software (Uparse v7.0.1001) [34]. Sequences with ≥97% similarity were assigned to the same 
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125 OTUs. For each representative sequence, the GreenGene Database [35] was used to annotate 

126 taxonomic information. 

127 Physical and chemical analyses of seawater characteristics

128 The seawater temperature (℃), salinity were measured using the SBE 911 plus CTD (Sea-Bird 

129 Electronics, USA). Dissolved oxygen (DO) concentrations (ml/l) were measured using the SeaBird 

130 43 (Sea-Bird Electronics, USA). The pH values were measured by pH meter (METTLER，FE38- 

131 Meter，30254110). Chlorophyll-a fluorescence was measured using the WETStar (WET Labs, 

132 USA). Inorganic nutrient concentrations (nitrate [NO3
--N], ammonia [NH4

+-N], nitrite [NO2
-], and 

133 phosphate [PO4
3-]) were determined from 100 mL samples with an Alliance Integral Futura 

134 Autoanalyzer II [36,37]. The TOC content was determined with TOC analyzer (Multi N/C 3100, 

135 Analytik Jena AG, Jena, Germany) according to the procedure explained by Ali [38]. Spatial 

136 distribution of seawater characteristics was interpolated by the measurements of the 16 

137 sampling sites using Kriging method [39]. Interpolations outside the sampling area and over the 

138 terrestrial landscape were subtracted.

139 Statistical analysis

140 Data were compiled and transformed in Microsoft Excel. Correlation between variables were 

141 made using a linear Pearson’s r coefficient. Linear regression analysis was facilitated and 

142 conducted between closely related. Statistics were generated using the SigmaStat version 2.01 

143 software package (SPSS, Inc., Chicago, Ill). All comparisons were performed at the 95% 

144 confidence level. 

145

146

147 Result

148 OTUs profile based on 18s RNA amplicon analysis using high throughput sequencing (HTS) 

149 The eukaryote communities in the seawater were represented by 1,594 OTUs identified in our 
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150 present study. A good coverage of the eukaryotic diversity in all samples were illustrated by 

151 rarefaction curves, which were calculated and reached a plateau in all cases. All OTUs were 

152 classified into 44 main Phylum, and the most abundant were Arthropoda, Ascomycota, 

153 Chlorophyta, Diatomea, Basidiomycota, Protalveolata and Picozoa (Fig 2). Among all the OTUs, 

154 our most concerned OTU was that identified as class Haptophyceae, which some Harmful algae 

155 (such as P.globosa and Prymnesium) causing serious ecological disasters represented in this 

156 group. In our study, 19 OTUs were classified into Haptophyceae, belonging to the groups of 

157 Prymnesium, Haptolina, Isochrysis, Chrysochromulina and Phaeocystis respectively (Fig 3). 

158 Phaeocystis was represented by OTU 174 and OTU 1030, with OTU 174 identified as P. globosa 

159 (100% similarity). Prymnesium was represented only by one OTU (OTU 1269), which closely 

160 related to Prymnesium zebrinum (98% similarity) and Prymnesium pienaarii (97% similarity). The 

161 most biggest taxonomic group in Haptophyceae was identified as genus Chrysochromulina which 

162 including 4 OTUs. The other taxonomic groups belonging to Haptophyceae were Haptolina 

163 fragaria (100% similarity, OTU370), Isochrysis galbana (100% similarity, OTU1449), 

164 Haptophyceae sp. (96% similarity, OTU1155) (Fig 3).

165

166 Figure 2. The top ten OTUs were identified based on the hypervariable region V4 of eukaryote 

167 18S rRNA gene and sequences with ≥97% similarity were assigned to the same OTUs.
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168
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169 Figure 3. The taxonomic relationship of 18S rDNA phylotypes of class Haptophyceae from the the 

170 northern coast of Beibu Gulf. Kimura two-parameter model and midpoint rooting options were 

171 used to reconstruct phylogenetic relationships. Numbers above branches indicate bootstraps for 

172 NJ analysis (> 50).
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173

174 The most abundant Haptophyceae-related OTU in terms of number of reads was identified 

175 as Phaeocystis and Chrysochromulina. Chrysochromulina was the most abundant taxa containing 

176 5353 reads, while Phaeocystis displayed a relatively lower number of 2298 reads. The abundance 

177 for other Haptophyceae class was relatively low, such as Haptolina (228 reads), Prymnesium (9 

178 reads), Isochrysis (6 reads) (Fig 4). The relative abundance of the five kinds of Haptophyceae at 

179 different sampling sites showed different characteristics. The spatial distribution of Phaeocystis 

180 and Prymnesium were similar. Phaeocystis was present in all samples sites except S6, S11, S12, 

181 S14 and S15, and particularly abundant at S8 (2150 reads, 3.4%), nearly 29 times more than the 

182 second most abundant site S2 (73 reads). Prymnesium showed the same pattern, recording the 

183 highest percentage at site S8 (7 reads, 0.01%) and haven’t appeared on the other sites. While 

184 Isochrysis indicated very different property, with major peaks occurred at the sites S3 (5 reads) 

185 and none at the other sites. Most of algal species Chrysochromulina were abundant and fairly 

186 distributed at different stations with reads ranged from 158 to 899, except highest percentage 

187 (2.05 %, Site 8) and relatively lower at S6 (0%), S7 (19 reads, 0.03%), S9 (46 reads, 0.07%), S11 (30 

188 reads, 0.04%), S12 (0%) and S16 (54 reads, 0.08%). The relative abundance of Haptolina among 

189 different sites displayed similar pattern with Chrysochromulina, and the major peaks occurred at 

190 sites S8 (Fig 5). 
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192 Figure 4.  The number of reads detected in 16 sampling sites using 18s RNA amplicon analysis.
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211 Figure 5. Spacial variations of relative abundance (%) of five Haptophyceae algae 

212 (Prymnesium, Haptolina, Isochrysis, Chrysochromulina and Phaeocystis) at the different 
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213 stations in the northern coast of Beibu Gulf in Dec 2017.

214

215 Physical and chemical analyses of seawater characteristics

216 Physical and chemical characteristics of the seawater in the 16 sampling sites, including nutrient 

217 concentrations (TOC, NH4
+-N, NO3

--N, NO2
--N, and phosphate [PO4

3-]) and orther environmental 

218 condition (chlorophyll-a, DO, salinity, pH, temperature of seawater), were detected. Just as our 

219 above discovery that relative abundance of some Haptophyceae algae were obviously higher at 

220 site S8 than others, some environmental factors at S8 were apparently special as well. Seawater 

221 temperature during the period of the study ranged from 15.4 to 18.5 ℃and the lowest 

222 temperature appeared at site S8, while the salinity ranged from 25.7 to 37.3 ppt and S8 

223 contained the lowest value 25.69 ppt. The highest value recorded for DO was 9.32 mg/L at site 

224 S8 and lowest was 8.33 mg/L at site S13. The highest value of pH was 8.71 at site 12 and lowest 

225 was 8.22 at S8. For the nutrient concentrations, the site S8 possessed the highest concentration 

226 of NO3
--N (0.066 mg/L). Spatial distribution of seawater characteristics over the study region, 

227 including DO, NO3
--N, temperature of seawater and pH, were simply illustrated on the map by 

228 using blue and red colour (Figure 6).  

229

230

231

232

233

234

235

236
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237

238

239

240

241

242 Figure 6. Spatial distribution of seawater characteristics over the study region, including DO (a), 

243 NO3
--N (b), T-temperature of seawater (c) and pH (d). 

244

245 The Correlation between environmental factor and Haptophyceae algae

246 The correlation between the relative abundance of five kinds of Haptophyceae algae and 

247 environmental factors of seawater (temperature, pH, salinity, DO, NO3
--N, NO2

--N, NH4
+-N, 

248 Chlorophyll a and TOC) were analyzed. The results showed that Prymnesium, Phaeocystis and 

249 Haptolina displayed highly positive linear correlation with the concentration of NO3
--N (Pearson 

250 r=0.85~0.92, p<0.01). Isochrysis and Chrysochromulina indicated high negative correlation with 

251 temperature of sea water (Pearson r=-0.88~-0.89, p<0.01). Except for this, there was a significant 

252 negative correlation just for Prymnesium, Haptolina, Chrysochromulina and Phaeocystis with pH 

253 and salinity (Pearson r=-0.52~-0.78, p<0.01). Chrysochromulina revealed significant negative 

254 correlation with seawater temperature (Pearson r=-0.787, p<0.01). Haptolina and 

255 Chrysochromulina also exhibited significant negative correlation with Chlorophyll-a (Pearson 

256 r=-0.52~-0.53, p<0.01). There was a significant positive correlation of Prymnesium and 

257 Phaeocystis with DO (Pearson r=0.534, p<0.01), and also the same relationship of 

258 Chrysochromulina with NO3--N (Pearson r=0.69, p<0.01). There was no other obvious correlation 

259 between other environmental factors and those five kinds of Haptophyceae algae (Fig 7).

260
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261

262 Figure 7. The correlation between the relative abundance of five kinds of Haptophyceae algae 

263 and environmental factor (NO3
--N, temprature, H, salinity, DO, NO2--N, NH4+-N, Chlorophyll a 

264 and TOC) was indicated by Correlation matrix (Pearson’s product moment correlation 

265 coefficient). The more the colure of shaded cells was close to red, the more significantly the 

266 correlation was positively related (P < 0.05); inversely, the more the colure of shaded cells was 

267 close to blue, the more significantly the correlation was negatively related (P < 0.05). 

268

269 Chrysochromulina was the most abundant taxon of Haptophyceae algae in this study. The 

270 environmental factors NO3
--N, pH and seawater temperature on the relative abundance of 

271 Chrysochromulina were studied by regression analysis. The concentration of NO3
--N possessed 

272 significant positive impact on the relative abundance of Chrysochromulina (Pearson r=0.692, 

273 p<0.01; R2=0.479; Y=-0.001 + 0.281*X, Y is the relative abundance of Chrysochromulina, X is the 

274 concentration of NO3--N; F=12.859, P<0.05; regression coefficient is 0.281, P=0.003). Conversely, 

275 the temperature of seawater indicated obvious negative influence on the relative abundance of 

276 Chrysochromulina (Pearson r=-0.733, p<0.01; R2=0.537; Y=0.123-0.007*X, Y is the relative 

277 abundance of Chrysochromulina, X is the value of seawater temperature; F=16.266, P<0.05; 

278 regression coefficient is -0.007, P=0.001), and pH showed the same features on it (Pearson 

279 r=-0.653, p<0.01; R2=0.426; Y=0.282-0.032*X, Y is the relative abundance of Chrysochromulina, X 

280 is the value of seawater pH; F=10.384, P<0.05; regression coefficient is -0.032, P=0.006).

281 There is consistent relation between the relative abundance of Phaeocystis and 

282 environmental factor NO3
--N, DO, pH and temperature of sea water. The relative abundance of 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 10, 2018. ; https://doi.org/10.1101/492454doi: bioRxiv preprint 

https://doi.org/10.1101/492454
http://creativecommons.org/licenses/by/4.0/


283 Phaeocystis has obvious correlation with NO3--N (Pearson r=0.856, p<0.01). Linear regression 

284 analysis indicated that Phaeocystis was significantly linearly related to the NO3--N (R2=0.732; 

285 Y=-0.005 + 0.410*X, Y is the relative abundance of P.globosa,X is the concentration of NO3--N; 

286 F=38.227, P<0.05) and NO3--N has a significant positive effect on P.globosa (regression 

287 coefficient is 0.410, P=0.000). The relative abundance of Phaeocystis had a positive correlation 

288 with DO (Pearson r=0.535, p<0.01; R2=0.286; Y=-0.140 + 0.016*DO,F=5.616, P<0.05; regression 

289 coefficient is 0.016,P<0.05). The relative abundance of Phaeocystis was significant related to 

290 temperature of sea water (Pearson r=-0.882，p<0.01). Water temperature can explain the 77.8% 

291 change reason for the P.globosa (R2=0.778), and has a significant effect on P. globosa 

292 (Y=0.169-0.009*X, F=49.031，P<0.05), and the regression coefficient is -0.009 (P=0.000) which 

293 indicated a significant negative impact relationship between them. The relative abundance of 

294 Phaeocystis also has negative correlation with pH of sea water (Pearson r=-0.643, p<0.01).

295 Prymnesium exhibited very similar condition with Phaeocystis, concerning relationship 

296 between their relative abundance and environmental characteristics. For example, the relative 

297 abundance of Prymnesium showed highly correlation with NO3--N (Pearson r=0.858，p<0.01) 

298 and NO3--N had a significant positive impact on the relative abundance of Prymnesium 

299 (R2=0.736; Y=-0.000 + 0.002*X, Y is the relative abundance of Prymnesium, X is the concentration 

300 of NO3--N; F=39.079, P<0.05; regression coefficient is 0.002, P=0.000). In contrast, the 

301 temprature of seawater exhibited obvious negative effect on Prymnesium (R2=0.776; Y=0.001 - 

302 0.000*X, Y is the relative abundance of Prymnesium,X is the value of temperature of seawater; 

303 F=48.579, P<0.05; regression coefficient is- 0.000, P=0.000). 

304

305 Discussion

306 NGS: a promising approach to study the community of algae in marine environments

307 P.globosa bloom occurred in winter from the year of 2014-2015 near the coast of Beibu Gulf 

308 annually. In ordor to discover the bloom mechanism, P. globosa was monitored between eastern 

309 Qinzhou Bay (EQB) and Dafenjiang River Estuary (DRE) during Nov 15th 2017 to Feb 15th 2018. 
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310 The beginning of the P. globosa bloom appeared from the middle several days of Jan in 2018, 

311 and disappearing occurred at the end of Mar in 2018. All the above findings were based on 

312 microscopy observations and cell counts, and it seems that the bloom appeared suddenly and 

313 instantly. We believed that finding out what happened before the emergence of P. globosa, not 

314 only by observations of microscopy and naked eyes, was very significant for our understanding of 

315 bloom mechanism of P. globosa in Beibu Gulf. 

316 Classically, the algae ecological value is weighted based on the relative abundance of 

317 morphologically identified species. This traditional method is costly, time-consuming, and 

318 requires excellent taxonomic expertise, which is not always available [40]. Comparatively 

319 speaking, the eDNA and NGS approach for identification and quantification of algae open a new 

320 avenues for assessing and monitoring of aquatic ecosystems [41]. In our present work, by 

321 utilizing NGS based eDNA detection, not only the P. globosa, but also all the algae species 

322 belonging to Haptophyceae, taxonomically including P. globosa, were discovered and analyzed. 

323 The two most abundant OTUs in taxon Haptophyceae were affiliated with Chrysochromulina 

324 (5353 reads) and Phaeocystis (2298 reads), significantly more reads than Haptolina (228 reads), 

325 Prymnesium (9 reads) and Isochrysis (6 reads). The genus Chrysochromulina include two species 

326 Chrysochromulina scutellum and Chrysochromulina sp., both not very clear about their 

327 significance in ecosystem. But for the genus Phaeocystis, P. globosa was obviously detected 

328 among the samples, and this was in accord with our traditional monitoring approaches for the 

329 findings of P.globosa bloom in Beibu Gulf. Our result convincingly implicated that algae 

330 community reflected by eDNA and 18S ribosomal DNA analysis of the V4 region using the 

331 Illumina-Based Sequencing platform was suitable for monitoring the harmful algae in the early 

332 bloom stage. Many scientist had utilized HTS or NGS to detect algae in aquatic ecosystems and 

333 got some attractive results; for instance, NGS had been employed to microalgal diversity in the 

334 lichen Ramalina farinacea [42], Diatom resting stages in surface sediments [43], Diatom 

335 biomonitoring [40] and detection of harmful algal bloom species [44]. All the results show that 

336 eDNA and HTS sequencing is a promising approach to explore the community of algae in aquatic 

337 environments [45].

338 Hypothesis about the bloom mechanism of P.globosa in Beibu Gulf 
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339 Some mechanisms about the bloom of P. globosa could be proposed from our present work.

340 The first and most interesting finding was the bloom mode of P. globosa. In this study, at the 

341 early bloom stage, P. globosa was only obviously detected at site S8 with relatively much higher 

342 reads (2150) than other sixteen sites (148 in all). Therefore, the bloom of P. globosa may 

343 originate from a point of site (S8) and then spread to other regions, generally speaking, just as 

344 “diffusion from point to face”. Several evidences supported our opinion. Firstly, the marine 

345 environment in the Beibu Gulf was protected relatively better than other coastal zones in China 

346 [46]. Large area pollution, especially excessive nutrient concentration, had never appeared and 

347 been reported previously. Inversely, the probability of point source pollution in the coastal zone 

348 was even greater. The first appearance and flourish of P. globosa only at site S8 was probably 

349 because of its special condition, such as aquaculture farming nearby and consequent 

350 eutrophication phenomenon, rich nutrients brought by bottom-up stream and terrestrial 

351 drainage. Then the Phaeocystis was carried by transport of some water and drifted along the 

352 coastline under the influence of stream in Beibu Gulf. Some previous research could support our 

353 opinion. For instance, during the Phaeocystis bloom of the year 1957 around the coast of North 

354 Wale, Phaeocystis was only able to proliferate in Liverpool Bay, and then spread to other regions 

355 [47]; when Phaeocystis bloom in the coastal of north-western English Channel in 1990, 

356 Phaeocystis bloom emanated from near-shore, then spread towards the south-east in accord 

357 with the wind direction [48]. If our hypothesis is correct, releasing effective bio-agents and 

358 environmental controls on certain region to inhibit harmful algal blooms (HABs) P. globosa will 

359 be promising [49-51]. In this way, we only need to paid more attention to the early stage of P. 

360 globosa bloom, not after outbreaks in large scale, and this should be extremely effective. 

361 The second interesting finding about the bloom of P. globosa was in relevant to the 

362 concentration of NO3
--N, pH, temperature and DO of seawater. More specifically, the bloom of P. 

363 globosa has a significant positive correlation with NO3
--N and negatively related to temperature 

364 of seawater. In the Beibu Gulf, the average temperature of seawater was above 15-16 ℃  and 

365 the most suitable temperature for growth of P. globosa is 15-16 ℃ [52], so the most relative 

366 abundance of P. globosa appeared first at site S8 may originate from its appropriate temperature 

367 of seawater. Nutrient elements, especially nitrogen and phosphorus, have obvious influence on 
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368 Phaeocystis blooms [52,53]. However, the impact of different forms of N-sources to the bloom of 

369 Phaeocystis had never been discovered previously. In our present work, it was the first time that 

370 the great correlation between NO3
--N and Phaeocystis bloom was illustrated. This result provided 

371 a helpful reference to our government on how to manage marine environment and control the 

372 P.globosa bloom. They should pay more attention to reduce the emission of nitrogen, especially 

373 NO3
--N, to the coastal zone of northern Beibu Gulf. 
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