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Abstract

Recent work has shown that genome-wide DNA methylation (DNAm) profiles can be used to
discern signatures that can identify specific genetic disorders. These methods are especially effec-
tive at identifying single gene (Mendelian) disease, and methods to identify such signatures have
been built by comparing methylation profiles of known disease versus control samples. These
methods, however, have to-date been supervised, precluding the application of these methods
to diseases with as-yet-unknown genetic cause. In this work, we tackle the problem of unsuper-
vised disease classification based on DNAm signatures. Our method combines pre-filtration of
the data to identify most promising methylation sites, clustering to identify co-varying sites, and
an iterative method to further refine the signatures to build an effective clustering framework.
We validate the proposed method on four diseases with known DNAm signatures (CHARGE,
Kabuki, Sotos, and Weaver syndromes) and show high accuracy at determining the correct dis-
ease using unsupervised analysis. We also experiment with our approach on a novel dataset of
patients with a clinical diagnosis of Autism, and illustrate the de novo identification of a specific
subtype.

1 Introduction

Epigenetic studies have shown existence of a close relation between epigenetic marks over the
DNA,; such as DNA methylation (DNAm), and human disorders [1]. Among epigenetic marks,
DNA methylation, characterized by the presence of a methyl group at a CpG dinucleotide is one of
the most broadly interrogated, both because of technology that can provide genome-wide profiling
of methylation at CpG sites, such as methylation arrays (Illumina 450k and Epic) and sequencing-
based protocols, such as reduced representation bisulfite sequencing (RRBS), and the close relation-
ship between methylation in promoters of genes and gene expression. Recently DNAm signatures
have been suggested as a mechanism to differentiate between clinically similar rare disorders and
identify their genetic causes. Because the pathogenesis of these disorders involves a single gene or
protein, each disease has a specific effect on methylation of various regions of the human genome.
Several recent studies have addressed the use of DNAm data to extract disease signatures as a
supervised learning problem [2, 3, 4, 5]. It is hoped that the signatures can be used in conjunction
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with more standard clinical testing (e.g. exomes) to resolve variants with unclear clinical signif-
icance (VUS’s) or identify when a disease causative variant was potentially missed (e.g. due to
being outside of coding regions of the gene).

Generally, the approaches that have been used in previous studies to elucidate the DNAm
signature for a disease is to run statistical tests on training data consisting of samples with particular
disorders and a number of healthy samples (controls) to extract the differentially methylated regions
(DMRs). Each DMR typically contains one CpG site with statistically different methylation profile
between cases and controls, as characterized by a statistical test. These DMRs are then used to
train a supervised model, such as an SVM, to classify disease and healthy samples.

This problem was studied in [3] for differentiating Sotos and Weaver syndromes. These two
disorders are clinically similar, however they are caused by mutations in two separate genes (NSD1
versus EZH2, respectively). The model was trained using known harmful (truncating) mutations,
and validated both on a held-out set and on mutations without a deifnitive explanation (missense
mutations labelled as ”Variants of Unknown Significance”, or VUS, on a clinical report). After
identification of specific CpG sites as DMRs, a hierarchical clustering model was used to identify
the signature.

A similar approach was then applied in [2] for two more syndromes, Charge and Kabuki, and a
group of controls. [S-values [6] were extracted from methylation values (M-values) and supervised
statistical tests were used to detect DMRs. Using DMRs, a support vector machine (SVM) model
was trained with a linear kernel for each disease cohort and a matching set of controls. The
predictive models for each syndrome were also tested on the other syndrome samples to show the
specificity power of the trained models. A similar supervised learning approach to [2] was used in
[4] where a multi-class SVM model was trained to distinguish between multiple syndromes using
genome-wide [-values. To detect DMRs, a bump hunting approach was used [7].

In this work we tackle the problem of identifying disease samples using DNAm array data
in an unsupervised framework, which to our knowledge has not been studied previously. The
unsupervised setting for this problem is important because there are more than 7,000 rare disorders,
while DNAm signatures for only a handful are known. Unsupervised approaches are especially
useful for looking at more common disorders, such as Autism, which are known to include many
single-gene disorders with overlapping phenotypes [8]. The problem of (unsupervised) clustering
of DNAm profiles is particularly challenging not only because of its high-dimensional nature (we
utilize 450k methylation arrays, so have 450,000 features for every sample) and batch effect issues,
but also because unlike supervised approaches, we cannot extract DMRs with simple statistical
tests.

We devise an unsupervised procedure and apply it to DNA methylation array data consisting
of patients with specific neuro-developmental disorders studied by [2] and [3]. We also apply our
method to a new data set with a collection of autism spectrum disorder (ASD) samples and con-
trols. Authors in [9] conducted a histone-acetylome-wide association study (HAWAS) and extracted
differentially acetylated locations for different brain regions of samples affected by specific variants
of ASD in a supervised framework. Using our unsupervised method, we identify a sub-cluster of
ASD samples using our method with consistent DNAm signatures. Overall our method shows high
accuracy at delineating multiple neurodevelopmental disorders without any a priori of patients
with a specific disease.
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Figure 1: FCRC stages for DNAm array data: (1) A subset of variables with the highest IQR values are
selected. (2) Selected variables are clustered based on a similarity measure for variables (3) Redundant
variable clusters are dropped based on specific statistical criteria (4) A dimensional reduction approach is
used to obtain a low dimensional representation vectors based on variables within each variable cluster (5)
Samples are clustered using the final representations.

2 Background

In this section we provide the key machine learning concepts that are relevant to the rest of the
paper.

Denote the data with X = {m(i) 1, of n independent samples, where each 2@ is a d dimensional
vector in R%. The aim is to find a partitioning of X into a fixed number of non-empty disjoint
groups or clusters C1, Cy, ..., Cx where k represents the number of clusters. We also indicate the
set of data features or variables by F' = {fi, fo, ..., fa}.

2.1 Clustering

Searching for the clusters C1, Cs, ..., Cx based on specific criteria is a broad area of study and is
not the focus of this work [10]. We briefly discuss simple methods that are widely used in genomic
studies and also can be aligned with our proposed approach.

k-means clustering algorithm uses the Euclidean distance as the dissimilarity measure between
the data points. Cj,Cy, ...,Ck are founded so that YK, Y wec,|lT — il is minimized. Each p;
indicates the mean of the members of C;.

In bottom-up hierarchical clustering methods, each sample starts with its own cluster. At each
step, pairs of most similar clusters are merged to ultimately achieve to final clusters C1,...,Ck
using the chosen similarity measure.

Gaussian mixture model (GMM) is a type of latent probabilistic models in which the distribution
of samples given the j-th cluster is modeled as a Gaussian distribution N (y, X;) where p; and X;
are the Gaussian’s mean and covariance matrices. Denoting all the model parameters with 6, the
marginal likelihood function £(X|0) is then maximized using the expectation-maximization (EM)
algorithm. The values of the latent components specifies the cluster memberships.
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2.1.1 Bi-clustering

Bi-clustering methods (also known as co-clustering) have been applied to DNA gene expression
data to extract subgroups of genes that are co-expressed across only a subset of samples and may
indicate biological implications. The closest bi-clustering category to our method is the two-way
clustering (TWC). These methods are based on alternatively performing clustering over genes, and
samples until particular criteria are met. Bi-clustering methods work well in practice in cases where
the contamination of the samples is limited, and the samples are well defined and well replicated
[11]. This fact limits the use of bi-clustering methods for DNAm array datasets, which generally
include only a few samples and are impacted by various type of noise.

A difference between our proposed method and TWC bi-clustering approaches is that the latter
directly uses the features and samples to detect co-expression, but our proposed framework extracts
low dimensional signals from a group of features and uses them to cluster the samples.

2.2 Feature Selection

To avoid the curse of dimensionality, high computation complexities, and possible overfitting for
high-dimensional data with a small sample size, a natural step is feature selection. Various feature
selection methods have been proposed and are generally classified into three types: filter-based,
wrapper, or embedded methods [12]. In literature, feature selection is often based on filtering
methods in which a subset F' C F is chosen; generally, || < |F|. For example, in supervised
learning settings, features are often selected by their mutual information with the classes [13], or
based on P-values from statistical tests such as Student’s t-test and Mann-Whitney-Wilcoxon-test
[14].

Feature selection becomes more challenging when class labels are not available. A simple un-
supervised approach is variance filtering, which has been broadly used before [15]. A diverse set
of unsupervised filtering methods have been proposed [16]. While our focus in this work is not to
compare these methods, Appendix B presents the potential negative effect of arbitrarily choosing
the feature selection approach on DNAm array data. Briefly, since batch effect is a critical problem
for DNAm array data, commonly used approaches such as nearest neighbor graph-based filtering
methods might cause the selected features to be biased toward discriminating batches rather than
the underlying signals. In [17], authors propose a batch effect removal approach for single-cell RNA
sequencing data using mutual nearest neighbor data points. Based on our experiments, we suspect
that a similar approach might be applicable for DNAm array data as well.

2.3 Representation Learning

Representation learning is nowadays tied with deep architectures to learn multiple levels of rep-
resentation, or a hierarchy of features [18]. The challenges of using deep architectures for DNAm
array data is further explained in the discussion section. In this work, we briefly explain two
traditional approaches, principal component analysis (PCA) and independent component analysis
(ICA) which are simple and popular dimension reduction methods for microarray data.

Linear PCA gives a representation of data that projects the samples on a set of orthogonal
principal components. Principal components are the singular eigenvectors of the zero centered data
matrix. To obtain a d’ < d dimensional representation, the first d’ principal components are chosen.
Intuitively, projection of the data on these vectors preserves the maximum fraction of data variance.
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Linear ICA assumes that a data sample x is generated from a vector of hidden signals s =
(s1,-..,84) by a linear transformation A as @ = As. The task is then to learn A and s in a way
that components of s are maximally independent according to a measure of independence. Two
popular notions of independence are mutual information, and non-Gaussianity.

3 Proposed Method

In this section, a more general framework of the our proposed method, FCRC, is described. The
name of the proposed method is based on its steps (Filtering features, Clustering variables, Reducing
the clusters and the dimension, and Clustering samples). An overview of FCRC is shown in
Algorithm 1, and the details as implemented for our experiments is provided in Appendix A. FCRC
stages are visualized in Figure 1. Further details and the hyperparameter values are provided in
the experimental results.

3.1 Preprocessing

A careful selection of preprocessing steps can reduce variance and thus improve statistical power of
processing and analyzing DNAm data [19]. In particular, several useful and popular preprocessing
methods (e.g. data normalization) are implemented in minfi, a Bioconductor package in R [20].
The initial step in our framework is a potential preprocessing that may improve the downstream
analysis performance of the data. To reduce the batch effect problem, since the data generally
contains relatively small sample size in each batch, a popular method for adjusting known batches
based on empirical Bayes frameworks is used [21].

3.2 Filtering Features

We apply an unsupervised filtering-based feature selection using the inter-quantile ranges (IQRs)
of each f; and selected F' as the union of features with the highest IQR values. In our experiments,
this approach effectively removes the redundant features.

3.3 Clustering Variables and Dimension Reduction

In the FCRC, feature selection in the previous step may be insufficient to lower the data dimension-
ality significantly. To further reduce the potential overfitting problem and computational cost, for
a predetermined number L > 2, we partition F into L clusters as F' = {Fi, ..., FL.} where features
in each subset F; have high similarity, with the hope that each cluster variables are closely related
and have a similar information. Feature clustering is implemented in ClustOfVar package in R [22]
using Pearson correlation as the measure of similarity among features. For each | € {1,...,L}, we

then extract a low dimensional representation vector {Sl(z)}?zl for the samples based on only the
features in cluster Fj. In our experiments, PCA and ICA are used.

Accurate unsupervised detection of disease groups may be impeded by several factors, including
outliers within each disease group and batch effects. To handle both problems, for each ! € {1, ..., L},
we clustered individuals into two groups using the variables in F;. For F; to be useful we impose
the constraint that it should not result in a clustering with less than 4 samples in a group. In such
cases we drop the corresponding cluster.
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Algorithm 1 FCRC procedure

Require: DNAm array data, number of diseases
Preprocess and remove biologically unwanted features
Select a subset of features
repeat
Cluster the selected features
Statistically filter redundant clusters
until Obtain a low dimensional data
Extract low dimensional signals from each final cluster of features
Cluster the individuals based on the final signals

While we perform batch correction before clustering, to tackle any residual batch effects we
define an absorption ratio for each variable cluster. We look at the Kolmogrov-Smirnov nonpara-
metric statistical test score for the shift between values of that feature over the two groups of
individuals that were obtained from each Fj, and assign that feature to the variable cluster which
has the highest test score. A feature might not get absorbed by any clusters if the shift between the
mean values of that feature over the two groups of each variable cluster is not significant enough.
The absorption ratio of Fj is then defined as the proportion of features that are absorbed by Fj.
Our assumption here is that a batch effect causes a shift in a large proportion of data features
genome-wide (i.e. high absorption ratio), whereas a disease affects a small portion of DNA methy-
lation values over genome (lower absorption ratio). Therefore, we eliminate the variable clusters
that have an absorption score above a constant. We denote the set of remaining variable clusters
with R = {F},, ..., F;,} where p # L. To get the final data, we concatenate the corresponding signal
vectors as 2’V = (Sris-s Sry),Vie {1,...,N}.

We note that the process of feature clustering and removing the redundant signals might be
done multiple times until the data dimensionality becomes sufficiently low. In our experiments,
this process is done just once.

3.4 Final Sample Clustering

The final stage is to divide the data points into K groups presumed to represent different disorders.
We cluster the samples using X’ = {a’ (1)}1-]\;1 to get the final clusters. In our experiments, we used
simple clustering methods like Gaussian mixture model (GMM) with the expectation-maximization
(EM) algorithm for optimization and k-means clustering.

4 Experimental Results

We demonstrate the performance of our method on several DNAm array datasets. To validate the
ability of our method to reconstruct DNAm signatures for known diseases we apply FCRC to data
from [3] and [2], which contains 39 samples with CHARGE, 19 samples with Kabuki, 38 samples
with Sotos and 7 samples with Weaver syndromes, as well as 90 controls. We initially applied
the method separately on CHARGE/Kabuki and Sotos/Weaver, reflecting the previous work, and
clustered each of these into 3 clusters (two disorder clusters and the controls). We subsequently
combined these datasets to create a more challenging clustering problem. In this case the samples
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are clustered into into five groups: one group for each disease, and one for all the controls in the
two data. Well known clustering quality measures are computed to evaluate the performance of
the FCRC on these clustering tasks.

Given the strong performance of FCRC on the initial data, we applied it to a novel dataset
containing different types of autism syndrome patients (ASD), with the task of distinguishing
particular subtypes from a group of known ASDs and their controls.
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Figure 2: Visualization of the clustering result using the FCRC methods for different datasets: For all the
datasets except the combined data the first two principal components of the final signals are used. Due to
visualization difficulties of the clustering of combined dataset samples, t-SNE plot is used for the visualization
of the combined dataset. (a) The 3 clusters for the discovery cohort of the CHARGE/Kabuki data (b) The
3 clusters for the union of discovery and validation cohort in the CHARGE/Kabuki data. (c¢) The 3 clusters
for the Weaver/Sotos data. (d) The 5 clusters for the combined dataset (CHARGE/Kabuki/Weaver /Sotos).
(e) The 2 clusters of the de-novo experiment on distinguishing between unspecified ASD samples from the
controls and a set of samples with a specified ASD variant.
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4.1 Clustering Quality Measures

In our work we utilize three different clustering performance measures to quantify the results. Given
a set of clusters S, set of classes C, both partitioning n data points, the Purity is computed as

1
Purity = — ) max|sNc|
ses ceC

Purity does not perform well for imbalanced data. To ensure that this will not affect the clustering
performance two other clustering measures are also calculated.
Another measure that is used is the normalized mutual information (NMI) which is defined as

21(S;C)

NMI(S,C) = 5 THC

where I and H represent the mutual information and the entropy, respectively. The value of NMI
is robust to the increase of cluster numbers.

Rand index is another measure which calculates the proportion of pairs that are correctly
clustered in the same or different groups. Adjusted Rand index (ARI) is corrected-for-chance
version of the Rand index. The ARI value can vary between —1 and +1. Higher Purity, NMI, or
ARI values indicate better clustering performance. The confusion matrices of the clustering results
are also reported in Appendix D.

4.2 CHARGE and Kabuki Syndromes Data

In this section we report the results on the CHARGE and Kabuki data [2]. The data consists
of two groups: discovery cohort, and validation cohort, including patients with CHARGE and
Kabuki syndromes, and a number of controls. We did our experiments on both the discovery
cohort and the union of both discovery and validation cohorts. In addition to pathogenic samples
and controls, as described in [2], there are variants without uncertain significance (VUS). These
samples are excluded from our clustering performance analysis. More details about the samples
and their population is provided in the [2].

In this (and all other experiments) we utilize the M-values extracted from the samples’ raw
meta-array data. IQR filtering is used to choose 2.0 — 5.0 percent of variables with the highest
IQRs. In Appendix C, we empirically showed that this statistical filtering approach directly improve
the clustering performance on the discovery cohort and the whole data.

The number of variable groups in the variable clustering stage is chosen from {50,100}. As
mentioned earlier, Kolmogrov-Smirnov nonparametric test is applied to compute the absorption
ratios. Variable clusters with the absorption ratio above 7 € {1,0.05,0.01,10~%} are eliminated.
Note that in case that 7 = 1 no variable cluster will be dropped. This step is beneficial even though
the underlying data has undergone batch correction (as in our case) as it can reduce the amount
of residual batch, and assist with the correction even if the batches are not known.

To reduce the dimensionality of data for each variable cluster we used either principal component
analysis (PCA) or independent component analysis (ICA). The number of principal components
(hidden components) in PCA (ICA) is chosen from the set {1, 5,20}, which results in a final signal
dimension to be effectively less than the initial data dimension. Moreover, the number of groups
for the final clustering is set to K = 3. Clustering performance for the FCRC using either k-means
or GMM is reported in Table 1(a). The results are also compared to a baseline approach which
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Table 1: Performance of FCRC on CHARGE-Kabuki, and Weaver-Sotos data

(a) CHARGE/Kabuki (b) Weaver/Sotos
Data Subset ‘ Method NMI ARI Purity Method NMI ARI Purity

FCRC(GMM-PCA)  0.274+0.13  0.17+0.07  0.60 £ 0.06 FCRC(GMM-PCA)  0.66+0.00 0.67+0.01 0.71+0.01
FCRC(kmeans-PCA)  0.26 £0.07  0.206 +0.06 0.64 £ 0.04 FCRC(kmeans-PCA)  0.66 £0.00 0.67£0.01 0.72+0.01
FCRC(GMM-ICA) 0.54£0.02 046 +0.01  0.8040.00 FCRC(GMM-ICA) 0.66 £0.00 0.674+0.01 0.71 £0.01
FCRC(kmeans-ICA)  0.61 + 0.02 0.48 + 0.04 0.81 =+ 0.03 FCRC(kmeans-ICA)  0.67 + 0.01 0.68 + 0.01 0.72 £ 0.01
GMM (baseline) 0.23+£0.14 0.19+£0.11  0.594+0.12 GMM (baseline) 0.66 +£0.00 0.6740.01 0.71 £0.01
kmeans (baseline) 0.234+0.02 0.16+0.03 0.59 +0.03 kmeans (baseline) 0.66 +£0.00 0.67+£0.01 0.71+0.01
FCRC(GMM-PCA)  0.234+0.04 0.16+0.05 0.50 £ 0.03
FCRC(kmeans-PCA)  0.194+0.02 0.14+0.02 0.51£0.03
FCRC(GMM-ICA) 0.43+£0.09 0.32+0.05 0.68£0.03
FCRC(kmeans-ICA)  0.46 + 0.01  0.33 + 0.01  0.70 + 0.01
GMM (baseline) 0.15£0.04 0.10£0.06 0.4840.04
kmeans (baseline) 0.18£0.01 0.13+£0.04 0.4740.03

Discovery Cohort

‘Whole Dataset

Table 2: Performance of FCRC on the the combined data (CHARGE/Kabuki/Weaver/Sotos) and
on an orthogonal Autism dataset

(a) Combined CHARGE/Kabuki/Weaver/Sotos (b) Autism Variants
Method NMI ARI Purity Method NMI ARI Purity

FCRC(GMM-PCA)  0.60 + 0.04 0.45+0.05 0.6240.05 FCRC(GMM-PCA)  0.16+£0.01 0.22+0.02 0.74£0.01
FCRC(kmeans-PCA)  0.45+0.02 0.33+0.03 0.584+0.04 FCRC(kmeans-PCA)  0.19 + 0.02 0.26 + 0.03 0.76 + 0.02
FCRC(GMM-ICA)  0.57+£0.04 0.40+0.05 0.55+0.07 FCRC(GMM-ICA)  0.11£0.03 0.15+0.06 0.71£0.04
FCRC(kmeans-ICA)  0.574+0.05 0.47 & 0.06 0.65 = 0.06 FCRC(kmeans-ICA)  0.1440.02 0.18 £0.02 0.72+0.01
GMM (baseline) 0.42+£0.03 0.25+0.06 0.47+0.03 GMM (baseline) 0.15£0.03 0.21+£0.03 0.7440.01
kmeans (baseline) 0.45+0.01 0.32+0.05 0.54£0.06 kmeans (baseline) 0.12£0.01 0.184+0.011 0.7240.01

clusters the samples using k-means or GMM directly after filtering the variables using the IQRs.
The final representation of clustered data is visualized in Figure 2a (initial data) and 2b (including
the validation cohort). The result shows that the three clusters re-capitulate many of the control,
Charge, and Kabuki samples, respectively.

4.3 Sotos and Weaver Syndromes Data

For the Sotos and Weaver syndromes data [3], we applied the same procedure as with the CHARGE
and Kabuki syndromes. To validate the replicability of the method, we did not change any of the
hyperparameters of the FCRC procedure. The results is reported in the Table 1(b), and visualized
in Figure 2c. K = 3 is used as the number of clusters. We note that applying FCRC to Sotos and
Weaver data results lower variance clustering than applying it to CHARGE and Kabuki data. This
is largely driven by the ease of identification of the Sotos cluster. As previously discussed, the gene
responsible for Sotos disorder, NSD1, is a methyltransferase, and significantly changes methylation
throughout the genome, creating an unusually strong signature [3].

4.4 Combination of the CHARGE /Kabuki and Weaver/Sotos Data

To verify the effectiveness of FCRC on distinguishing more than two diseases, we combined the
cohorts of CHARGE/Kabuki and Weaver/Sotos from the previous sections. The sets of used
hyperparameters are the same as those of for the CHARGE/Kabuki and Sotos/Weaver dataset
clustering, with the exception of requiring 5 groups in the final clustering step. Clustering perfor-
mance of FCRC is reported in Table 2(a) and in Figure 2d. The performance is comparable to the
clustering performance on each of the datasets individually, showing the ability of the model to
distinguish amongst a larger number of disorders.
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4.5 Autism Syndromes Data

To further test the model in a setting without a ground truth we applied it to an autism syndromes
data (MTS & RW, in preparation) which contained two genetically distinct variants of autism, due
to mutations in CHDS8, and deletions on chromosome 16p, as well as genetically undifferentiated
autism samples and a set of controls. At this proof of concept phase we asked for only two clusters
to explain the data. In Table 2(a) we compared the performance of FCRC with the baselines
for this task. It is worth noting that slightly worst clustering performance can be obtained using
clustering individuals directly applying the final clustering on the data obtained after the second
step of the FCRC (Figure 1). Even though the full FCRC procedure has more steps, it can increase
the clustering performance by removing suspicious signals which increases the generalization of
FCRC to be used for a similar data as well.

The final clustering result revealed a cluster highly enriched in autism samples (on the right of
Figure 2e). This cluster contained 44/52 undifferntiated ASD samples and only 15/48 controls, a
statistically significant enrichment (p-value of < .00001 chi-squared test). We also checked whether
this enrichment was due to batch; the cluster contained 64/102 samples for one specific batch.
Nevertheless, the enrichment of ASD samples relative to the batch is still statistically significant
(p-value of .005042).

5 Discussion

To enable the unsupervised identification of diseases without a known DNAm signature, we propose
FCRC, an unsupervised learning method which we applied on several DNA methylation array
datasets. Our results show that the method can differentiate between known human disorders
without a priori signatures, and shows promise for analysis of a more common disease (ASD).

In our experiments, we observed that further tuning the parameters in the FCRC procedure
could improve the performance. Recent development of hyperparameter optimization and meta-
learning approaches could be helpful in determining better performing hyperparameters. Moreover,
as mentioned earlier, using other preprocessing techniques can increase the statistical power of the
proposed method and reduce the performance variation. Therefore, a straightforward continuation
of this work might be to use these preprocessing methods to get a better performance.

The success of deep learning in the areas such as natural language processing, computer vision,
generative modeling, and reinforcement learning motivates researchers to leverage deep neural net-
works in computational biology. Several works have successfully applied deep models for regulatory
genomics and biological image data [23]. DNA methylation array data typically consist of a few
samples. Using deep neural networks for this type of data is not only challenging because of the
sample size, but also due to the particular noises and widespread biases such as batch effect, which
is an active area of research. Moreover, building a deep model that directly learns from biological
samples as vectors with several hundred thousand dimensions is another challenge. Using an ap-
propriate feature selection method, increasing the data quality, and combining multiple datasets
are options that could help alleviate the existing challenges.
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6 Appendix
A Detailed FCRC

The practical FCRC procedure that we have used in our experiments is shown in algorithm 2

Algorithm 2 Implemented FCRC procedure for DNA methylation data.

Require: DNAm array data X = {&®}¥ | number of diseases
Preprocess
Extract M-values,
Remove the sex chromosome data, cross-react with sex chromosome probes
Remove non-specific and infinite value probes.
Preprocess for the batch effect problem using empirical Bayes methods
{Potential further preprocessing such as Illumina, or Quantile}
Obtain the final set of features F'
Select E , the features with IQR values above a threshold.
repeat
Cluster F into L clusters {F}, ..., F1} using pair correlations and k-means.
Statistically remove a subset of the L clusters obtained from the previous step
Compute the absorption ratios and chose indices with the absorption ratio above a threshold
T.
Cluster samples to two groups using each F; € {F}, ..., F1 }, chose indices with outlier results.
Set I as the union of selected indices.
set F' = Uig 15 .
until Obtain a set of final clusters F
Extract low dimensional final data X’
Compute a low dimensional vector S; for each F; € {F}, ..., F} using either PCA or ICA.
for each (@ set o/ = concat(Sy,, ..., Sy,) and set X' = {m'(l), vy m’(N)}.

Cluster the the samples from X’ using either GM M, or the k-means.

B Potential negative effect of nearest neighbor graph based feature selec-
tion methods for DNAm array data

There are various supervised and unsupervised feature selection methods that are based on local
structure of the data using nearest neighbors of data points. For example, Laplacian score [24],
MCFS [16], or SPEC [25] use the nearest neighbor graph built from inputs distance matrix. In
this section, using Euclidean distance, we show the potential negative effects of leveraging nearest
neighbor feature selection methods in further downstream analysis in cases that we have batch
effect problem.

As a real example, we used the Charge and Kabuki data [2]. For k € {1,..., N — 1}, where
N is the total number of individuals, we compute the empirical probability that one of k nearest
neighbors of an individual falls in the same batch. We expect that this probability should vary
much over different values of k. Figure 3(a) shows the value of this empirical probability, before
and after the batch effect processing used in section 4.2. As we can see, the batch effect processing
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Figure 3: (a): Empirical probability that an individual selects another individual within the same
batch as one of its k nearest neighbors before and after batch problem processing. (b) ratio of
the feature that still suffer from batch effect after batch processing to the total number of filtered
features chosen by simple IQR feature filtering, and Laplacian score feature selection with the
exponent parameter ¢.

effectively decreases the mentioned empirical probability, at least for lower k values.

To view the potential negative effect, we compare the Laplacian score feature selection, and
the simple IQR filtering we used in our experiments. After processing batches using the mentioned
method, we ran t-test for the values of each feature over pair of batches. We labeled the features
that their test results had at least one p-value less than 0.005 as features that still suffer from batch
effect problem. In figure 3(b) we see the ratio of the labeled features to the total number of labeled
features in the set of 20k filtered features, obtained from Laplacian score and IQR feature selection
approaches over different values of k. As we can see, for most values of k the simple IQR feature
filtering which is independent of & performs better in terms of removing the batch affected features
than the Laplacian feature selection procedure. Therefore, we argue that £ must be chosen very
carefully in order to avoid further bias in downstream analysis.

C 1IQR as a useful statistic for filtering features

In this section we provide a simple and empirical study that the IQR is a useful statistic to filter
features. For our experiment, we chose Charge-Kabuki dataset and sorted the features based on
their IQR values. We clustered data based on the first top s features, second top s features, and
so on. We measured the NMI value to compare the clustering result with the ground truth. The
results is shown in figure 4. It is clear in the graphs that the NMI values is positively correlated
with the group IQR values, which means filtering based on IQR could potentially increases the
ratio of the useful features for clustering.
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Figure 4: The NMI score as a result of clustering the individuals in the Charge-Kabuki data based
on a group of features. As the group number on the horizontal axis increases the value of feature
IQRs within the group increases. s specifies the number of features within the group.

D Sample confusion matrices

Confusion matrices of a sample clustering for each data using the FCRC method are reported in
the table 3. Values in the parentheses represent the equivalent clustering confusion matrices using

the baseline approach.
Table 3: Confusion Matrices

(b)

Charge-Kabuki (Whole Data)

(a) Charge-Kabuki (Discovery Cohort)
Reference Reference
Control  Charge Kabuki Control Charge Kabuki
Cluster 1 | 29 (23) 2 (2) 0 (6) Cluster 1 | 28 (29) 13 (5) 1(8)
Prediction  Cluster 2 | 10 (8) 16 (15) 1 (4) Prediction Cluster 2 | 10 (11) 24 (18) 2 (7)
Cluster 3 | 1 (9) 1(2) 10 (1) Cluster 3 | 2 (0) 2 (16) 16 (4)
(c) Sotos-Weaver (d) Autism Syndromes
Reference Reference
Control  Sotos ~ Weaver Control Other ASDs CHD8 16p 16p sig. CHDS sig.
Cluster 1| 38 (38) 1(1)  3(3) Prediction. Cluster 1] 3338 15200 9(9) 9(9) 9(9) 7(7)
Prediction Cluster 2 | 0(0) 37(37) 0(0) Cluster 2 | 15 (14) 37 (32) 0(0) 0() 0(0) 0(0)
Cluster 3 | 12 (12) 0 (0) 4(4)
(e) Combined dataset
Reference
Control Charge Kabuki Weaver  Sotos
Cluster 1 | 47 (36)  5(0) 1(3) 2(2) 0(1)
Cluster 2 | 19 (20) 9(14) 1(3) 0(0) 0(0)
Prediction Cluster 3 | 0 (0) 4(3) 8 (1) 0(1) 4 (0)
Cluster 4 | 24 (19)  1(2) 0(4) 5(4)  0(0)
Cluster 5 | 0 (15) 0 (0) 0 (0) 0(0) 34(37)

E PCA plot for the combined dataset

For further clarification, the PCA plot for the clustering result of the combined dataset with and

without the controls is provided in the figure 5.
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Figure 5: The PCA plot for the clustering result of the combined data
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