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Abstract 

Background: Thousands of SNPs associated with risk of Alzheimer’s disease (AD) in genome-wide 

association studies (GWAS) do not reach genome-wide significance. When combined, they contribute 

however to a highly predictive polygenic risk score. The relevance of these subthreshold risk genes to 

disease, and how their combined predictive power translates into functionally relevant disease 

pathways, is unknown. We investigate here at the genome-wide level and in an unbiased way to what 

extent AD risk genes show altered gene expression in the context of increasing Aβ or Tau pathology in 

mouse models of AD. 

Methods: We used an existing GWAS data set to generate lists of candidate AD genes at different levels 

of significance. We performed transcriptomic analysis on wild-type and transgenic APP/PS1 (APPtg) 

and Thy-TAU22 (TAUtg) mouse models at early and late stage of disease. We used unbiased weighted 

gene co-expression network analysis (WGCNA) to identify clusters of co-regulated genes responsive to 

Aβ or TAU pathology. Gene set enrichment was used to identify clusters that were enriched for AD risk 

genes.  

Findings: Consistent and significant enrichment of AD risk genes was found in only one out of 63 co-

expression modules. This module is highly responsive to Aβ but not to TAU pathology. We identify in 

this module 18 AD risk genes (p-value=6·5e-11) including 11 new ones, GPC2, TREML2, SYK, GRN, 

SLC2A5, SAMSN1, PYDC1, HEXB, RRBP1, LYN and BLNK. All are expressed in microglia, have a binding 

site for the transcription factor SPI1 (PU.1), and become significantly upregulated when exposed to Aβ. 

A subset regulates FC-gamma receptor mediated phagocytosis. 

Interpretation: Genetic risk of AD is functionally translated into a microglia pathway responsive to Aβ 

pathology. This insight integrates aspects of the amyloid hypothesis with genetic risk associated to 

sporadic AD.     
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Introduction 

Genetic background strongly determines the risk of sporadic Alzheimer’s Disease (AD).1 Apart from the 

APOE4 polymorphism and 42 other genetic loci, thousands of SNPs associated with risk of AD do not 

reach genome-wide significance.2–4 Polygenic risk scores (PRS) incorporate the contribution of these 

variations and relate that to disease risk.5 PRSs for AD currently reach a prediction accuracy of 84%.6  

A crucial question is whether AD risk genes functionally link to amyloid-β (Aβ) or TAU pathology or 

whether they define many parallel pathways that all lead to AD. We considered that at least part of 

the genes and pathways identified in genome-wide association studies (GWAS) determine the cellular 

response of the brain to Aβ or TAU pathology.7 Such a model integrates parts of the amyloid hypothesis 

with the complex genetics of AD, which could lead to a more coherent view on the pathogenesis of 

AD. 

Profiling of postmortem brain tissue only provides insights into the advanced stages of AD  and cannot 

delineate cause-consequence relationships, which is needed to develop mechanistic models for the 

pathogenesis of AD. Transgenic mouse models only partially recapitulate AD or frontotemporal 

dementia (FTD) phenotypes, but they provide functional insights into the initial steps of disease, which 

is of high relevance for preventative therapeutic interventions.8 What is lacking until now, however, is 

integrating the functional information from mouse studies with the GWAS-data obtained in human. By 

doing so, it might be possible to delineate whether AD risk genes that did not reach genome-wide 

significance, are involved in the cellular response to Aβ or TAU pathology. This would increase 

confidence that these genes are truly involved in AD and would indicate in which pathways these genes 

play a functional role.  

Here, we perform transcriptional profiling of mouse hippocampus after exposure to Aβ or TAU 

pathology, at early (4 months of age (4M)) and mature stages of disease (10M). We used 

APPswe/PS1L166P (APPtg) and Thy-TAU22 (TAUtg) mice, both expressing the transgene from a Thy1·2 

promotor.9,10 APPtg mice develop robust age-dependent transcriptional deregulation, while TAUtg 

mice have a milder and over time more stable molecular phenotype. AD risk genes uniquely converge 
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in APPtg mice into a coordinated deregulated multicellular gene network that is strongly enriched in 

neuroinflammatory functions. Our work provides evidence that a large part of the genetic risk of AD is 

determining the microglial response to Aβ, and promotes 11 candidate GWAS genes for future AD 

research.  

 

Methods 

Mice 

The local Ethical Committee of Laboratory Animals of the KU Leuven (governmental license LA1210591, 

ECD project number P202-2013) approved all animal experiments, following governmental and EU 

guidelines. APPtg (a.k.a. B6·Cg-Tg(Thy1-APPSw,Thy1-PSEN1*L166P)21Jckr)9) mice express APPSwe and 

PSEN1L166P transgenes, while TAUtg (a.k.a. THY-Tau22 or Tg(Thy1-MAPT)22Schd10) mice, express the 

412 aa isoform of the human 4-repeat MAPT gene containing the G272V and P301S mutations.  Both 

mice are made using the Thy1·2 promoter. Littermate transgenic (TG) and wild-type (WT) male mice 

were sacrificed at 4 months (average 123·8 days, SD 1·84 days) or 10 months of age (average 299·8 

days, SD 2·22 days), creating 8 experimental groups (n=12 per group; see Fig.1A). Number of mice was 

determined as described in Sierksma et al.11 Following cervical dislocation, hippocampi were 

microdissected, snap-frozen in liquid nitrogen and stored at -80oC. 

 

RNA extraction, library construction, sequencing and mapping 

The left hippocampus of each mouse was homogenized in TRIzol (Invitrogen, Carlsbad, CA, USA) using 

1ml syringes and 22G/26G needles and purified on mirVana spin columns according to the 

manufacturer’s instructions (Ambion, Austin, TX, USA). RNA purity (260/280 and 260/230 ratios) and 

integrity was assessed using Nanodrop ND-1000 (Nanodrop Technologies, Wilmington, DE, USA) and 

Agilent 2100 Bioanalyzer with High Sensitivity chips (Agilent Technologies, Inc., Santa Clara, CA, USA) 
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and Qubit 3.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), respectively. RNA integrity values of 

the samples ranged from 7.9 to 9.3 (median= 8.6).  

Library preparation and sequencing was performed at the VIB Nucleomics Core (Leuven, 

Belgium) using 1 μg of total RNA per sample. Poly-A containing mRNA molecules were purified using 

Illumina TruSeq® Stranded mRNA Sample Prep Kit (protocol version 15031047 Rev.E) and poly-T oligo-

attached magnetic beads. After reverse transcription with random primers, different barcodes were 

introduced to each sample by ligating a single ‘A’ base to the 3’ ends of the blunt-ended cDNA 

fragments and multiple indexing adapters and 10 cycles of PCR amplification were performed. 96 

libraries were pooled and sequenced in 4 runs using NextSeq 500 High75 Output kits on an Illumina 

NextSeq 500 instrument (Illumina, San Diego, CA, USA). Reads were pre-processed and mapped using 

BaseSpace SecondaryAnalysis (version 2.4.19.6, basespace.illumina.com), filtering out abundant 

sequences and trimming 2bp from the 5’ end. Reads were aligned against the mm10/GRCm38 Mus 

musculus reference genome by Tophat2 (version 2.0.7, 12). 

 

Data pre-processing and differential expression analysis 

We found in 2 of the 12 APPtg-O mice a 46% lower expression levels of hsa-APPswe, a 26% lower 

expression of hsa-Psen1L166p and a 24% reduction in mmu-Thy1 gene, which drives the expression of 

the transgenes (see Supplementary Fig.S1). In the absence of an explanation for this phenomenon, 

these two mice were excluded from all further analyses.  

mRNAs with average raw read counts ≤ 5 in 10 out of 96 samples were discarded, leaving 15824 

mRNAs for differential expression (DE) analysis. Non-biological variation due to library preparation 

technicalities (i.e. effects for library prep batch, RNA extraction group and RNA concentration) was 

removed by the removeBatchEffect function from limma package 3.22.7 Bioconductor/R 13. DE analysis 

was conducted using a 2-way interaction model (age, genotype, age*genotype, see Fig.1B; two-sided 

testing) for APPtg and TAUtg mice separately. To adjust for multiple testing, Benjamini-Yuketieli (BY) 

p-value adjustment was performed, as we want to control for false discovery rate across experiments 
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that have partially dependent test statistics, hence the traditional Benjamini-Hochberg adjustment was 

not applicable 14. Further differential expression analyses were performed by comparing WT to TG mice 

at 4M and 10M separately, with BY p-value adjustment across all 4 comparisons. Ranking of genes for 

Spearman correlations (two-sided testing) was always performed on the basis of signed log10(p-value), 

i.e. the log10 of the unadjusted p-value with a positive sign if the LFC of that gene within that 

comparison was >0 and a negative sign if the LFC was <0.  

 

Cell-specific datasets  

Cell type specific genes sets for pyramidal neurons (n=701 genes), interneurons (n=364), astrocytes 

(n=239), microglia (n=435), oligodendrocytes (n=452), endothelial (n=352) and ependymal cells 

(n=483) were derived from (15, Supplementary Table 1). Using these gene sets and a count matrix that 

was z-score normalized across samples, we calculated for each cell type (t) the average z-score (Ztg) for 

each experimental group (g) and compared this to the respective 4M WT group. We assesses 

significance using empirically derived p-values (see Supplementary Materials and Methods and 

Supplementary Fig.S5).  

 

GWAS gene set enrichment analysis 

Human GWAS genes derived from2 were converted to mouse orthologues using the Ensemble Biomart 

Release 9416. Using the Gene Set Enrichment Analysis Preranked module (Broad Institute17,18, two-

sided testing) enrichment for GWAS genes was tested among up-and downregulated genes sorted on 

signed log10(p-value) based on the different statistical comparisons (age, genotype and age*genotype 

interaction), for APPtg and TAUtg separately. 

 

Weighted gene co-expression network analysis (WGCNA) 

The WGCNA package in R19 was used to build unsigned mRNA coexpression networks for APPtg and 

TAUtg mice separately using all 15824 expressed genes. To generate an adjacency matrix with is the 
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smallest threshold that satisfies the scale-free topology fit at R2=0.9, soft power 3 is used for APPtg 

and 4 for TAUtg mice, respectively. The topology overlap (TO) was calculated based on the adjacency 

matrix which measures the network interconnectedness. The topology overlap dissimilarity was then 

calculated by 1-TO and used as input for average linkage hierarchical clustering. Branches of the 

hierarchical clustering tree were then assigned into modules using cutreeHybrid from the 

dynamicTreeCut package (deepSplit = 2 , minModuleSize = 30, 20). The resulting 31 APPtg and 32 TAUtg 

modules were each summarized by the first principal component, known as module eigengenes (MEs). 

Next, Fisher’s Exact test with Benjamini-Yuketieli (BY) p-value adjustment was used to determine if a 

list of cell type-specific genes overlap significantly with genes in a module.  More than half of all 

modules (APPtg: 16/31; TAUtg: 20/32) show significant overlap with a specific cell type (padj<0.05), 

particularly with the neuron and interneuron gene sets (APPtg: 10/31; TAUtg: 11/32; see 

Supplementary Fig.S3+4). 

 Functional annotations of the modules was performed using first GOrilla 21 and when no 

significant enrichment could be found, using DAVID (see Supplementary Tables 4 & 5 22,23. GO 

categories were deemed significant if the FDR-corrected p-value (GOrilla) or Benjamini-based p-value 

<0.05 (DAVID).  

To search for potential regulators in each module, we ran i-cisTarget 24 which predicts 

transcription factor motifs (position weight matrices) and experimental data tracks (e.g. ENCODE, 

Roadmap Epigenomics Project) that are enriched in the input set of regions (i.e. genomic regions for 

each gene within the module). The default setting collected over 23588 features across all the 

databases available in i-cisTarget. Only regulators that were also expressed within the same WGCNA 

module were considered. Top regulators were selected based on the maximum normalized 

enrichment score for feature enrichment. 
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Gene set overlap assessment 

Overlap between the GWAS p<0.001 gene set (n=314), all genes significantly differentially expressed 

within the APPtg age*genotype interaction comparison (n=798), genes within the APPtg-Blue module 

(n=4236) and the microglia-specific gene set (n=435) were assessed using SuperExactTest25 (version 

1.0.4), which calculates, based on combinatorial theory, the statistical probability of finding an over-

representation of genes within the intersection of multiple sets, compared to random expectation. P-

values were BY-adjusted (see Supplementary Table 7).  

 

Data and software availability 

All data has been submitted to the GEO database. The mouse mRNAseq data is under accession 

number GSE110741. The software tools used for this study include: Tophat2 (version 2.0.7, 12), 

available from https://ccb.jhu.edu/software/tophat/index.shtml; Subread/Featurecounts 26 available 

from http://subread. sourceforge.net/; Pandas Python Data Analysis Library, available from 

http://pandas.pydata.org/; Limma/Linear Models for Microarray Data27, available from 

https://bioconductor.org/packages/release/bioc/html/limma.html; Gene Set Enrichment Analysis  

17,18, available from http://software.broadinstitute.org/gsea/index.jsp; WGCNA package in R 19, 

available from https://cran.r-project.org/web/packages/WGCNA/index.html; dynamicTreeCut 

package 20, available from https://cran.r-project.org/web/packages/dynamicTreeCut/index.html; 

Gene Ontology enrichment with GOrilla, 21 available from http://cbl-gorilla.cs.technion.ac.il/ and 

DAVID 22,23 available from https://david.ncifcrf.gov/home.jsp; i-cisTarget 24 available from 

https://gbiomed.kuleuven.be/apps/lcb/i-cisTarget/; SuperExactTest 25 available from https://cran.r-

project.org/web/packages/SuperExactTest/index.html.   
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Results 

At 4M of age, APPtg and TAUtg mice are cognitively intact with mild levels of pathology, whereas they 

display at 10M overlapping profiles of hippocampus-dependent mnemonic deficits and substantial 

pathology.9,10,28  mRNAseq was performed on the hippocampus of 4M and 10M APPtg and TAUtg mice 

(TG) and their respective wild-type (WT) littermates, with n=12 per group and n=96 in total, yielding 

on average 7·7 million reads per sample (see Fig.1A).  

 

Enrichment of AD risk genes is only found in the transcriptomic response of APPtg mice 

A 2x2 linear model (Fig.1B) was employed to investigate the effects of genotype, age, and 

age*genotype interaction. The age comparison identifies transcripts changed between 4M and 10M 

old mice (Fig.2A). The genotype comparison shows mRNAs different between WT and TG mice (Fig.2B). 

The age*genotype interaction, finally, assesses which transcripts change with aging uniquely in the TG 

mice (Fig.2C). The study thus reflects the transcriptional changes manifesting in the mice at two critical 

time points: initially when the first signs of Aβ and TAU pathology occur and later on, when the 

biochemical alterations are manifest and accompanied by cognitive deficits.  

We wondered whether GWAS-based AD risk genes would be equally responsive to Aβ or TAU 

pathology. We included both established AD risk genes, i.e. genes with p-value<5x10e-8 in various 

GWAS studies, as well as subthreshold AD risk genes as these contribute significantly to AD risk 

predictions through polygenic inheritance.6 We examined multiple sets of such genes taken from 

Marioni et al., with decreasing significance and thus larger numbers of genes (see Fig.1C and 

Supplementary Table 2) and employed gene set enrichment analysis (GSEA) to assess the presence of 

AD risk genes in the different transcriptional responses of the mice.2 

The data (Fig.1C) demonstrate that independently of the set size, ranging from 92 genes (p<5e-6) to 

1799 genes (p<5e-2), AD risk genes are found consistently, and significantly (padj<1e-250) enriched 

among the genes changing as APPtg mice age (“APP interaction” Fig.1C), but not in Tautg mice. The 
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smallest set (n=92 genes with p<5e-06), also significantly enriches among the APPwt vs APPtg 

comparison (“APP genotype”, Fig.1C) (padj=0·0057). This gene set contains many microglia-expressed 

genes e.g. Treml2, Inpp5d or Gal3st4, (see Fig2B+C). Thus, genes that enhance the risk of developing 

late-onset AD (LOAD) are clustering among genes that are deregulated over time with increasing Aβ- 

but not TAU-pathology. 

 

Changes in gene expression exacerbate with aging in APPtg but not in TAUtg mice 

To assess the functional substrate of the AD risk gene enrichment in APPTg mice, we compared the 

transcriptional deregulation in the two mouse models in more detail (see Fig.2A-C and Supplementary 

Table 1). The transcriptional response of the APPtg and TAUtg mice caused by aging (i.e. independent 

of transgene) is practically identical (Spearman correlation R=+0·95, p=1·3e-29, 95% confidence 

interval (CI) +0·91 to +0·97; see Fig.2A). When comparing the effects of transgene expression only, the 

similarity between APPtg and TAUtg mice becomes rather moderate (R=+0·50, p=1·1e-19, 95% 

CI=+0·41 to +0·58; see Fig.2B) and this is only slightly enhanced in the interaction model of 

age*genotype (R=+0·67, p=1e-106, 95% CI=+0·63 to +0·71; see Fig.2C). Thus, while both mouse models 

age in similar ways, major differences in the transcriptional response between APPtg and TAUtg mice 

show that these are very different pathologies causing very divergent cellular reactions. 

The APP/PSEN1 transgene causes prominent changes (287 genes in total) in gene expression (green 

dots, Fig.2B) with most (n=219, i.e. 76%) genes upregulated (log2-fold change (LFC):+0·07 to +5·00, 

Benjamini-Yekutieli adjusted p-value (padj)<0·05). When the aging component is added (i.e 

age*genotype) even more genes become upregulated (623 mRNAs (i.e.78%), LFC:+0·12 to +2·98, 

padj<0·05), while also 175 genes down-regulate their expression (LFC:-0·67 to -0·08, padj<0·05) 

(Fig.2C). The many up-regulated genes in APPtg are often involved in microglia (Supplementary Fig.S2) 

and neuroinflammatory responses, including Tyrobp (LFC genotype (G):+1·19, LFC age*genotype 

(A*G):+1·53), Cst7 (LFC G:+5·00, LFC A*G:+2·62) and Itgax (LFC G:+3·22, LFC A*G:+2·24). These changes 

are strong, up to 32-fold. The enriched AD risk genes (Fig.1C) are predominantly upregulated in the 
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age*genotype comparison (Fig.2D). Thus, it appears that an increased expression of 

neuroinflammatory genes, most likely of microglial source, is an early (Fig.2B) and persistent (Fig.2C) 

component of Aβ pathology and many AD risk genes follow a similar transcriptional response. 

TAUtg mice show markedly fewer transcriptional changes with very little aggravation over time. In the 

genotype comparison (TAUwt vs TAUtg), only 47 genes become significantly up-regulated (LFC:+0·06 

to +1·52; padj<0·05) and 77 down-regulated (LFC:-1·30 to -0·05, padj<0·05; Fig.2B, yellow dots). Only 

9 genes are up-regulated (LFC:+0·25 to +0·60, padj<0·05; Fig.2C, red dots) when genotype is combined 

with age in the interaction model.  The majority of deregulated genes (62%) in TAUtg vs TAUwt show 

decreased expression (Fig.2B) and are of neuronal origin (Supplementary Fig.S2). The 9 up-regulated 

genes in the age*genotype comparison of TAUtg mice are overlapping with  APPtg mice and are of 

microglial (C1qa, C1qc, Tyrobp, Ctss, Irf8, Mpeg1, Cst7, Rab3il1) or astroglial (Gfap) origin. The overlap 

with APPtg reflects a (much milder) microglia response in Tautg. With the exception of Cst7 (LFC: 2·08), 

the upregulation is indeed very modest (average LFC of 8 others: 0·38) compared to APPtg mice (max 

LFC: 2·98; average LFC: 0·70). Overall, we can conclude that the molecular pathobiological and cellular 

responses in APPtg and TAUtg appear fundamentally different. APPtg drives a strong, over time 

exacerbating inflammatory response, while the Tau transgene causes an early effect on gene 

expression of genes related to neuronal functions. Most importantly, above threshold and 

subthreshold significant AD risk genes are transcriptionally active when facing accumulating Aβ, not 

TAU pathology.  

 

AD risk genes are co-regulated in a specific functional gene expression module  

Next, we performed unbiased weighted gene co-expression network analysis (WGCNA) on each mouse 

model separately to investigate whether AD risk genes would cluster in functional modules. We 

obtained in total 63 modules (Supplementary Fig S3+4).  GSEA with the GWAS gene set generated by 

Marioni et al.2, at different cut-offs for statistical significance (Fig.3A and Supplementary Table 2) 

demonstrated that the largest set of risk genes (e.g. n=1799 genes at p<0·05), enrich among 6  APPtg- 
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and TAUtg-based modules (Turquoise, Red, Blue, Fig.3A). However, when taking gene sets defined by 

increasing statistical significance (p<0·001 or smaller), the only module that persistently demonstrates 

significant enrichment with GWAS genes is the APPtg-Blue module (see Fig.3A), indicating that genes 

associated with increasing risk of AD, generally cluster within this module.  

The APPtg-Blue module is large (n=4236), and contains 62% of all the genes significantly differentially 

expressed in aging APPtg mice (age*genotype), which are mostly upregulated (Fig.3B+C). This is 

significantly more than expected by chance alone (log2 odds ratio or LOR: 2·90, p=1·54e-158). We 

functionally characterized this Aβ-induced transcriptional response. The APPtg-Blue module shows a 

highly significant overlap with the microglia-specific gene set (LOR: 1·90, padj=2·56e-78; Fig.4B and 

Supplementary Table 3) and to a lesser extent the astrocyte- (LOR: 0·54, padj: 0·002) and interneuron-

specific gene sets (LOR: 0·37, padj: 0·018). Moreover, this module is highly enriched for GO categories 

involving immune response, cytokine production and inflammation (Fig.3D and Supplementary Table 

4). It furthermore shows a highly significant overlap with a recently published Aβ-response network 

(LOR: 2·0, p=2·2e-16) as well as with the microglia-immune module derived from the brains of LOAD 

patients (LOR: 2·14, padj=8·0e-73), demonstrating that this transcriptional response to increasing Aβ  

is similar in both Aβ mouse models as well as AD patients.29,30  

We identified transcription factors potentially regulating this module. Out of 16 APPtg-Blue-associated 

transcription factors, Spi1 (a.k.a. PU.1) comes out as the top candidate, which is particularly interesting 

as a SNP within Spi1 is protective in AD.31 Spi1 is also significantly differentially expressed in the APPtg 

age*genotype interaction comparison (LFC: 0·96, padj=9·92e-05). Other transcription factors 

predicted to regulate the APPtg-Blue module include microglia-related and interferon-responsive 

transcription factors Stat2, Stat1, Ets1 and Irf7, although only Stat1 was significantly differentially 

expressed in the APPtg age*genotype comparison (LFC: 0·39, padj=0·0013). To summarize, we can 

conclude that the APPtg-Blue module shows a coordinated transcriptional response to increasing Aβ 

load employing a large number of AD risk genes. This cellular response involves microglial, astrocyte 

and interneuron genes and seems, at least partially, regulated by the transcription factor Spi1.  
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Of note, no such module enriched for AD risk genes is found in the TAUtg mice (see Fig.3A). Several 

modules show significant overlaps with the microglial, the astrocyte and the pyramidal neuron gene 

set (see Supplementary Fig.S3+4 and Supplementary Table 3), suggesting that the response to Tau 

pathology is also multicellular by nature. However, the fragmented cellular response to TAU pathology 

is clearly different from the coordinated transcriptional regulation response in the APPtg-Blue module.  

 

Prioritization of subthreshold GWAS risk genes of AD within the Aβ-induced transcriptional 

response 

The set of 1799 GWAS genes (p<0·05) contains 439 genes co-regulated within the APPtg-Blue module, 

which therefore constitutes a core pathobiological response to Aβ onto which genetic risk for sporadic 

AD converges.  These 439 risk genes encompass 18 well established AD genes, i.e. Abi3, Apoe, Bin1, 

Clu, Def8, Epha1, Fcer1g, Fermt2, H2-Ab1 (HLA-DQA in humans), Inpp5d, Plcg2, Prss36, Rin3, Siglech 

(CD33 in humans), Spi1, Tomm40, Trem2 and Zcwpw1. The 421 other genes in this data set have been 

associated to AD with decreasing degrees of statistical certainty. When taking gene sets with 

increasingly stringent p-values for their association to AD risk, the number of GWAS genes in the 

selection obviously drops (Supplementary Table 2), but the genetic evidence for the role of these genes 

in AD increases. In the end the choice of p-value threshold is arbitrary, as even SNPs with p-values up 

to 0.5 contribute to the PRS and therefore contain information.6 The important insight is, however, 

that identified genes are implied in AD by two independent unbiased experimental approaches: 

genetically, by contributing to the risk of AD in human studies, and functionally, by being part of the 

APPtg-Blue-response module in a mouse model for AD.2,6 We focus here on GWAS genes that have 

been associated to AD with p<0·001, that are present in the APPtg-Blue module, and that are, 

additionally, significantly differentially expressed in the age*genotype comparison of APPtg mice (see 

Fig.3E). The latter criterion is restrictive because we require that the gene is not only part of the APPtg-

Blue response module but is also significantly altered in expression, thus likely part of the core 

response that defines the module. We identified 18 genes in this stringent intersection which is 
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markedly better than expected by chance alone (expected 2·2 genes, padj=6·5e-11, Fig.3E and 

Supplementary Table 7). These 18 genes are APOE, CLU, GPC2, INPP5D, CD33, PLCG2, TREML2, SPI1, 

FCER1G, SYK, GRN, SLC2A5, SAMSN1, PYDC1, HEXB, RRBP1, LYN and BLNK (Fig.5). The full set of GWAS 

genes with p<0·5 in the APPtg-Blue module and significantly differentially expressed (n=263 genes) are 

listed in Supplementary Table 6.  

Among these 18 genes we find 7 established AD GWAS genes, i.e. APOE, CLU, INPP5D (aka Ship1), CD33 

(Siglech in mouse), PLCG2, SPI1 and FCER1G.3,4,32 Among the other 11, SYK, LYN and BLNK, together 

with INPP5D, FCER1G and PLCG2, play a role in FC-gamma receptor mediated phagocytosis (see also 

Fig.5). When examining the longer list of priority GWAS genes (see Supplementary Table 6), we can 

find more members of this pathway, including TREM2, ITGAM and VAV1. Moreover, the same genes, 

as well as others of the top-18 list, i.e. PYDC1/PYCARD (orthologous to the mouse gene Pycard), GRN, 

SLC2A5, and others of the extended list, i.e. ITGAX, PTPRC, LAPTM5, SAMSN1 and ARHGAP30, are all 

part of the ‘immune and microglia’ module regulated by TYROBP inferred by Zhang et al. from RNAseq 

data derived from LOAD patients.30 Other microglia- and lysosome-related genes are TREML2 and 

HEXB. All of the 18 AD risk genes are predicted Spi1 targets according to i-cisTarget (see Fig.4C) and 11 

out of these (APOE, BLNK, HEXB, INPP5D, LYN, PLCG2, RRBP1, SAMSN1, SLC2A5, SPI1, SYK)  are 

demonstrated targets in a ChIPseq experiment in the BV2 microglia cell line.33 Thus many of these 

subthreshold AD risk genes that contribute to polygenic inheritance, participate in microglia-related 

functional networks both in AD patients as well as in mouse models of Aβ pathology. We calculated 

the average expression of each gene within each cell type for the top 18 genes, using the data compiled 

by Zeisel et al., which demonstrated that the top 18 genes are highly expressed in microglia (~4 times 

more than average, see Fig.4A).15 Thus, these top 18 GWAS genes contribute to the cellular response 

of microglia when facing increasing Aβ levels. The possible role of these genes together with other 

microglia-related previously established GWAS genes is schematically summarized in Fig.5, and further 

discussed below.   
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Discussion 

This study identifies a gene transcription module (APPtg-Blue) that is specifically induced by 

overexpression of mutated APP/PSEN1 (but not by MAPT) and is enriched for a large set of genes that 

were previously linked with SNPs associated to AD risk without reaching genome-wide significance. 

Our experiments suggest that these genes are part of a pathway that characterizes the microglia 

response to Aβ (see Fig.5). While the individual effects of various SNPs on expression of these genes 

are likely small and biological insignificant, the combination of hundreds of such subtle alterations, if 

synergic in one pathway, might veer the cellular response to Aβ in a disease causing direction through 

biological epistasis.34 Our data do not allow determining whether this gene deregulation is damaging 

or protective, but they put the identified genes in a co-regulation network that is highly relevant to 

AD. 

Functionally, this co-regulatory network (the APPtg-Blue module), represents a vast 

neuroinflammatory response involving interneurons, astroglia and, overwhelmingly, microglia. These 

observations considerably expand previous work, strengthening the hypothesis that the major 

response in brain to Aβ pathology is neuroinflammation.35,36 Our and other data suggest that an early 

and profound neuroinflammatory response is an integral and perhaps even driving component in AD 

pathogenesis, and that Aβ is sufficient to induce this neuroinflammatory reaction.30,36 Our data 

strengthen this concept considerably by demonstrating that a large part of the GWAS-based genetic 

risk affects genes that are expressed in the molecular pathway defining this neuroinflammatory 

response to Aβ pathology.  

Earlier studies have relied heavily on functional analysis and module connectivity for putative gene 

selection involved in AD pathogenesis, but whether these genes were also differentially expressed was 

not considered29,30,36. The 5 recently reported novel AD risk genes OAS1, ITGAM, CXCL10, LAPTM5 and 

LILRB4 are all found within the APPtg-Blue module, but only Itgam and Laptm5 are significantly 

differentially expressed with increasing Aβ load.29 We used two independent functional criteria: genes 

must have a genetic association with AD at p<0·001 and show a statistically significant change in 
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expression when exposed to increasing levels of Aβ over time, indicating that these genes are part of 

the cellular response. By using two independent criteria to assign significance to the identified genes, 

we can predict with high confidence (BY-padj=6·5e-11) that they are indeed involved in a disease 

pathway responding to Aβ pathology.  

Among the prioritized SNPs, many are linked to known myeloid-expressed genes involved in innate 

immune pathways (see Fig.5). Briefly, FCER1G encodes for the gamma subunit of IgE-specific Fc 

receptors and plays a role in phagocytosis and microglial activation.37 SYK is recruited by FCER1G and 

TYROBP (DAP-12) upon activation of TREM2, whereas LYN is localized at the plasma membrane and 

mediates TREM2/SYK phosphorylation.38,39 BLNK is a target of SYK and mediates the recruitment of 

PLCG2.39 TREML2, unlike TREM2, is reported to activate microglia and promote release of pro-

inflammatory cytokines.40 PYCD1 (Pycard in mouse) encodes for apoptosis-associated speck-like 

protein containing C-terminal caspase recruitment domain (ASC), a core component of the 

inflammasome complex, and has been recently linked to seeding and spreading of Aβ in mouse models 

of AD.41 The lysosomal protein HEXB and glucose transporter SLC2A5 are part of the microgliome 

profile.42 GRN can adopt multiple subcellular localizations from lysosomes (as granulin) to the 

extracellular space (as progranulin) and exerts a negative control upon microglial activation in mouse 

models (see Fig.5).43 Interestingly, all of the prioritized AD risk genes are Spi1 targets, substantiating 

the pivotal role of this transcription factor in the observed Aβ-induced transcriptional response.31,44 

It remains to be clarified where, when and how in this pathway TAU pathology starts and how it 

contributes to disease progression towards dementia, and whether Aβ directly, or indirectly by the 

broad and complex neuroinflammatory (APPtg-Blue) response, induces abnormal TAU 

phosphorylation or conformation. Our hypothesis implies, however, that TAU pathology comes 

downstream of the microglia/neuroinflammatory response on Aβ because GWAS-defined genetic risk 

for AD is not associated with TAU-induced gene expression changes. The TAUtg transcriptional analysis 

does suggests that TAU induces very early down-regulation of neuronal genes (Supplementary Fig.S2), 

which vibes with the observations that dementia correlates much better with the appearance of 
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tangles than amyloid plaques. Besides its role in regulating immune response, the newly prioritized 

risk gene Syk is a known tau kinase, providing an interesting genetic link between Aβ and TAU 

pathology.45  

In conclusion, we hypothesize that the transition from a rather asymptomatic biochemical or 

prodromal phase, to the clinical, symptomatic, phase in AD, is largely determined by the combined 

inheritance of low-penetrant SNPs, which, as our work suggests, might affect the gene expression in 

the APPtg-Blue module. Such hypothesis also provides an explanation for the conundrum that some 

patients with high Aβ burden succumb without clinical symptoms. While Aβ might be the trigger of the 

disease, it is the genetic make-up of the microglia (and possibly other cell types) which determines 

whether a pathological response is induced.  
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Figures and Figure Legends 

 

 

 

Fig.1: Enrichment of AD risk genes in APPtg and not in TAUtg mice. A) Experimental design for mRNA 

sequencing using n=12 per experimental group. B) Explanation of the 2x2 linear model, where those 

cells labeled with 1 are compared to the cells labeled with 0. In the age comparison, mRNA expression 

in all 10 month old (10M) mice is compared to all 4 month old (4M) mice. In the genotype comparison, 

mRNA expression in all transgenic (TG) mice is compared to all wild-type (WT) mice. In the 

age*genotype comparison, we assess which transcripts are differentially expressed in the 10M TG mice 

compared to all other groups. C) Based on Marioni et al2 various sets of AD GWAS risk genes were 

created using different cut-off p-values indicated on the x-axis (number of genes within each set is 

written in grey). Enrichment for AD risk genes was assessed among the different statistical comparisons 

for APPtg and TAUtg mice (Int: age*genotype, Gen: genotype). Colors represent –log10(Benjamini-

Yuketieli adjusted p-value) for the enrichment; blank means no significant enrichment. 
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Fig.2: Changes in gene expression exacerbate with aging in APPtg but not in TAUtg mice. Log2 fold 

change (LFC) in TAUtg (x-axis) and APPtg mice (y-axis) after differential expression analysis, assessing 
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the effects of age (A), genotype (B) and age*genotype interaction and where in D only the Marioni-

based GWAS genes at p<0·001 are depicted. Colored dots represent significantly differentially 

expressed genes (Benjamini-Yuketieli-adjusted p-values (Padj) <0·05) for APPtg (green dots), TAUtg 

(yellow dots) or for both (red dots). Spearman correlation assesses the correlation between APPtg and 

TAUtg mice when ranking genes that are significantly differentially expressed in either APPtg or TAUtg 

mice from most up- to most down-regulated on a combined score of LFC and Padj (i.e. signed log10(p-

value), where the sign is determined by the LFC). Black dots in D represent all GWAS genes with 

p<0·001.  
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Fig.3: The APPtg-Blue module represents a coordinated transcriptional response only present in 

APPtg mice. A) Gene set enrichment analysis of GWAS genes from Marioni et al.2 at different p-value 

cut-offs among the WGCNA-derived modules in APPtg or TAUtg mice (see also Supplementary 

Fig.S3+4). Colors represent –log10(Benjamini-Yuketieli adjusted p-value) for the enrichment. Numbers 

on the x-axis: black = p-value cut-off; grey = size of GWAS gene set. B) Log2 fold change (LFC) in TAUtg 

(x-axis) and APPtg mice (y-axis) after differential expression analysis, assessing the effects of 

age*genotype interaction. Color code for dots/numbers: grey = genes in hippocampus (n=15824); 

black = genes in APPtg-Blue (n=4236); green = genes significantly differentially expressed in APPtg mice 

(n=493); yellow = significantly differentially expressed genes in TAUtg mice (n=9); red = significantly 

differentially expressed genes in both (n=9). C) Z-score distribution per experimental group for all 

genes within the APPtg-Blue module. Boxplots: center line, median; box limits, 25th-75th quartiles; 

whiskers, 1·5x interquartile range. Empirical p-values are Bonferroni adjusted (pbonf<0·001) and 
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indicate significant shift in z-score distribution (see Supplementary Materials & Methods). D) Gene 

Ontology (GO) enrichment for genes within the APPtg-Blue module. The x-axis depicts –log10(FDR-

adjusted p-value) multiplied by the enrichment score (ES), where the red line represents an –

log10(0·049)*(ES=1). E) The “top 18” GWAS genes are prioritized by finding the intersection of genes 

within the APPtg-Blue module (n=4236), AD GWAS genes with p<0·001 in Marioni et al.2 (n=314) and 

significantly differentially expressed genes in the age*genotype comparison of APPtg mice (n=798).  
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Fig.4: “Top 18” genes are expressed in microglia and regulated by Spi1. A, B) Average expression of 

genes within all cell types (A) and enrichment of the cell type marker genes as determined by Zeisel et 

al. 15 (B) among the ‘top 18’ genes (red bars) as defined in Fig.3E, the genes within the APPtg-Blue 

module (blue bars) and GWAS genes with p<0·001 (2; green bars). C) Enrichment of transcription factor 

targets among the ‘top 18’ genes (red bars) and the GWAS genes with p<0·001 (green bars). ***: 

significant enrichment, p< 0·001; **: p < 0·01. *: p<0·05. P-values are Benjamini-Yuketieli-adjusted, 

except for (C) where they are empirical and Bonferroni-adjusted.  
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Fig.5: The 11 novel prioritized AD risk genes mainly cluster together with other established AD genes 

within microglial or lysosomal gene networks involving innate immunity. Genes are depicted in their 

known cellular components, with previously described established GWAS3,4 in black, and the prioritized 

novel genes (this paper) in red. See discussion section for further functional annotation and references. 
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Overview of Supplementary Material 

 

1. Supplementary Figures: 

1. Supplementary Fig.S1: Two APPtg-O mice have lower transgene expression. 

2. Supplementary Fig.S2: APPtg and TAUtg mice demonstrate divergent neuronal and 

glial responses to increasing pathology load. 

3. Supplementary Fig.S3: Overview of APPtg-based WGCNA modules. 

4. Supplementary Fig.S4: Overview of TAUtg-based WGCNA modules. 

5. Supplementary Fig.S5: Examples of the mean z-score distribution of 10,000 randomly 

sampled gene sets with equal sizes to the gene set of interest. 

2. Supplementary Materials & Methods 

3. Supplementary Tables (separate Excel file; available upon request) 

1. Supplementary Table 1: Overview of the differential expression analysis per gene.  

2. Supplementary Table 2: Overview of the number of Marioni-based GWAS genes at 

different p-value cutoffs 

3. Supplementary Table 3: Overlap between genes within a WGCNA module and the 

cell-type specific gene sets. 

4. Supplementary Table 4: GOrilla-based GO enrichment per WGCNA module 

5. Supplementary Table 5: DAVID-based functional enrichment per WGCNA module 

6. Supplementary Table 6: Overview of all GWAS genes with p<0.5 that are significantly 

differentially expressed within the APPtg age*genotype interaction comparison.  

7. Supplementary Table 7: Results from the SuperExactTest for overlaps between 

multiple gene sets.  
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