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Supplementary Figure 1. Smoothed scatter plots of cell type fractions and principal
components (PCs) for GTEx brain tissue samples. Correlations are shown on the figure. We
used quantile normalized and scaled data to construct PCs. All genes were used and the top
10 PCs were computed. For each cell type, we chose the PC with the highest absolute
correlation with the cell type fraction. The fraction of GABAergic neuron is associated with
PC2, which differentiates cerebellum (where GABAergic neuron is prevalent) from other
brain regions. Note that PCs have been used as a surrogate for cell type fractions1.
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Supplementary Figure 2. The standard deviation (a) and mean (b) of the MIND
estimated cell-type-specific (CTS) expression across all genes for each subject as a function of
number of measures in GTEx brain data.
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Supplementary Figure 3. The MIND deconvolved expression distinguishes cell types
according to known marker genes for astrocyte (a), oligodendrocyte (b), GABAergic (c), and
pyramidal neuron (d). The boxplots visualize the distribution of CTS expression for GTEx
subjects with at least nine measures. For each marker gene, the cell type it marks matches
with the cell type that has the maximum average deconvolved expression. Note that these
marker genes are not used by CIBERSORT to estimate the cell type fractions.
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Supplementary Figure 4. (a) The impact of region-specific CTS expression (Aij) to
MIND. We compute the correlation between the deconvolved and true Aij for each cell type,
comparing MIND with a least-squares-based (LS) method. (b-c) The performance of
least-squares-based method under the same simulation setting as in Fig. 3c,d. The
correlation between the measured and deconvolved expression for each cell type as a function
of the noise level. (c) The correlation between the measured and deconvolved expression for
each cell type as a function of the number of measures. We simulate cell mixture data using
the measured CTS expression and the estimated cell type fractions from the GTEx data.
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Supplementary Figure 5. The estimated cell size in the scRNA-seq data of Zeisel et al.2.
Top: neurons (interneurons and pyramidal neurons) have larger cell sizes as compared to
non-neurons. Bottom: the average read (left) and gene count with nonzero read (right) vs.
cell size. Both have a correlation of 0.6-0.7. The red line is a smooth curve.
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Supplementary Figure 6. Expression quantitative trait loci (eQTL) discovered from
tissue-level or CTS gene expression. (a) Rate of correspondence between region-specific
eQTLs from GTEx samples to eQTLs discovered by MIND from CTS gene expression. (b)
Overlap between eQTLs appearing in multiple cell types and those in each GTEx tissue type.
For eQTLs that appear in one, two, three, and four cell types, respectively, we calculate their
probability of being identified in each tissue type. (c) Absolute eQTL effects as a function of
the number of cell types in which they are identified.
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Supplementary Figure 7. The cell type compositions across the lifespan in human brains
of BrainSpan data. The curves denote the smooth lines of estimated fractions (represented by
dots). Microglia, endothelial cells, and fetal replicating neurons have deconvolved cell
fractions close to zero and thus are not shown.
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small (≤20).
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Supplementary Figure 9. The enrichment analysis of ASD genes expressed in the
scRNA-seq data from Darmanis et al.3. We focus on 11,215 genes that are expressed in at
least 15% cells of one or more cell types. (a) The OR (odds ratio) assessing the association
between being expressed and ASD genes. We test if OR = 1 for each cell type using Fisher’s
exact test. “#” denotes p-value > 10−3, “##” denotes 10−5 ≤ p-value ≤ 10−3, and “###”
denotes p-value < 10−5). (b) The number of genes expressed per cell type.
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Supplementary Figure 10. Smoothed scatter plots comparing log and anti-log
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There are three tissue types mixed: liver, brain, and lung. NNLS: non-negative least squares;
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Supplementary Table 2

Supplementary Table 1. Analysis of simulated data mimicking bulk gene expression data
using MIND. For each simulation setting, we vary the true value of variance parameters, σ2

e ,
σ2

c , and σkk
′

c , which denote the error variance, and the variance and covariance of CTS
expression, respectively. We present the average estimates of variance parameters and the
correlation between the estimated (est.) and true CTS expression. The correlation is
calculated for each cell type. The results are based on 100 replications.

setting true value parameter estimate correlation of est. and true CTS expression
σ2

e σ2
c σkk

′

c σ̂2
e σ̂2

c σ̂kk
′

c astrocyte oligo GABAergic pyramidal
A 1 1 0.5 0.98 1.25 0.36 0.66 0.84 0.71 0.77
B 2 2 1.0 1.99 2.02 0.83 0.69 0.84 0.73 0.78
C 3 3 1.5 3.01 2.76 1.31 0.69 0.84 0.73 0.78
D 4 4 2.0 4.03 3.49 1.79 0.69 0.84 0.73 0.78
E 5 5 2.5 5.05 4.22 2.27 0.69 0.84 0.73 0.78

Supplementary Table 2. The correlation between the estimated fraction of each cell type
and the expression fraction of the corresponding marker gene within each of the GTEx brain
samples. Since Scheme 4 does not provide specific fractions for GABAergic and pyramidal
neurons, we use all neurons and the correlations for the two cell types are italicized. The
scheme with the highest correlation for each marker gene is in boldface.

Cell type Gene Scheme 1 Scheme 2 Scheme 3 Scheme 4

Astrocyte

SLC1A2 0.81 0.76 0.70 0.68
AQP4 0.62 0.61 0.60 0.56
FGFR3 0.80 0.80 0.77 0.74
GJB6 0.73 0.71 0.67 0.64

Oligodendrocyte

MBP 0.76 0.79 0.78 0.79
SOX10 0.88 0.85 0.83 0.84
MAG 0.78 0.78 0.76 0.75
MOG 0.82 0.81 0.79 0.79

GABAergic neuron
GAD1 0.33 0.35 0.40 0.54
GAD2 0.41 0.40 0.48 0.34

SLC32A1 0.48 0.46 0.50 0.34
Pyramidal neuron SLC17A7 0.77 0.76 0.84 0.61

GABAergic+Pyramidal neuron MYT1L 0.79 0.79 0.85 0.83
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Supplementary Note 3

An EM algorithm for the multi-measure deconvolution model 4

The complete data log-likelihood is given by 5

`
(
Σc, σ

2
e

)
= const− p

2

n∑
i=1

Tilog(σ2
e)− 1

2σ2
e

n∑
i=1

p∑
j=1

(Xij −W iAij)
′
(Xij −W iAij)

−1
2nplog|Σc| −

1
2

n∑
i=1

p∑
j=1
A

′
ijΣ−1

c Aij .

E-step 6

The E-step is to calculate the expected value of the above statistics given the observed data 7

and the current parameter estimates (γ(t) = (Σ(t)
c , σ

2(t)
e )), 8

E
(
`
(
Σc, σ

2
e

)
|X,γ(t)

)
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2

n∑
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2σ2

e
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p∑
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eij |Xij ,γ
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+ tr
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)]
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where 9
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(t)
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(t)
)
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c W

′
i

(
W iΣ(t)

c W
′
i + σ2(t)
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)−1
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ij W
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e

is the empirical Bayes estimate of Aij and its covariance matrix is 10

Σ(t)
ij = var

(
Aij |Xij ,γ
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= Σ(t)
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c W
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For the error term, 11
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, 12
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e ITi . 13

M-step 14

In the M-step, we derive the estimate of the covariance matrix of random effects as

Σ(t+1)
c = 1

np

n∑
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[
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The error variance estimate is
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log vs. anti-log transformation 15

Zhong and Liu5 raised a concern about using log-transformed data in deconvolution. 16

Shen-Orr et al.6 provided convincing argument about using log-transformation in their 17

response. In addition, Shannon et al.7 showed more accurate results when using quantile 18

normalized and log-transformed data to estimate cell type fractions. 19

Here we further address this issue using the same data as Zhong and Liu5, i.e., the 20

mixtures of tissue expression in liver, brain, and lung by Shen-Orr et al.4. There are 33 21

mixtures of the three tissues with known mixing fractions. We compare the measured and 22

deconvolved expression, for MIND using log-transformed data and NNLS (non-negative least 23

squares) using anti-log transformed data (Supplementary Fig. 10). In MIND, the problem 24

is formulated as 33 measures from a single subject, and NNLS treats it as 33 samples. The 25

goal is to estimate the expression for each of the three tissues. The two approaches are 26

comparable in liver and lung, in terms of root mean square error (rmse) and correlation, but 27

anti-log transformed data produce much worse results in brain, which is the focus of our 28

paper. The reason is that NNLS with anti-log transformed data fails to accurately deconvolve 29

some genes and forces 6% of deconvolved expression exactly as zero. 30

Sensitivity of estimating cell type fractions 31

To assess the sensitivity of estimating cell type fractions, we use four schemes of 32

deconvolution via CIBERSORT with different numbers of NeuroExpresso samples as the 33

reference to estimate the cell type fractions in GTEx brain data. 34

• Scheme 1: use 269 NeuroExpresso samples with 11 types of known neurotransmitter and 35

2 single-cell clusters of endothelial cell; deconvolve GTEx brain tissue into 12 cell types. 36

• Scheme 2: use 212 NeuroExpresso samples of three glial cell types (astrocyte, 37

oligodendrocyte, and microglia) and four neuronal cell types (GABAergic, pyramidal, 38

cholinergic, and glutamatergic); six oligodendrocyte samples in NeuroExpresso that 39

may be contaminated as shown in hierarchical clustering are excluded. Deconvolve 40

GTEx brain tissue into 7 cell types. 41

• Scheme 3: exclude cholinergic and glutamatergic neurons in Scheme 2; use 188 42

NeuroExpresso samples and deconvolve GTEx brain tissue into 5 cell types. 43

• Scheme 4: use 212 NeuroExpresso samples as in Scheme 2 and deconvolve GTEx brain 44

tissue into 4 cell types, including three glial cell types and neuron. 45

To compare the performance of different deconvolution schemes, we calculate the 46

correlation between the estimated fraction of each cell type and the expression fraction of the 47

corresponding marker gene within each of the GTEx brain samples (Supplementary Table 48

2). The expression fraction of a marker gene within each tissue sample is calculated as the 49

ratio of the expression of the marker gene over the sum of the expression of all genes8. 50

We choose to use Scheme 3 to estimate cell type fractions in GTEx since it has better 51

performance for the two neuronal subtypes (GABAergic and pyramidal) and comparable 52

results for glial cells. The estimated fraction of microglia is ignorable and thus we exclude the 53

three microglia samples in NeuroExpresso. Finally, we use 185 samples to deconvolve GTEx 54

brain data into four cell types: astrocyte, oligodendrocyte, GABAergic, and pyramidal 55

neurons. 56
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