
svtools: population-scale analysis of structural variation 

David E. Larson1,2*, Haley J. Abel1,2*, Colby Chiang1, Abhijit Badve1,3, Indraniel Das1, James M. Eldred4, 

Ryan M. Layer5,6, Ira M. Hall1,2,7† 

 

1 McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA 

2 Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA 

3 Current address: GeneDX, Gaithersburg, MD, USA 

4 CiBO Technologies, St. Louis, MO, USA 

5 Biofrontiers Institute, University of Colorado, Boulder, CO, USA 

6 Department of Computer Science, University of Colorado, Boulder, CO, USA 

7 Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA 

 

* these authors contributed equally to this work 

† to whom correspondence should be addressed 

 

ABSTRACT 

Summary: Large-scale human genetics studies are now employing whole genome sequencing with the 

goal of conducting comprehensive trait mapping analyses of all forms of genome variation. However, 
methods for structural variation (SV) analysis have lagged far behind those for smaller scale variants, 

and there is an urgent need to develop more efficient tools that scale to the size of human populations. 
Here, we present a fast and highly scalable software toolkit (svtools) and cloud-based pipeline for 

assembling high quality SV maps – including deletions, duplications, mobile element insertions, 
inversions, and other rearrangements – in many thousands of human genomes. We show that this 

pipeline achieves similar variant detection performance to established per-sample methods (e.g., via 

LUMPY), while providing fast and affordable joint analysis at the scale of ≥100,000 genomes. These tools 
will help enable the next generation of human genetics studies.  

Availability and Implementation: svtools is implemented in Python and freely available (MIT) from 
https://github.com/hall-lab/svtools.  

Contact: ihall@wustl.edu 
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INTRODUCTION 

With the dramatic cost reduction of whole genome sequencing (WGS) in recent years, large-scale human 
genetics studies are underway that aim to conduct comprehensive trait association analyses in tens to 

hundreds of thousands of deeply sequenced (>20x) individuals. Foremost among these are NIH 
programs such as NHGRI’s Centers for Common Disease Genomics (CCDG) and NHLBI’s Trans-Omics 

for Precision Medicine (TOPMed), which have generated >150,000 deep WGS datasets thus far. 
Moreover, ongoing genome aggregation efforts seek to produce even larger genome variation maps that 

can be mined for insights into genome biology, and to help interpret personal genomes and rare disease 
studies. These efforts, along with many others around the world, will usher in a new era of data-centric 

human genetics research.  

 A key promise of WGS is the potential to assess all forms of genome variation. However, despite 

considerable effort and creativity by many groups (most notably the 1000 Genomes Project, 1KGP (Mills, 

et al., 2011; Sudmant, et al., 2015)), it remains extremely difficult to assemble high quality SV maps from 
WGS data, especially for large cohorts comprising thousands of individuals. An initial obstacle is that SV 

detection is a difficult problem even for small-scale studies due to fundamental limitations in the integrity 
of short-read alignment signals used to infer breakpoint positions and estimate copy number from Illumina 

WGS data. These alignment signals – including split-read (SR), clipped-read (CR), read-pair (RP), and 
read-depth (RD) – are difficult to distinguish from sequencing and alignment artifacts, and are difficult to 

integrate with each other, such that even the best performing tools generally suffer from low sensitivity, 
high false discovery rates (FDR), and high compute costs.  

 A second issue is that current WGS-based multi-sample variant detection approaches require 
“joint” analysis of raw (or nearly raw) alignment data for each sample, at each putative variant site; 

however, due to memory and compute limitations, native joint calling algorithms do not perform well 

beyond the scale of several hundred genomes. SNV/indel detection tools such as GATK and VT have 
implemented distributed workflows to distill and combine variant detection signals in large cohorts through 

the use of intermediate files (e.g., gVCF) and parallel “scatter-gather” computing schemes. A natural goal 
is to develop similar approaches for SVs.  

 However, for SV the problem is different and arguably much harder. Tools must tolerate higher 
error rates and accommodate diverse variant sizes and architectures including balanced, complex and/or 

repetitive variants that may be difficult to classify. Parallelization schemes are complicated by the fact 
that, unlike SNVs that map to a single coordinate, SV breakpoints are defined by pairs of discontiguous 

and potentially distant strand-oriented reference genome coordinates (formally “break-ends”) that 

describe novel DNA junctions in the experimental genome (formally “novel adjacencies”). Intermediate 
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data structures analogous to gVCF are difficult to design because they must encapsulate information 

from at least four disparate alignment signals (SR, CR, RP, RD), each with different resolution and artifact 
modalities. Cross-sample merging schemes must be robust to positional uncertainty because SV 

breakpoint mapping resolution is typically imprecise on a per-sample basis (~10-100 bp mean), and 
sequencing and alignment effects can vary widely across variant classes, samples and batches. New 

approaches are required.   

 Of course, the task of combining spatially imprecise SV/CNV calls across collections of samples 

is an old problem that has been dealt with effectively through ad-hoc methods in prior microarray (Conrad, 
et al., 2009; Redon, et al., 2006; Wellcome Trust Case Control, et al., 2010) and WGS-based (Mills, et 

al., 2011; Sudmant, et al., 2015) studies. However, array-based methods do not readily extend to 
balanced SVs or to the increased resolution, complexity and scale of deep WGS. 1KGP employed a 

clever approach to merge results from multiple algorithms and platforms (Mills, et al., 2011; Sudmant, et 

al., 2015), but this was a monumental effort and the methods therein are impractical for routine use. 
GenomeSTRiP has two published workflows for detecting SV in populations of samples, but both have 

limitations: an early version focuses on deletions and serially combines RP-based detection with RD 
genotyping (Handsaker, et al., 2011); a second RD-based CNV pipeline is computationally expensive, 

low resolution (>1 kb), and limited to moderate sample sizes (<1,000) (Handsaker, et al., 2015). To our 
knowledge, no publicly available tools or reproducible workflows exist to systematically assemble high-

resolution SV callsets from joint analysis of multiple alignment signals in tens of thousands of deep WGS 
datasets, as we present here.  

 

METHODS 

We developed a software toolkit and distributed workflow for large-scale SV callset generation that 

combines per-sample variant discovery, resolution-aware cross-sample merging, breakpoint genotyping, 
copy number annotation, variant classification, and callset refinement (Fig. 1). We release the svtools 

python toolkit (https://github.com/hall-lab/svtools) and two pipeline versions: an on-premise “B37” version 
designed to handle BAM files aligned to the GRCh37 reference genome, that relies mainly on BASH 

scripts and LSF commands; and a cloud-based “B38” pipeline written in WDL designed to work with 
CRAM (Hsi-Yang Fritz, et al., 2011) files aligned to GRCh38 using the new "functional equivalence" 

standard developed by the CCDG and TOPMed programs (Regier, et al., 2018). Despite their different 
workflow implementations and reference genome versions, the core tools and parameters are virtually 

identical between these two pipelines, and both are publicly available (https://github.com/hall-lab/sv-

pipeline).  
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 The first step is to analyze each genome separately, in parallel. We generate per-sample 

breakpoints calls using the LUMPY algorithm (Layer, et al., 2014), which combines RP and SR alignment 
signals in a probabilistic breakpoint detection framework. LUMPY is a widely used tool that has been 

benchmarked extensively in prior studies (Chiang, et al., 2015; Chiang, et al., 2017; Layer, et al., 2014); 
here, we adapted LUMPY to CRAM and improved performance on GRCh38 by masking highly repetitive 

and misassembled genomic regions. The second step is to merge all candidate variants from all samples 
into a single non-redundant VCF/BEDPE (Danecek, et al., 2011; Quinlan and Hall, 2010) file. Positional 

uncertainty is modeled during the merging process through the use of breakpoint probability distributions 
(as within LUMPY itself (Layer, et al., 2014)), which is possible because we have modified LUMPY to 

report the integrated per-base probability distribution for each breakpoint-containing confidence interval 
in the output per-sample VCF. The merging algorithm defines collections of SV predictions with mutually 

consistent coordinate intervals and orientations, as defined by the extent of overlap between breakpoint 

probability distributions in each sample, then combines and refines coordinates based on the weight of 
alignment evidence at each base, in each sample.  

 We then genotype all candidate SV breakpoints in all samples using SVTyper (Chiang, et al., 
2015). This tool measures RP, SR and CR alignment signals at predicted breakpoints, in a more sensitive 

and accurate manner than feasible with genome-wide SV discovery tools such as LUMPY. The new 
svtools implementation handles CRAM and is significantly faster and more sensitive than the original 

(Chiang, et al., 2015). Quantitative allele balance information is retained throughout the workflow to 
preserve trait mapping power at difficult-to-genotype variants. Since certain CNVs are easier to genotype 

by RD analysis than breakpoint-spanning alignments, we also use CNVnator’s "genotype" tool (Abyzov, 
et al., 2011) to estimate the copy number of each SV interval in each sample. This copy number 

information can be used in lieu of breakpoint genotypes as desired in downstream association analyses, 

and is crucial for SV classification. 

 We next use a combination of breakpoint coordinates, breakpoint genotypes, read-depth 

evidence and genome annotations to classify each SV breakpoint either as a deletion (DEL), duplication 
(DUP), inversion (INV), mobile element insertion (MEI) or generic rearrangement of unknown architecture 

(“break-end”, BND) (see Supplementary Methods for details). This is an important and challenging step. 
The main difficulty arises because breakpoint prediction tools such as LUMPY are designed to detect 

novel DNA adjacencies, however, it is impossible to infer SV architecture from such evidence alone. For 
example, DEL and MEI variants often have identical breakpoint configurations (i.e., direct orientation), 

and complex rearrangements are often defined by multiple adjacent breakpoints that masquerade as 

simple SVs. The 'svtools classify' tool distinguishes DELs and DUPs from balanced SVs (BNDs) based 
on linear regression of quantitative breakpoint genotype information and copy number estimates from the 
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affected genomic interval. MEIs are discerned by the location of mobile elements in the reference 

genome, and inversions by the co-detection of two breakpoints with inverted orientation. This 
classification step enables more informed SV impact prediction (Ganel, et al., 2017) and thus improves 

prioritization of rare SVs for human genetics studies. We note that additional SV classes – including 
interspersed duplications, retrogene insertions, translocations and complex rearrangements – can be 

identified by further interrogation of BND calls, but that rigorous automation of this process will require 
further work.  

 The final steps are callset refinement, tuning and quality control (QC). These are extremely 
important for obtaining high quality results, and ideally should take place with knowledge of genealogical 

relationships and SNVs. Miscellaneous tools are provided for allele frequency annotation, genotype 
refinement, confidence scoring, cross-callset variant look-ups, variant pruning, and file format conversion 

(see https://github.com/hall-lab/svtools#usage).  

 Additional details are available in the Supplementary Methods. 

RESULTS AND DISCUSSION 

The sensitivity, accuracy and utility of the core SV discovery and genotyping algorithms in our pipeline 
have been thoroughly documented in multiple prior small-scale studies (Chiang, et al., 2015; Chiang, et 

al., 2017; Layer, et al., 2014). Here, we focus on the question of whether we achieve similar performance 
using the distributed workflow on much larger sample sizes. We constructed two separate callsets using 

identical methods: a "small" 12-sample callset composed solely of 1KGP samples, and a “large” 1000-
sample callset composed of the same 1KGP samples plus 988 Finnish samples. 

 We first assessed the relative sensitivity obtained in the small vs. large callset using 1KGP calls 
as ground truth (Table 1). We achieved nearly identical sensitivity levels in per-sample calls prior to and 

after merging, at levels that are consistent with prior single-sample tests (Chiang, et al., 2015; Layer, et 

al., 2014). This demonstrates the effectiveness of our cross-sample merging strategy. Notably, sensitivity 
in both the small and large callsets improves markedly after the re-genotyping step. This demonstrates 

the benefits of re-genotyping, which is designed to be more sensitive than the initial SV discovery step 
and – when combined with high resolution cross-sample merging – emulates joint analysis by allowing 

evidence to be borrowed across samples. This important feature also provides quality and genotyping 
information for every sample, enabling confidence filtering of the variants. Taken together, this results in 

the uniform SV levels apparent in a 8,438-sample callset (generated for a different study) after re-
genotyping and quality filtering, as compared to directly after calling (Supplementary Fig. 1). Sensitivity 

levels after re-genotyping are similar (if not better) in the large vs. small callset, which shows that our 

tools achieve comparable sensitivity at vastly different sample sizes. Note that these comparisons 
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underestimate sensitivity given known false positives in 1KGP (Chiang, et al., 2015; Chiang, et al., 2017; 

Layer, et al., 2014). 

 We next examined variant calling accuracy. It is impossible to measure FDR in the absence of a 

comprehensive truth-set; however, Mendelian error (ME) rates are an informative proxy. To estimate ME, 
we examined inheritance patterns in 4 separate parent-offspring trios included in the 12-sample and 

1000-sample callsets (Table 2). ME rates are high (12-17%) prior to re-genotyping, classification and 
confidence scoring, but fall to acceptable levels (2-3%) for high-confidence calls in the final small and 

large callsets. The slightly higher ME rate in the large callset is accompanied by substantially more variant 
calls and thus can be tuned to the desired ME rate depending of the application-specific desired balance 

between sensitivity and specificity.  

 Consistent with these results, the significantly larger callsets we have generated for other studies  

– based on 8,417 samples (on premises B37 pipeline) and 23,559 samples (cloud-based B38 pipeline) – 

exhibit similar numbers and types of variants (Supplementary Fig. 1) and achieve similarly low ME rates 
(data not shown). Taken together, these analyses demonstrate that our pipeline achieves high 

performance at large sample sizes. 

 A key strength of our pipeline is scalability and cost. Tool performance metrics are provided from 

sets of 10, 100, and 1,000 deep (>20x) genomes in Table 3. Overall, most steps are efficient and require 
modest compute resources, allowing them to be run on affordable cloud instances. For the 1,000 sample 

dataset used above, we estimate costs to be merely ~$0.30 per dataset. The initial per-sample SV 
discovery steps have been optimized for speed and cost (~$0.13 per genome) and scale linearly with the 

number of samples. Merging is a complex and compute-intensive process that can require significant 
RAM usage but is only necessary once per callset and can be parallelized. The current merging strategy 

is effective with as many as ~7,000 samples, using commodity hardware; however, for callsets exceeding 

several thousand samples we recommend a tiered scheme, whereby separate batches of data (e.g., 
~1,000 samples) are combined during an initial sample-level merging step, followed by batch-level 

merging. Initial evidence suggests this approach results in similar if not higher quality breakpoint 
predictions than bulk merging (Supplementary Fig. 2), especially if data is batched by cohort and 

sequencing protocol. 

  The distributed genotyping step is the key bottleneck for large studies, since sensitive SV 

genotyping requires computationally expensive interrogation of raw alignment data, and aggregate 
compute time scales as a function of both sample size and the number of candidate variants. The latter 

is determined by a combination of sample size, ancestry composition, genetic relatedness, and per-

sample variant discovery FDR, and is difficult to predict. Empirically, genotyping accounts for 6%, 12% 
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and 24% of compute at the scale of 10, 100 and 1,000 genomes, respectively (Table 3), and ~78% of 

compute at the scale of 23,559 genomes.  

 Remarkably, a 23,559 genome callset was assembled on the Google Cloud at an empirical cost 

of $0.68 per sample. Based on the observed performance at different scales, we expect our current 
pipeline to achieve affordable callset generation (<$2 per sample) at the scale of ~105 genomes, although 

improved methods may be necessary beyond that.  

 The tools described here will enable efficient and affordable analyses of SV in population-scale 

WGS studies, furthering our understanding of SV biology and enabling a more complete understanding 
of the contribution of SV to human traits.   
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Variant type reclassification
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Figure 1. The svtools pipeline. SV are detected individually in each sample using LUMPY. Breakpoint probability 
distributions are utilized to merge and refine the position of detected SV within a cohort, followed by parallelized re-

genotyping, and copy number annotation. Variants are merged into a single, cohort-level VCF file and variant types 
are reclassified using the combined breakpoint genotype and read-depth information.

Figure 1. The svtools pipeline. SVs are detected separately in each sample using LUMPY. Breakpoint probability distributions 
are utilized to merge and refine the coordinates of SV breakpoints within a cohort, followed by parallelized re-genotyping and 
copy number annotation. Variants are merged into a single cohort-level VCF file and variant types are classified using the 
combined breakpoint genotype and read-depth information. 

Figure 1
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Table 1. Detection sensitivity in large and small cohorts. Sensitivity is defined as percent of detectable 1000 
Genomes Project variants identified in the cohort. HC stands for high confidence variants.


Table 1

Merge only
Sample Sensitivity (all) Sensitivity (all) Sensitivity (HC)

HG00513 80.94% 87.53% 82.43%
HG00731 78.17% 83.96% 78.88%
HG00732 82.40% 87.43% 81.39%
NA12878 82.39% 88.19% 83.15%
NA19238 84.39% 88.58% 82.41%
NA19239 74.39% 77.60% 73.36%

Merge only
Sample Sensitivity (all) Sensitivity (all) Sensitivity (HC)

HG00513 80.23% 88.03% 83.80%
HG00731 77.67% 84.47% 80.46%
HG00732 81.50% 88.12% 82.56%
NA12878 81.58% 88.62% 84.18%
NA19238 83.86% 88.53% 82.80%
NA19239 74.01% 77.81% 73.31%

Reclassified (regression)

Reclassified (naïve bayes)
12 Sample Callset

1000 Sample Callset

Supplementary Table 1a. Detection sensitivity in large and small cohorts. Sensitivity is 
defined as percent of detectable 1000 Genomes Project variants identified in the cohort. HC 
stands for high confidence variants.
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Table 2. Mendelian error rate in large and small cohorts. Mendelian error (ME) rate is defined as the number of 
Mendelian errors divided by the total number of informative variants on the autosomes.


Family Variants ME Rate % Variants ME Rate % Variants ME Rate %
CEPH1463 6107 12.72% 6237 8.11% 3184 2.29%

PR05 5783 15.75% 6182 8.57% 3164 2.24%
SH032 5670 16.83% 6054 8.77% 3182 2.64%
Y117 7534 15.18% 7519 8.83% 3889 2.24%

Family Variants ME Rate % Variants ME Rate % Variants ME Rate %
CEPH1463 6147 12.93% 10429 13.13% 3605 2.77%

PR05 5827 15.99% 10381 14.54% 3629 2.98%
SH032 5708 16.92% 10123 14.29% 3574 3.33%
Y117 7568 15.38% 11488 13.34% 4208 2.69%

All High Confidence
Merge only Reclassified (regression)

12 sample

1000 sample

Merge only
All All

Reclassified (naïve bayes)
High Confidence

All

Family Variants ME Rate % Variants ME Rate % Variants ME Rate %
CEPH1463 6107 12.72% 6237 8.11% 3184 2.29%

PR05 5783 15.75% 6182 8.57% 3164 2.24%
SH032 5670 16.83% 6054 8.77% 3182 2.64%
Y117 7534 15.18% 7519 8.83% 3889 2.24%

Family Variants ME Rate % Variants ME Rate % Variants ME Rate %
CEPH1463 6147 12.93% 10429 13.13% 3605 2.77%

PR05 5827 15.99% 10381 14.54% 3629 2.98%
SH032 5708 16.92% 10123 14.29% 3574 3.33%
Y117 7568 15.38% 11488 13.34% 4208 2.69%

All High Confidence
Merge only Reclassified (regression)

12 sample

1000 sample

Merge only
All All

Reclassified (naïve bayes)
High Confidence

All

Table 2
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Table 3. Computational benchmarking of svtools subcommands. For three different size cohorts, each tool was 
run (n=4) to generate mean CPU and RAM utilization. For the genotype and copynumber commands, 
benchmarking was performed on a single, representative sample within the cohort of median file size. All other 
commands were evaluated on the entire dataset. Some benchmarking runs finished before LSF was able to 
gather memory usage metrics and these are reported as NA.


Num. Samples
Program CPU (m) RAM (MB) CPU (m) RAM (MB) CPU (m) RAM (MB)

lsort 0.126 5.964 1.070 1696.008 11.610 3402.480
lmerge 2.113 87.791 18.752 258.402 194.322 2032.114

genotype 13.459 2008.828 31.774 1222.536 61.579 1255.593
copynumber 0.215 NA 0.285 NA 0.417 NA

vcfpaste 0.079 NA 1.382 75.660 68.035 181.845
afreq 0.098 NA 0.911 77.701 20.247 97.713

vcftobedpe 0.082 NA 0.138 3.277 0.824 70.851
bedpesort 0.082 17.363 0.182 NA 0.823 70.904

prune 0.175 18.790 0.402 61.667 1.365 171.728
bedpetovcf 0.081 17.368 0.177 34.794 0.756 71.003

vcfsort 0.038 NA 0.082 0.594 1.367 900.887
classify 6.983 530.722 8.278 526.480 25.806 680.900

10 100 1000

Supplemental Table 2. Computational benchmarking of svtools subcommands. 
For three different size cohorts, each tool was run (n=4) to generate mean CPU and RAM 
utilization. For the genotype and copynumber commands, benchmarking was performed on 
a single, representative sample within the cohort of median file size. All other commands 
were evaluated on the entire dataset.

Table 3
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