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Abstract 
A major obstacle to treating Alzheimer’s disease (AD) is our lack of understanding of the molecular mechanisms underlying 
selective neuronal vulnerability, which is a key characteristic of the disease. Here we present a framework to integrate high-
quality neuron-type specific molecular profiles across the lifetime of the healthy mouse, which we generated using bacTRAP, 
with postmortem human functional genomics and quantitative genetics data. We demonstrate human-mouse conservation of 
cellular taxonomy at the molecular level for AD vulnerable and resistant neurons, identify specific genes and pathways associated 
with AD pathology, and pinpoint a specific functional gene module underlying selective vulnerability, enriched in processes 
associated with axonal remodeling, and affected by both amyloid accumulation and aging. Overall, our study provides a 
molecular framework for understanding the complex interplay between Aβ, aging, and neurodegeneration within the most 
vulnerable neurons in AD. 
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Introduction 
Selective neuronal vulnerability is a shared property of most 
neurodegenerative diseases1. The molecular basis for this selectivity 
remains unknown. In the early stages of Alzheimer’s Disease (AD), the 
most common form of dementia, clinical symptoms (such as memory 
loss) are caused by the selective degeneration of principal neurons of 
the entorhinal cortex layer II (ECII), followed by CA1 pyramidal cells 
in the hippocampus. In contrast, other brain regions, such as the primary 
sensory cortices, are relatively resistant to degeneration until later stages 
of the disease2-8. 
 
AD is characterized by two major pathological hallmarks: accumulation 
of the Aβ peptide (the main constituent of amyloid plaques) and 
formation of neurofibrillary tangles (NFT, aggregates of 
hyperphosphorylated tau proteins which are thought to occur 
downstream of Aβ accumulation). Amyloid plaques do not accumulate 
in discrete brain areas. Rather, they are relatively widespread across 
most regions of the neocortex, followed by the entorhinal cortex and 
hippocampus of AD patients9,10. In contrast, NFTs exhibit the same 
regional pattern as neurodegeneration11-13. The co-occurrence of NFTs 
and neurodegeneration, as well as the fact that the best pathological 
correlate for clinical symptoms to date is the extent of NFT formation14-

16, highlight the importance of tau pathology. Genetic analyses have 
revealed the importance of microglia in the disease. Yet the molecular 
drivers for the neuronal component of the pathological cascade that 

leads from Aβ accumulation to NFT formation and neurodegeneration 
are still largely unknown. While there might be regional differences in 
microglia identity, recent evidence suggest that microglia regional 
particularities are mainly driven by regional differences in the 
neighboring neurons17. 
 
To understand and model cell type-specific vulnerability in AD, we 
must thus gain insight into the molecular-level differences between 
healthy vulnerable and resistant neurons that predispose some neurons, 
before any pathological process becomes visible, to develop tau 
pathology much faster than others. This requires high quality cell type-
specific profiles of both vulnerable and resistant neurons. While some 
neuron types of relevance to AD were profiled in a mouse hippocampal 
study18, the most vulnerable neuron type in early AD (ECII) has not 
previously been studied ex vivo. In humans, Small et al. profiled whole 
EC and dentate gyrus (DG) in control and AD patients19, and the Allen 
Brain Atlas (ABA) provides a large dataset for a number of human 
brain regions20 , but neither of these studies are cell type specific. A 
comprehensive dataset of neuron-specific AD-relevant profiles has been 
generated by Liang et al21. While valuable, human samples, including 
those in the studies cited above, are inevitably subject to degradation 
and postmortem changes and, in the context of AD, do not allow for 
direct probing of the effect of aging and Aβ accumulation on gene 
expression.  
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Furthermore, a key challenge to achieving a molecular understanding of 
selective neuronal vulnerability in AD is that vulnerability and 
pathology are likely not simply the result of a few genes acting in 
isolation. Previous work examining whole brain lysates from AD 

patients and non-demented individuals 22-24 demonstrated the promise of 
network analyses in AD, but these studies were limited to larger brain 
regions and thus could not address cell type-specific vulnerability. 
Deciphering the pathological cascade requires cell type-specific 

Figure 1: An integrative experimental genomics and bioinformatics framework, combining mouse and human data, to identify genes and 
pathways involved in Alzheimer’s Disease.  
a. Overview of our framework. (i) To obtain molecular profiles of 7 types of neurons most vulnerable and most resistant to AD using the bacTRAP 
technology, we constructed bacTRAP mice for each of them (see b). (ii) 111 neuron-specific high quality ex vivo expression profiles were obtained for 
each neuron type at three different ages (5 months, 12 months, 24 months), using the bacTRAP technology with these mice followed by deep 
sequencing: bacTRAP allows for fast isolation of actively translated RNA with only minimal alterations of mRNA content after the death of the animal, 
and quantitative assessment of gene expression over a large range of expression levels. (iii) Using these data, we generated neuron-specific molecular 
signatures in mouse and human, and created a spatial homology map between the two organisms. (iv) We used these neuron-specific signatures to 
construct 7 neuron-specific functional networks, through Bayesian integration of a compendium of over 30,000 human experiments. (v) We identified 
AD-associated genes by combining the network for the most vulnerable neuron (ECII) with an AD tau pathology GWAS study42 using our NetWAS 2.0 
machine learning approach. (vi) These genes form distinct functional modules in the vulnerable neuron-specific network, with one module in particular 
capturing vulnerability-specific signal. (vii) Our analyses point to the involvement of neurotransmitter release and axonogenesis in AD vulnerability, as 
well as a central role for the regulation of tau and α-synuclein by the RNA-binding protein PTB. Overall, we map AD-associated processes and their 
potential regulation by aging and Aβ in ECII neurons, providing the first molecular dissection of the AD pathological cascade within vulnerable neurons. 
b. bacTRAP transgenic mice generated for the molecular profiling of vulnerable and resistant neurons. For each line, brain sections were 
stained with an anti-eGFP antibody (green) and counterstained with DAPI (blue). Genes whose regulatory regions we used for driving eGFP-L10a 
expression are indicated in each frame. For ECII and CA1, we show a section from the Rasgrp2- and from the Sstr4#7-bacTRAP line respectively, but 
also used Sh3bgrl2- and Cck-bacTRAP lines for subsequent analyses. The dashed line delineates the brain region dissected out for bacTRAP. Arrows 
point to the neurons of interest, which overexpress eGFP-L10a. Scale bar: 500 µm 
(ECII: principal neurons of the layer II of the entorhinal cortex, CA1: pyramidal neurons of hippocampus CA1, CA2: pyramidal neurons of hippocampus 
CA2, CA3: pyramidal neurons of hippocampus CA3, DG: granule neurons of dentate gyrus, S1: pyramidal neurons of primary somatosensory cortex, 
V1: pyramidal neurons of primary visual cortex) 
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systems-level analysis and modeling of the complex molecular 
interactions that underpin the vulnerability of specific neurons to AD.  
Here, we provide the first molecular framework to understand the 
interactions between age, Aβ, and tau within neurons. Our approach 
(Fig. 1a) integrates the precision of cell type-specific profiling across 
age in the non-diseased mouse with computational modeling of human 

neuronal -omics (e.g., expression, interaction) data. It also combines 
this network modeling with human disease information from 
quantitative genetics data, ensuring relevance for human AD biology. 
The neuron-specific networks are available for download and 
exploration in an interactive web interface (alz.princeton.edu). 

Results 

Cell type-specific profiling of mouse neurons 
with differential vulnerability to AD 
 
To investigate the selective vulnerability of 
neurons in AD, we generated cell type-specific 
expression profiles spanning the entirety of 
adulthood for vulnerable and resistant neurons 
using the bacTRAP (Bacterial Artificial 
Chromosome – Translating Ribosome Affinity 
Purification) technology in normal mice25,26. 
The bacTRAP technology enabled us to assay 
AD-relevant neuronal cell types with genome-
wide coverage, measure transcripts ex vivo (as 
opposed to postmortem), and specifically 
capture actively translated (rather than all 
transcribed) genes.  
 
We focused on the vulnerable principal 
neurons of ECII and pyramidal neurons of 
CA1, and on five types of resistant neurons, 
namely pyramidal neurons of CA2, CA3, 
primary visual cortex (V1), primary 
somatosensory cortex (S1), and granule cells 
of DG. Specifically, we constructed different 
transgenic mouse lines for each type of neuron, 
overexpressing the ribosomal protein L10a 
fused to the green fluorescent protein (GFP) 
under the transcriptional control of a driver 
specific to that type of neuron (Fig. 1b, 
Supplementary Note). The bacTRAP 
procedure then consists of 
immunoprecipitation of GFP-tagged 
polysomes from GFP-L10a-expressing cells, 
thus isolating actively translated neuron-
specific mRNAs for RNA-sequencing. 
Previous work using bacTRAP or similar 
technologies (e.g., RiboTag) has demonstrated 
the strong enrichment for cell-type specific 
signal from cells expressing the tagged 
ribosomal protein 25-31.  
 
We first performed multidimensional scaling 
analysis of the resulting bacTRAP data and 

Figure 2: Molecular characterization of vulnerable and resistant neurons. a. Multidimensional scaling analysis of all samples demonstrating 
clustering of samples by region of origin. Each dot represents one sample (two mice pooled). Each color represents a different type of neuron. Red 
(ECII) and orange (CA1) dots correspond to AD vulnerable neurons. Purple (CA2), light blue (CA3), dark blue (DG), light green (S1), dark green (V1), dots 
correspond to resistant neurons. Increasing dot sizes represent increasing mouse ages (5 months, 12 months, 24 months).  
b. Verification of our quantitative, neuron-specific RNAseq profiles for known markers by ISH (ABA). Expression of previously described cell type-
specific markers across the seven types of neurons, Reln for ECII neurons91, Wfs1 for CA1 pyramidal neurons92, Ptpn5 (or Step) for CA2 pyramidal 
neurons93, Bok for CA3 pyramidal neurons92, Prox1 for dentate gyrus granule neurons94, Whrn for visual cortex layer IV95, and Lamp5 (or C20orf103) for 
somatosensory cortex layers II-III31. For each marker, we show the expression at 5 months, 12 months, and 24 months of age; each color represents a 
different type of neuron; we also show for each gene an ISH image from the ABA that shows expression in the corresponding neurons. Image credit: Allen 
Institute. 
c. Heatmap of gene expression for the top 500 genes enriched in each neuron type. For each gene (rows, grouped by neuron type in which they are 
enriched) and sample (columns, grouped by cell type, including all three different ages), the row-normalized log2(RPKM) is displayed, showing that 
hundreds of genes are enriched in each type of neuron. 
d. Pathways enriched in vulnerable (red) and resistant (blue) neurons, with their significance (-log(FDR)) of enrichment. 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 19, 2018. ; https://doi.org/10.1101/499897doi: bioRxiv preprint 

https://doi.org/10.1101/499897
http://creativecommons.org/licenses/by-nc-nd/4.0/


Roussarie, Yao et al., 17 Dec 2018 – preprint copy - BioRxiv 
 

4 

found that the samples (3-12 biological replicates per neuron type per 
age) clustered primarily by tissue location, as expected, with a clear 
separation between the ECII, hippocampal regions (CA1, CA2, CA3, 
DG), and neocortical regions (S1 and V1) (Fig. 2a). We further verified 
the expression patterns of known neuron-type specific markers (Fig. 2b) 
and identified the top enriched genes for each neuron type in our data 
(Fig. 2c, Supplementary Table 1). Comparisons with the semi-
quantitative in situ hybridization (ISH) data in the ABA (Supplementary 
note, Supplementary Fig. 1) show that our data includes the cell type-
specific signals in these datasets, while providing substantially higher 
regional and quantitative, genome-scale coverage. Thus, our approach 
provides a high quality, genome-wide assay of ex vivo neuron-type 
specific expression in AD-vulnerable and resistant regions of the brain. 
 
To characterize molecular signatures for AD vulnerable cells in the non-
disease state, we compared gene expression profiles of ECII and CA1 
neurons against the five AD-resistant neuron types in wild-type mice. 

Among the significantly enriched processes we found many AD-
relevant pathways (Fig. 2d, Supplementary Table 2). Furthermore, 
known Alzheimer’s Disease genes were significantly enriched in 
vulnerable neurons (KEGG AD genes, Wilcoxon rank sum test, p-value 
< 9.41e-7). These results support the hypothesis that intrinsic properties 
of ECII and CA1 neurons, present even in healthy individuals, render 
these neurons as preferential substrates for the development of AD 
pathogenesis.  
 

Neuron-specific spatial homology between mouse and human 
 
An important question for interpreting model organism studies of AD is 
whether the molecular identity of neurons is conserved between mouse 
and human. Previous comparisons using spatially resolved semi-
quantitative ISH32 or transcriptomics and proteomics without cellular 
resolution33,34 have suggested that mouse and human regional 

Figure 3: Conservation of molecular identity of seven AD-vulnerable and -resistant neuronal types between mouse and human. a. Location in 
the mouse and human brain of the seven brain regions included in this study (lateral view of the whole brain and close-up of the hippocampal formation). 
To validate the use of mouse profiles for the study of the human disease, we compared the molecular signatures of the mouse neurons derived from 
111 mouse bacTRAP samples with 205 human brain region-specific expression profiles from the Allen Institute (b – h). For each mouse neuron type (b: 
ECII, c: CA1, d: CA2, e: CA3, f: DG, g: S1, h: V1), the human brain regions with molecular signatures closest to each mouse neuron type are highlighted 
(the more opaque the color of a brain region, the higher the similarity with the mouse neuron type). Note that we find a near perfect correspondence 
between mouse neurons and human brain regions.    
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expression patterns are correlated, but the conservation of expression 
across neuronal subtypes requires further exploration. In humans, fully 
quantitative data at cell type-specific resolution is lacking across the 
regions most relevant for AD. However, the discrete brain structure 
microarray data from the ABA20 captures enough regional specificity 
for an expression-based comparison between the seven mouse neuronal 
subtypes and 205 human brain regions. We calculated a spatial 
homology score between molecular signatures for each mouse neuron 
type and each human brain region, generating 1,435 pairwise spatial 
homology measurements. Remarkably, of all these possible mappings, 
we found a near perfect match between each mouse profile and its 
corresponding relevant human brain region (Fig. 3, Supplementary 
Table 3). This confirms the validity of leveraging the power of ex vivo 
neuron-specific molecular profiles in the mouse to gain relevant insight 
into the molecular characteristics of the most vulnerable neurons in 
human AD. While there are differences in lifespan and other factors 
relevant to AD that may facilitate the degeneration of human neurons35, 
our comparison supports the notion that physiological differences 
between vulnerable and resistant neurons are conserved. Our study 
provides, to our knowledge, the first systematic evidence that the 
molecular identity of AD-relevant cell types is conserved between the 
mouse and human brain. This supports our approach of combining the 
cell-type-specific signals in healthy mouse neurons with the AD-
relevant signals in large collections of human data.  
 

In silico modeling of gene networks in AD-relevant neuronal cell 
types 
 
AD neurodegeneration is the result of multiple molecular-level changes 
to the system of interacting genes and pathways within vulnerable 
neurons. We model this system with cell type-specific functional 
networks, i.e., maps of functional relationships between proteins in the 
specific cellular contexts of the different types of neurons. Specifically, 
a functional relationship represents the common involvement of two 
proteins, either directly or indirectly, in a biological pathway in the cell 
type of interest. We recently developed a regularized Bayesian network 
integration method to construct tissue-specific functional networks36. 
These network-level models are an effective first approximation of the 
functional landscape of a cell and have been successfully applied to the 
study of diseases36-38. It was, however, previously impossible to apply 
this method to construct networks at neuron-specific resolution because 
of limitations in high-quality cell type-specific gene expression 
annotations in human. Given the strong concordance between our 
mouse neuron-specific molecular signatures and their corresponding 
human brain regions, we used the signatures as positive examples to 
extract cell-specific signal from a large human data compendium 
including thousands of gene expression, protein-protein interaction, and 
shared regulatory profile datasets to construct human neuron-type 
specific functional networks. We have made the resulting seven in silico 
human genome-wide network models, each representing one AD-
vulnerable or resistant neuron type in the non-disease state, available 
both for download and dynamic, query-based exploration at 
http://alz.princeton.edu.  
 
To identify functional characteristics and differences specific to neuron 
types vulnerable or resistant to AD, we examined the functional 
cohesiveness of biological processes (i.e., a measure of network 
connectivity among genes known to be part of that process) in each 
corresponding functional network model (Supplementary Table 4). We 
found that pathways neuroprotective in AD39-41 appeared more cohesive 
in AD resistant neurons than in vulnerable neurons, namely the 

transforming growth factor beta receptor signaling pathway (in DG) and 
the canonical Wnt signaling pathway (in DG, S1 and V1). On the other 
hand, mitochondrial processes like apoptotic mitochondrial changes and 
mitochondrial fission were cohesive in CA1 and ECII respectively, 
which is consistent with the saliency of mitochondrial dysfunction at 
early stages of the disease42. Strikingly, we found that the processes 
with largest functional cohesiveness in vulnerable compared to resistant 
networks were all related to microtubule organization. This is the first 
evidence that these tau-regulated processes may intrinsically differ 
between healthy vulnerable and resistant neurons.  
 

Identifying AD-associated genes through integration of AD GWAS 
and the ECII functional network 
 
To identify potential AD-associated genes, we then combined these 
network models of vulnerable neuron function with unbiased disease 
signal from human quantitative genetics data. Specifically, we 
developed an approach, Network-Wide Association Study 2.0 
(NetWAS 2.0), that extends our previously described36 framework with 
a probabilistic subsampling method to take into account gene-level 
confidence from quantitative genetics studies. This machine learning 
approach leverages genome-wide association studies (GWAS) in 
conjunction with a functional network specific to the region of interest 
to identify cell type-specific network patterns that are predictive of a 
disease of interest, reranking all genes based on disease relevance 
significantly better than the original GWAS36. 
 
We applied NetWAS 2.0 using the network model for the most 
vulnerable neuron (ECII) to reprioritize genes based on an AD GWAS 
for Braak stage (NFT pathology-based staging)43 (Supplementary Table 
5). Notably, MAPT (microtubule-associated protein tau, the gene that 
encodes tau, the primary component of NFTs) was ranked first among 
all 23,950 reprioritized genes. MAPT was not even nominally 
significant in the initial GWAS (initial GWAS tau p-value = 0.269). 
This illustrates the power of NetWAS 2.0 to extract (through cell type-
specific functional networks) important disease-relevant signals that 
may be hidden in the original GWAS. Overall, while the original 
GWAS for Braak stage was somewhat enriched for known AD genes 
(genes from the KEGG AD gene set, Wilcoxon rank sum test, p-value < 
0.199), the reprioritized gene ranking was much more significantly 
enriched for these genes (Wilcoxon rank sum test, p-value < 1.60e-4). 
We also observed strong enrichment of genes involved in regulation of 
Aβ accumulation and NFT formation (Wilcoxon rank sum test, p-value 
< 1.29e-10, p-value < 2.2e-16, respectively; gene sets curated by a 
curator independent from the analyses, Supplementary Table 6) (Fig. 4a, 
b). Known AD neuroprotective pathways, like neurotrophin signaling44 
and Wnt signaling pathway40,41 were also predicted to be strongly 
associated (Supplementary Table 7). Lastly, we highlight the 
association of neurotransmitter secretion with AD (FDR < 2.57e-24). 
Dysregulation of this pathway is one of the most prominent effects of 
Aβ accumulation45, and the resulting hippocampal network 
hyperactivity was suggested to be a crucial contributor to AD 
pathogenesis46-48. As the AD signal in NetWAS 2.0 comes only from 
unbiased GWAS data (i.e., no prior AD disease knowledge was 
incorporated), the NetWAS 2.0 results thus provide a data-driven, 
unbiased prioritization of AD-associated processes out of the many 
pathways that, over time, have been associated with tau pathology. 
 
Beyond these well-characterized associations, one of the most 
significantly enriched pathways in the NetWAS 2.0 results was a 
microtubule-related process, regulation of microtubule cytoskeleton 
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organization (FDR < 1.38e-27) (Supplementary Table 7). This is 
consistent with our connectivity analysis, where we discovered that 
microtubule-regulating pathways were particularly cohesive in 
vulnerable neurons. Together, these results support a hypothesis that 
microtubule-regulating pathway genes may cooperate with MAPT for 
the formation of NFTs in vulnerable neurons. Our data also strongly 
support a role for mRNA splicing and transport in AD pathogenesis 
(RNA splicing, FDR = 4.48e-10; RNA transport, FDR = 3.32e-16). 
RNA binding proteins in these processes have recently emerged as 
major players in various non-AD neurodegenerative diseases49, and 
recent studies suggested possible involvement in AD (TIA1 protects 
against tau-mediated degeneration50, CELF1 is one of the main GWAS 
hits51, and the activity of ELAVL proteins is altered in AD brains52).  
 
 

Association of NetWAS 2.0 genes with AD pathology  
  
We next investigated the link between key drivers of the AD 
pathological cascade (Aβ accumulation and age) and AD-vulnerability-
associated genes identified by NetWAS 2.0 analysis. To enable the 
direct analysis of the ECII-specific effects of Aβ accumulation in AD, 
we crossed our ECII-bacTRAP mice with an AD mouse model 
(APP/PS1 mice). These mice overexpress mutant APP and PSEN1 and 
have increased levels of Aβ in the cortex and hippocampus53. We 
profiled ECII neurons at 6 months of age, when the first plaques are 
starting to form (Supplementary Table 8). Genes significantly 
downregulated in these APP/PS1 mice were strongly enriched in our top 
NetWAS 2.0 gene predictions (Wilcoxon rank sum test, p-value < 
9.21e-14). Additionally, genes associated with aging in ECII of wild-
type mice (24 month- versus 5-month-old mice) (Supplementary Table 
8) were strongly enriched at the top of our ranking (Wilcoxon rank sum 
test, p-value < 4.19e-13). Our finding that Aβ and aging modulate the 
expression of genes NetWAS 2.0 predicts to be associated with AD 
indicates that these genes might connect Aβ accumulation and NFT 
formation in the age-dependent pathological cascade within vulnerable 
neurons. 
 
To examine the possible relationship between top NetWAS 2.0 genes 
and human AD pathology directly, we then used data from two 
independent human datasets. The Adult Changes in Thought study 
(ACT)54 provides paired gene expression data and pathology 
measurements from hippocampus samples of elderly individuals at risk 
for dementia. For each gene, we calculated the correlation between 
expression level and amount of amyloid plaques. We found that 
expression of our top gene predictions was significantly more correlated 
with amyloid plaque amount than either background or genes 
implicated in the original Braak stage-GWAS (bootstrap p-value < 
0.0001, Fig. 4c). Furthermore, our predictions were very significantly 
enriched in genes differentially downregulated in tangle-bearing ECII 
neurons of sporadic AD patients measured in a different study (relative 
to non-tangle-bearing neurons, Wilcoxon rank sum test, p-value < 2.2e-
16)55. Together, this consensus of results indicates that the top NetWAS 
2.0 gene predictions may highlight novel genes that participate in the 
AD pathological cascade within neurons. 
 

Identification of AD-associated functional modules 
 
To better understand the processes and pathways through which these 
genes are associated with NFT formation and AD, we used a shared-

nearest-neighbor-based community-finding algorithm56 to cluster the 
genes with top NetWAS 2.0 ranks into functional modules within the 
ECII network (Fig. 4d, Supplementary Table 9). We identified four 
modules, each enriched in distinct AD-associated processes, including 
RNA splicing (module A), metabolism (module B), neurotransmitter 
release (module C), and neuron differentiation (module D). Interestingly, 
several pathways were shared across multiple modules, including 
microtubule organization (A, C, D) and axonogenesis (B, C, D), 
supporting a central role for these processes in AD pathogenesis 
(Supplementary Table 9). 
 
We then further characterized these functional modules by examining 
their relationship to aging as well as Aβ accumulation and NFT 
formation in vulnerable neurons (Supplementary Table 10). We found 
that the neurotransmitt er-secretion-related module C genes showed 
decreased expression in the context of Aβ accumulation in the mouse 
(our APP/PS1 mouse profiling) and have significantly lower expression 
in aged wild-type mice. Thus, module C is a good candidate for linking 
Aβ accumulation with aging in the AD pathological cascade. 
Furthermore, module C was the only module with ECII-specific signal 
for tau pathology (i.e., significantly enriched in genes downregulated in 
NFT-bearing ECII neurons of AD patients, but not strongly correlated 
with tau in non-ECII regions of the human hippocampal formation 
(ACT study)). Additionally, only module C demonstrated significantly 
tighter cohesiveness in ECII versus resistant neurons (Student's t-test, 
intersection-union test, p-value < 0.0135). Thus, while modules A, B, 
and D may represent pathways common to general AD progression in 
any neuron type, module C may confer the surplus of susceptibility 
specific to ECII neurons. As this vulnerability-specific module 
represents processes related to both axon structural remodeling and 
presynaptic excitability, it is tempting to speculate that specific AD 
vulnerability of ECII neurons may be linked to their lifelong 
maintenance of a state of high axonal plasticity (Fig. 4e). 
 
 

Functional association of α-synuclein, tau, and PTB in ECII 
neurons 
 
To identify genes in this vulnerability-specific module that underlie 
ECII susceptibility in relation to early stage AD, we examined the 
connectivity and centrality of the module members across all seven 
neuron-specific networks. Intuitively, two genes are tightly connected in 
a specific neuronal context if they have a high confidence link in the 
functional network for that neuronal type; this suggests involvement of 
these genes in shared processes. A highly central gene is one that has 
many high confidence links across the network, indicating involvement 
of this gene in a wide array of processes. Within module C, MAPT (tau) 
was the most centrally connected out of all 668 module C genes, and 
our analysis pointed to SNCA (α-synuclein) as potentially driving the 
ECII specificity of this vulnerability-specific module. This is based on 
the finding that not only are MAPT and SNCA tightly connected to 
each other in the ECII network, but α-synuclein also has the highest 
differential network centrality between ECII and the resistant neurons. 
This suggests that α-synuclein is associated with many more processes 
in ECII neurons compared to other types of neurons, that tau cooperates 
with α-synuclein in many of these processes, and that α-synuclein may 
contribute to NFT formation upon dysregulation of these processes. The 
novel association between MAPT and SNCA in the context of AD 
neuronal vulnerability is supported by previous work demonstrating 
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physical as well as functional interaction between these two proteins in 
other neurodegenerative disorders (reviewed in 57). For example, tau 
and α-synuclein have been previously described to influence each 
other’s aggregation into pathological lesions in Parkinson’s disease as 
well as in mice overexpressing these genes58-61. However, a role for 

endogenous α-synuclein in the formation of NFT has not been 
previously described, although a large proportion of AD patients present 
α-synuclein pathology62.  
PTB, a regulator of alternative splicing63, was the most highly 

Figure 4: Prediction, validation, and functional analysis of genes associated with AD pathology 
a, b. Top NetWAS 2.0 gene predictions show significantly higher enrichment of NFT- (a) and Aβ-associated genes (b) (curated by an independent 
expert, Supplementary Table 6) than the original GWAS used as input to NetWAS 2.0.  
c. Human hippocampal expression levels of top AD-associated gene predictions are highly correlated with amyloid plaque amounts as measured by 
immunohistochemistry in those subjects53. The x-axis represents the proportion of top NetWAS 2.0 genes obtained. The average absolute values of 
correlations between gene expression level and amyloid plaques across the subset of genes are plotted (NetWAS 2.0 predictions in red with 95% 
confidence interval; Braak GWAS in black; background genes in grey).  
d. Clustering of the top 10% NetWAS genes using a shared-nearest-neighbor-based community-finding algorithm identifies functional modules 
corresponding to distinct AD-associated processes. We indicate pathways enriched in each module, as well as the association of each module with 
aging and AD pathology in both our data (independent from our functional network analysis) and external datasets. Each dot represents a gene (where 
size inversely correlates with the NetWAS 2.0 ranking, i.e. larger dots represent top ranked genes). Network layout by gephi96 of ECII-specific-network 
posterior probabilities above prior are shown (comembership score ≥ 0.75 based on 1000 subsamples for visual clarity). 
e. Representation of pathways enriched in each module (d) in ECII neurons. Microtubules (MT) are represented in blue. Enrichment for genes 
modulated by Aβ and aging is indicated for each module. Module A is enriched in neuronal cell body processes, while module C includes many axonal 
processes. Modules A, B, and D may be generally associated with tau pathology in many types of projection neurons, while module C may capture the 
surplus of vulnerability from ECII neurons. The module includes both structural and functional axonal remodeling pathways, suggesting that axonal 
plasticity is key to the degeneration process in AD. Concomitant actions of Aβ and aging on module C genes might perturb crosstalk between axon 
remodeling processes and eventually impinge on SNCA and MAPT function. Inset: magnified view of an axon terminal. α-synuclein, a regulator of 
neurotransmitter release, binds to synaptic vesicles (grey circles), to the membrane of the presynaptic active zone, and to MTs. Both forms of tau (3R in 
red, and 4R in green) are present along MT in the axons, with 4R (as well as non-phosphorylated tau) having higher affinity to MT than 3R (as well as 
hyperphosphorylated tau). Tau-bound MTs are less stable and more prone to severing, a requirement for axon sprouting and axonal plasticity. We show 
that PTBP1 regulates both tau isoform usage and α-synuclein levels. 
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connected protein to both α-synuclein and tau in the ECII network. 
Interestingly, PTB was detected in a screen for tau splice factors as one 
of the regulators of tau exon 1064. Regulation of exon 10 is of high 
relevance for tau pathology, as its inclusion gives rise to four- rather 
than three-microtubule binding repeat tau (4R- and 3R-tau 
respectively). An imbalance between 4R- and 3R-tau has been 
repeatedly shown to give rise to tau pathology in different tauopathies 
as well as in AD (reviewed in 65). Furthermore, NFTs in ECII neurons 
have been shown to be devoid of 4R-tau, in contrast to other 
hippocampal neurons that have both tau isoforms66,67. Regulation of tau 
splicing by PTB in ECII neurons could initiate tau pathology 
specifically in these neurons, potentially contributing to their 
vulnerability. 
 

Discussion 

Little is known about the molecular basis of selective neuronal 
vulnerability in AD and the molecular pathways that lead to NFT 
formation and neurodegeneration. Furthermore, no animal model 
comprehensively recapitulates every aspect of human AD pathogenesis. 
Here, we provide an integrative and unbiased framework for the study 
of this disease that combines advantages of both mouse models and of 
human data. Our approach 1) models AD vulnerable and resistant 
human neurons in silico with high-quality cell type-specific molecular 
profiles generated in the non-diseased mouse and a compendium of 
publicly available human data, 2) leverages human quantitative genetics 
to identify AD-relevant genes and pathways within these in silico 
models, and 3) experimentally tests in the mouse the effect of age and 
Aβ, a major AD endophenotype, on the predicted AD genes, elucidating 
the pathological cascade of AD. Our approach is general and applicable 
to any complex disease with selective cell vulnerability where relevant 
human GWAS data are available. For neurodegenerative diseases with a 
complex multicellular pathogenesis, the approach also allows for the 
identification of cell type-specific pathological pathways.  
 
Using this approach, we identify molecular mechanisms underlying 
neuronal vulnerability in AD. In addition to significantly predicting 
many of the gene candidates previously associated with AD, we also 
outline novel pathways linking Aβ and tau pathology. Specifically, our 
unbiased, data-driven analyses place microtubule dynamics at the center 
of AD pathogenesis. We find that this process is both closely associated 
with NFT formation and one of the most salient characteristics of the 
most vulnerable neuronal subtype. As key regulators of neuronal 
architecture and intraneuronal trafficking, microtubules are the endpoint 
of many neuronal functional processes. Thus, it is important to 
determine which specific pathways lead to dysregulation of microtubule 
dynamics in the context of AD. While a conclusive answer to this 
question requires further study, our analyses of ECII-vulnerability 
highlight two potential candidate processes: axonogenesis (which 
includes tau) and synaptic vesicle release (which includes α-synuclein). 
Both have been previously linked to microtubule remodeling68,69 and 
are connected to microtubule genes within the vulnerability-specific 
module. Such interactions could be more prominent in ECII neurons 
(known to display considerable axon arborization70) than in other cell 
types – which could confer exceptional axonal plasticity to ECII 
neurons, but could also be responsible for ECII vulnerability. 
 

Materials and Methods 

Animal models: 
All experiments were approved by the Rockefeller University 
Institutional Animal Care and Use Committee (RU-IACUC protocols 
#07057, 10053, 13645-H), and were performed in accordance with the 
guidelines described in the US National Institutes of Health Guide for 
the Care and Use of Laboratory Animals. Mice were housed in rooms 
on a 12 h dark/light cycle at 22 °C and maintained with rodent diet 
(Picolab) and water available ad libitum. Mice were housed in groups of 
up to five animals. All bacTRAP mice and APP/PS1 mice (B6.Cg-
Tg(APPswe,PSEN1dE9)85Dbo/Mmjax purchased from the Jackson 
lab) were maintained in a heterozygous state by crossing them with 
non-transgenic C57Bl/6J mice (also purchased from the Jackson Lab). 
For cell type-specific profiling in wild-type mice, only male mice were 
used, and the tissue from two males were pooled. Each type of neuron 
was profiled at 4-5 months, 12 months, and 24 months. For comparing 
ECII neurons in wild-type and APP/PS1 mice, both male and female 
mice were used, and each sample corresponded to the tissue of one 
mouse. 
 

bacTRAP transgene construction: 
In order to construct cell type-specific bacTRAP mice, we searched for 
drivers specific to each type of neuron. For that purpose, we mined the 
ABA and GENSAT for genes expressed selectively in the different cell 
types of interest. We selected the following genes: Rasgrp2 and 
Sh3bgrl2 (ECII principal neurons), Sstr4 (CA1 pyramidal neurons), 
Cacng5 (CA2 pyramidal neurons), Gprin3 (CA3 pyramidal neurons), 
Calca (V1 pyramidal neurons), Cartpt (S1 pyramidal neurons) for 
enriched expression in the cell type of interest compared to neighboring 
cell types. Regulatory regions of these genes should drive expression in 
the corresponding neuron types. We thus used these genes to construct 
corresponding bacTRAP mice according to previously described 
procedures71. Specifically, we obtained the bacterial artificial 
chromosomes (BACs) where the open reading frame (ORF) for each of 
these genes is most centrally located, ensuring that both upstream and 
downstream regulatory sequences are driving the expression of the 
bacTRAP construct: RP23-307B16 (Sh3bgrl2), RP23-199D5 and RP24-
344N1 (Rasgrp2), RP23-126C5 (SSTR4), RP23-329L1 (Cacng5), 
RP23-181A2 (Calca), RP24-68J22 (Cartpt) (Children’s Hospital and 
Research Center at Oakland). We modified each BAC to place the 
eGFP-L10a cDNA under the control of each gene’s regulatory 
sequences71. For each gene, we cloned by PCR a small homology arm 
corresponding to approximately 500bp of sequence upstream of the 
ORF, stopping 5 bp before the ORF (sequences of the small homology 
arms in supplementary table 11), in the S296 shuttle vector (a 
pLD53.SC2 plasmid containing the cDNA for eGFP-L10a). For each 
BAC, we transformed the BAC and the S296 vector containing the 
corresponding small homology arm into recA-expressing bacteria. We 
monitored the proper integration of eGFP-L10a at the beginning of each 
ORF using southern blot. We prepared a purified BAC stock using 
Cesium Chloride gradient, and linearized the BAC with PI-SceI. The 
Rockefeller University Transgenic Services performed pronuclear 
injection of the linearized BACs on a C57Bl/6J (Jackson Lab) 
background. F1 and F2 of the different founder lines were then tested 
for proper expression pattern. One of the founder lines with the Sstr4 
BAC (Sstr4#19 line) presented ectopic expression in granule cells from 
the dentate gyrus and no expression in CA1 neurons. We thus used 
Sstr4#19 for granule cell profiling. We used another founder line 
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(Sstr4#7) for CA1 neurons. We also separately obtained Cck- and 
Gprin3-bacTRAP mice, which were previously described26,72. 

 
Cell type-specific molecular profiling: 
To isolate cell type-specific mRNA, bacTRAP mice from the different 
transgenic lines were decapitated after slight CO2 intoxication, and 
brains were promptly taken out. For each transgenic line, we dissected 
the minimal area where transgene expression is restricted to the cell 
type of interest (for ECII bacTRAP lines, we made a coronal cut around  
-3.3 mm antero-posterior (AP); for Sh3bgrl2-bacTRAP, we then 
scooped the hippocampus off the tissue caudal to the cut, discarded it, 
and kept the tissue located ventral to the rhinal fissure; for Rasgrp2-
bacTRAP, we took all the tissue caudal to the -3.3 mm AP cut, and 
ventral to a horizontal cut around -3mm dorso-ventral (DV); for 
SSTR4#7- and SSTR4#19-bacTRAP lines, we used all the 
hippocampus; for the CCK-, CACNG5- and Gprin3-bacTRAP lines, we 
used all the hippocampus rostral from a coronal cut around -3.3mm AP; 
for CALCA-bacTRAP, we made a sagittal cut around +3.6 mm medio-
lateral (ML) on each side, a coronal cut around -3 mm AP and we 
extracted the cortex respectively dorsal and caudal to these cuts, while 
cutting out the mEC; for CARTPT-bacTRAP we made coronal cuts 
around 1.75 mm AP, -0.25 mm AP, and -2.25 mm AP and for each 
slice, we dissected out the part of the cortex that contains the 
somatosensory cortex).  
 
We then performed bacTRAP purification following the previously 
described procedure28 except for two differences. First the volume of 
lysis buffer used for tissue homogenization depends on the size of each 
particular brain region. The buffer volumes for each bacTRAP line are 
shown in Supplementary Table 11. Second, we used RNeasy Plus Micro 
Kit (Qiagen) to purify RNA after bacTRAP, and RNA was thus 
detached from beads using the RLT Plus buffer supplemented with 1% 
β-mercaptoethanol (MP biomedicals). RNA integrity was evaluated 
with a bio-analyzer RNA 6000 pico chip (Agilent) and RNA quantified 
by fluorescence detection with Quant-It Ribogreen RNA reagent 
(ThermoFisher). All samples included in the study had RNA Integrity 
Numbers above 7. Five ng of RNA were then used for reverse-
transcription with Ovation RNAseq v2 kit (NuGEN). cDNAs were 
cleaned up using a QIAquick PCR purification kit (Qiagen). Double-
stranded cDNAs were quantified by fluorescence detection using 
Quant-IT Picogreen dsDNA reagent (ThermoFisher). cDNAs (200 ng) 
were sonicated in 120ul volume using a Covaris S2 ultrasonicator (duty 
cycle, 10%; intensity, 5; cycles/burst, 100; time, 5 minutes) to generate 
200bp fragments on average. The fragmented cDNAs were then used to 
construct sequencing libraries using TruSeq RNA sample prep kit v2 
(Illumina). Library concentration was evaluated using bioanalyzer, and 
libraries were multiplexed. Multiplexes were then sequenced at the 
Rockefeller University genomics resource center with a HiSeq 2500 
sequencer (Illumina).  
 

Histology: 
To study the expression pattern of the bacTRAP transgene, bacTRAP 
mice were transcardially perfused with 4% paraformaldehyde, brains 
were dissected out, immersion fixed for one hour in 4% 
paraformaldehyde, frozen in OCT compound (TissueTek), and 40 µm-
thick section were cut on a CM3050 S cryostat (Leica). Sections were 
permeabilized in PBS with 0.1% Fish Gelatin (Sigma), 2% normal goat 
serum (Jackson ImmunoResearch), and 0.1% triton X-100 and then 
stained overnight at 4°C in PBS with 0.1% Fish Gelatin and 2% normal 

goat serum with a chicken anti-GFP antibody (1/300). The primary 
antibody was detected with an Alex 488-donkey anti-chicken secondary 
antibody (1/300). After the last wash, sections were mounted with 
Prolong Gold Medium containing DAPI. Sections were imaged using a 
Zeiss LSM 510 META laser scanning confocal microscope. Images 
were minimally processed using Photoshop (Adobe Systems) to 
enhance brightness and contrast for optimal representation of the data. 
 

RNA-seq analysis: 
RNA-sequencing reads were mapped to the mouse genome (Ensembl 
75) using STAR (version 2.3.0e, default parameters)73, and gene-level 
counts were quantified using htseq-count (version 0.9.1)74. Genes were 
subjected to an expression detection threshold of 1 count per million 
reads per gene in more than 3 samples and oligodendrocyte, endothelial, 
and ependymal cell gene clusters were excluded to focus on the 
neuronal signal. Differential expression and multidimensional scaling 
analysis were performed using edgeR (version 3.8.6)75.  
 

Spatial homology analysis: 
Human brain microarray data were downloaded from the ABA 
(http://human.brain-map.org/static/download)76. Brain regions that 
were measured in fewer than 3 out of the 6 subjects profiled were 
excluded from downstream analysis to ensure robustness.  
 
We calculated an ontology-aware spatial homology score between each 
of our 7 mouse neuron types and each of the 205 human brain regions 
robustly measured by the ABA, as follows: 

 
 
 , for mouse 
neuron type i 

and human brain region j (thus Tm = 7 and Th = 205), human gene g.  
 
 
 
 

where  ,  are respectively the mean and standard deviation of 
expression for the mouse functional ortholog77 of gene g in mouse 
neuron type i (in log2(rpkm)). Ni is the number of samples for neuron 

type Ti , while ,  are the mean and standard deviation of 
expression values for the mouse functional ortholog for unrelated 

neuron types (e.g., for neuron type hippocampus CA2,  would be 
the mean expression of all non-hippocampus neuron types). The 
quantile used was q = 0.9. Normalized microarray expression values as 
processed by the Allen Institute of Brain Science were used to calculate 
the corresponding scores ( , , etc.) for gene g in human. 

Intuitively,  is a normalized enrichment score for the mouse 
functional ortholog of gene g in tissue Ti of the mouse. Si is the set of 
genes that are both highly expressed (high ) and highly specific 

(high ) to tissue Ti, thus providing a strong molecular signature for 
that tissue. This signature is combined with the enrichment scores from 

human ( ) to produce a final spatial homology score. 
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Construction of functional networks 
We then used these cell type-specific molecular signatures to construct 
a cell type-specific gold standard (see Gold standard section below), 
which we then used to integrate a human genome-scale data 
compendium (see Human data compendium section below) to construct 
cell type-specific functional networks based on our tissue-specific 
regularized Bayesian integration method36 (see Data integration section 
below). 
 

Gold standard 
The cell type-specific gold standard was constructed by combining a 
functional interaction standard and cell type specific signatures. The 
functional interaction gold standard was constructed based on either the 
presence or absence of gene co-annotations to expert-selected biological 
process terms from the Gene Ontology (GO) based on whether the term 
could be experimentally verifiable through targeted molecular 
experiments. For each of these 337 selected GO terms, we obtained all 
experimentally derived gene annotations (i.e., annotations with GO 
evidence codes: EXP, IDA, IPI, IMP, IGI, IEP). After gene propagation 
in the GO hierarchy, gene pairs co-annotated to any of the selected 
terms were considered positive examples, whereas gene pairs lacking 
co-annotation to any term were considered negative examples, except in 
cases where the two genes were (i) separately annotated to highly 
overlapping GO terms (hypergeometric p-value < 0.05) or (ii) co-
annotated to higher-level GO terms that may still indicate the possible 
presence of a functional relationship. 
 
We then combined our expanded cell type-specific molecular gene 
signature sets (q = 0.75) with this functional interaction standard by 
defining the four classes of edges (C1, C2, C3, and C4) as described in 
Greene et al36, with the adjustment of allowing genes annotated to 
nervous system tissues to be considered for the C2 negative example 
class (to emphasize cell type-specificity in relation to other general 
nervous system genes, rather than excluding them based on the 
hierarchical tissue ontology as in Greene et al.). 
 

Human data compendium 
We downloaded and processed 31,157 human interaction measurements 
and brain expression-based profiles from over 24,000 publications, as 
well as experimentally defined transcription factor binding motifs, 
chemical and genetic perturbation data, and microRNA target profiles.  
 
Physical interaction data were downloaded from BioGRID (version 
3.2.118)78, IntAct (Nov 2014)79, MINT (2013-03-26)80, and MIPS (Nov 
2014)81. Interaction edges from BioGRID were discretized into five bins 
(0-4), depending on the number of experiments supporting the 
interaction. For all other interaction databases, edges were discretized 
based on the presence or absence of an interaction. 
 
A total of 6,907 expression profiles from 268 human brain expression 
datasets were downloaded from the Gene Expression Omnibus 
(GEO)82. Duplicate samples were collapsed, and genes with values 
missing in over 30% of the samples were removed. All other missing 
values were imputed83. Normalized Fisher's z-transformed expression 
scores were calculated per pair of genes and discretized into the 
corresponding bin: (−∞, −1.5), [−1.5, −0.5), [–0.5, 0.5), [0.5, 1.5), [1.5, 
2.5), [2.5, 3.5), [3.5, 4.5), [4.5, ∞). 
 

Experimentally defined transcription factor binding motifs were 
downloaded from JASPAR84, and the 1 kb upstream region of each 
gene was scanned for presence of binding motifs using FIMO85 from 
the MEME software suite86. For each pair of genes, the Fisher z-
transformed Pearson correlation of binding profiles was calculated and 
discretized into one of the corresponding bins: (-∞, -1.5), [-1.5, -0.5), [-
0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, 4.5), [4.5, ∞). 
 
Chemical and genetic perturbation and microRNA target profiles were 
downloaded from the Molecular Signatures Database (MSigDB, 
c2:CGP and c3:MIR gene sets, respectively)87. For each pair of genes, 
similarity based on the weighted mean of number of shared profiles 
(weighted by the specificity of the profile (1/len(genes)) was calculated 
and discretized into the corresponding bin: (−∞, −1.5), [−1.5, −0.5), [–
0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, 4.5), [4.5, ∞). 
 
 

Data integration 
We applied our tissue-specific regularized Bayesian integration 
method36 for each of the 7 neuron types to train a naïve Bayesian 
classifier by comparing against the positive and negative examples from 
the cell type-specific gold standard. For each cell type, we constructed a 
binary class node representing the indicator function for whether a pair 
of genes have a cell type-specific functional relationship, conditioned 
on additional nodes representing each of the datasets in the data 
compendium. Each model was then applied to all pairs of genes in the 
data compendium to estimate the probability of tissue-specific 
functional interactions. All code for data integration is available in our 
open-source Sleipnir library for functional genomics88. 
 

Network connectivity analysis 
We calculated a z-score for cohesiveness of various biological process 
GO terms in each of the neuron-specific networks:  

 
, where XGO is the mean 
posterior probability of all gene 
pairs within a particular GO 

term, and Xnull, SEnull are respectively the mean and standard error of the 
null distribution (based on gene sets randomly sampled within all genes 
with a GO annotation, with equivalent size to the GO term in question).  
 

NetWAS 2.0 on AD GWAS 
Here, using an AD GWAS for Braak stage (NFT pathology-based 
staging)43 as gold standard and the ECII-specific functional network 
neighborhoods as features, we applied NetWAS 2.0 with n=10,000 to 
rank each of the 23,950 genes for potential association to AD.  
 
We trained support vector machine classifiers89 using (i) nominally 
significant (p-value < 0.01) GWAS genes as positive examples, (ii) 
randomly sampled non-significant genes with probability proportional 
to their GWAS p-value as negatives, and (iii) the network 
neighborhoods of genes as features. Thus, genes with lower p-values 
(i.e., more significant) would have a lower chance of being chosen as a 
negative example than genes with higher p-values. Gene-level p-values 
were obtained using the versatile gene-based association study 2 
(VEGAS2, version:16:09:002) software90. 
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To ensure robustness, we independently sampled n such sets of 
negatives and trained n support vector machines. After applying each of 
the support vector machines to re-rank genes, we aggregated the n 
rankings into a final NetWAS 2.0 gene ranking. Intuitively, the key 
advance of the NetWAS 2.0 method is that it leverages the GWAS p-
values as opposed to treating all non-significant genes as having equal 
probability of being negative examples as in the original NetWAS 
method36.  
 
 

Establishment of the expert-curated gene set: 
To establish amyloid and NFT gene sets, we recruited a laboratory 
member, specialized in AD, completely independent from our study, 
who was unaware of any of the NetWAS 2.0 results. We asked the 
curator to search for genes involved in tau phosphorylation, 
aggregation, cleavage, folding, localization, clearance (for the NFT set), 
and in Aβ production, clearance, aggregation (for the amyloid set). The 
searches were done with PubMed, and included publications released 
between January 2000 and April 2017. 
 

Analysis of NetWAS 2.0 predictions 
Comparison against the Adult Changes in Thought study 
We downloaded paired RNA-seq trascriptomes and neuropathological 
quantifications from the Adult Changes in Thought (ACT) study 
(http://aging.brain-map.org/download/index)54. We then calculated, 
for every gene, the Fisher's z-transformed absolute Spearman's 
correlation between its expression in the hippocampus, and IHC 
amyloid plaque load (ffpe) across all samples. 
 
To aggregate the scores without selecting an arbitrary cutoff, we 
calculated an amyloid plaque association score for each percentile 
cutoff averaging the transformed correlation scores for the top x% of 
NetWAS 2.0 genes (with x=1%, 5%, 10%, 15%, ...,100%). We 
compared these scores against the counterparts calculated based on 
ranking by the p-values in the Braak GWAS study. For the background 
distribution, we sampled an equivalent number of genes 1000 times per 
percentile cutoff.  
 
To calculate bootstrapped 95% confidence intervals for the NetWAS 
2.0 amyloid plaque association scores, we subsampled genes with 
replacement within each percentile cutoff.  
 

Analysis of Dunckley et al. ECII expression dataset 
We downloaded microarray expression profiles measuring tangle-
bearing and control LCM ECII neurons 55. Data normalization and 
differential expression analysis were performed using limma (version 
3.22.7)91. Genes with Benjamini-Hochberg multiple hypothesis 
test-corrected FDR ≤ 0.05 were considered significantly differentially 
expressed.  
 

Identification of functional modules: 
To identify functional modules represented in our top NetWAS 2.0 
genes, we created an ECII subnetwork using the top 10% (i.e., top 2,395) 
of NetWAS 2.0 ranked genes. Then, we used an approach based on 
shared k-nearest-neighbors (SKNN) and the Louvain community-
finding algorithm56 to cluster the network into distinct modules. This 

approach alleviates the effect of high-degree genes and accentuates 
local network structure by connecting genes that are likely to be 
functionally clustered together in the ECII network. We calculated the 
ECII SKNN network by using the number of shared top k-nearest 
neighbors between genes as edge weights and taking the subnetwork 
defined by the top 5% of edge weights as the subnetwork for 
downstream analysis. The clustering presented here was calculated with 
k=50, but we confirmed that the clustering was robust for k between 10 
and 100. Enrichment of Gene Ontology biological process terms and of 
other experiment-derived gene sets of interest in each module were 
calculated using one-sided Fisher's exact tests, with Benjamini-
Hochberg multiple hypothesis test correction to calculate FDR. 
 

Gene connectivity analysis 
For each gene g in each cell type-specific functional network, we 
calculated a z-score for gene connectivity, a measure of how central a 
gene is in the network: 

, where is the average posterior 
probability of edges incident on gene g. 
µ, σ, and n are respectively the mean, 

standard deviation, and number of all edges in the network. 
This is an equation line. Type the equation in the equation editor field, 
then put the number of the equation in the brackets at right. The 
equation line is a one-row table, it allows you to both center the 
equation and have a right-justified reference, as found in most journals. 
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