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Online methods 
Human samples & tissue dissections 

Post-mortem lateral amygdala brain tissue was obtained in collaboration with the Quebec 

Coroner’s Office, from the Douglas-Bell Canada Brain bank (douglasbrainbank.ca/, Montreal, 

Canada). This study included (i) subjects who died suddenly without prolonged agonal state 

or protracted medical illness, and with no history of psychiatric disorder (Controls, C, N=17), 

and (ii) subjects with a history of severe child abuse, who died by suicide in the context of a 

major depressive episode (Early-life adversity, ELA, N=21). Sample characteristics are 

presented in Supplementary Table1. Groups were matched for age, post-mortem interval 

(PMI) and brain pH. Psychological autopsies were performed by trained clinicians on both 

controls and cases, with the informants best-acquainted with the deceased, as described 

previously1 and as validated by our group and others2-7. Diagnoses were assigned based on 

DSM IV criteria. Characterization of early-life histories was based on adapted Childhood 

Experience of Care and Abuse (CECA) interviews assessing experiences of sexual and 

physical abuse, as well as neglect8, 9, and for which scores from siblings are highly concordant2, 

9. We considered as severe early-life adversity reports of non-random major physical and/or 

sexual abuse during childhood (up to 15 years). Only cases with the maximum severity ratings 

of 1 and 2 were included. This information was then complemented with medical charts and 

coroner records. Ethical approval was obtained from the Institutional Review Board of the 

Douglas Mental Health University Institute. Written informed consent was obtained from the 

families of each of the deceased subjects prior to inclusion in the study.  

 

Next-Generation Sequencing 
ChIP-seq, WGBS, and RNA-Seq experiments were carried out by expert technicians at the 

McGill University and Genome Quebec Innovation Center, following standard operating 

procedures from the International Human Epigenome Consortium (IHEC, see ihec-

epigenomes.org/).  

 

Data availability 
Sequencing data and source files will be made publicly available during regular data releases 

on the IHEC consortium data portal, and on NCBI’s GEO website. Any additional data 

supporting the findings of this study are available from the corresponding author upon 

reasonable request. 

 

Code availability 
All analytical tools used in this study (see details in sections below) have already been 

published and are freely available. These notably include: the BSmooth10 and DESeq211 R 
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packages for differential DNA methylation and gene expression analysis, respectively; the 

python scripts region_analysis12 and deepTools13; BWA14; and diffReps for differential 

enrichment of ChIP-Seq reads12. 

 

ChIP-seq library preparation 

Because of the small size of the amygdala lateral nucleus, and the large amounts of tissue 

required for multiple immune-precipitations and the ChIP-seq analysis of 6 histone marks, 

tissue from 17 C and 21 ELA subjects were distributed into 7 ELA and 4 C pools, for an average 

of 472 mg of tissue available for ChIP-Seq experiments per pool (see Supplementary Table2). 

Libraries were prepared using the automated protocol for the Kapa HTP Library Preparation 

Kit (Illumina), and sequencing was performed using the Illumina HiSeq2000, as per the 

manufacturer’s instructions, to achieve at least 30 and 60 million reads for narrow (H3K27ac, 

H3K4me3) and broad (H3K27me3, H3K36me3, H3K4me1, H3K9me3) marks, respectively 

(FigS1a). 

 
ChIP-seq data processing 

Trimmomatic15, BWA14, Picard and deepTools13 were used to pre-process and align the 

sequencing reads. Global visualization for the ChIP-seq data was accomplished using IGV16 

and ngs.plot17. Inter-sample correlations and hierarchical clustering were achieved using 

deepTools. Identification of differential enrichment sites for each histone mark was done using 

diffReps with window size 1000bp and sliding step 100bp12. A FDR <10% and p <0.0001 for 

negative binomial test were used as significance cutoffs. ChromHMM was used to partition the 

genome into 200bp bins, and annotate them to chromatin states18. A 10-state model was 

chosen and applied to all data sets. For each clinical group, a consensus epigenomic map was 

defined using the genomic regions showing at least a 70% agreement between the samples 

for a state (at least 3/4 C pools and 5/7 ELA pools). State transitions (ST) were then defined 

as regions with differing states between the consensus C map and ELA map. For 

characterization of the distribution of DS and ST, we used the region_analysis package to 

annotate them to genomic features12. 

 

WGBS library preparation 
Whole-genome sequencing libraries were generated from 700 to 1,000 ng of genomic DNA 

spiked with 0.1% (w/w) unmethylated λ DNA (Promega) previously fragmented to 300–400 

base-pairs (bp) peak sizes using the Covaris focused-ultrasonicator E210. Fragment size was 

controlled on a Bioanalyzer DNA 1000 Chip (Agilent) and the KAPA High Throughput Library 

Preparation Kit (KAPA Biosystems) was applied. End repair of the generated dsDNA with 3′- 

or 5′-overhangs, adenylation of 3′-ends, adaptor ligation and clean-up steps were carried out 
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as per KAPA Biosystems' recommendations. The cleaned-up ligation product was then 

analysed on a Bioanalyzer High Sensitivity DNA Chip (Agilent) and quantified by PicoGreen 

(Life Technologies). Samples were then bisulfite converted using the Epitect Fast DNA Bisulfite 

Kit (Qiagen), according to the manufacturer's protocol. Bisulfite-converted DNA was quantified 

using OliGreen (Life Technologies) and, based on quantity, amplified by 9–12 cycles of PCR 

using the Kapa Hifi Uracil+DNA polymerase (KAPA Biosystems), according to the 

manufacturer's protocol. The amplified libraries were purified using Ampure Beads and 

validated on Bioanalyzer High Sensitivity DNA Chips, and quantified by PicoGreen. Libraries 

were run on an Illumina HiSeq 2000 (100bp paired-end), yielding ≈164 million reads/library on 

average (Fig.S3c).  

 
WGBS data processing 
As previously described19, in-house generated methylome libraries were aligned using BWA 

0.6.114 after converting all the reads in bisulfite mode to the human hg19/GRCh37 genome 

reference. Both reads in a pair were trimmed of any low-quality sequence at their 3’ ends (with 

Phred scale score >=30). Post-process read mappings were made as previously 

described19, including clipping 3’ ends of overlapping read pairs in both forward and reverse 

strand mappings, filtering duplicate, low-mapping quality reads, read pairs not mapped at the 

expected distance based on the library insert size as well as reads with more than 

2% mismatches. Methylation calls of individual CpGs were extracted using Samtools 

in mpileup mode. CGs overlapping SNPs from dbSNPs (137) and CpGs located within 

ENCODE DAC blacklisted regions or Duke excluded regions20 were discarded.  

Methylation data characterization. All analyses conducted to characterize the genome-wide 

abundance and distribution of CG and CAC methylation were done by focusing on cytosines 

showing a coverage >= 5 (Fig.2 and Fig.S4-6). We used the region_analysis package12 to 

assign each cytosine to a genomic feature (Fig.S5), using the Ensembl v75 annotation for 

consistency with RNA-Sequencing data analysis (see below).  

Differential methylation analysis. Differential methylation analysis was conducted using 

BSmooth, as described previously21. The context of each C was determined, which allowed us 

to classify each C of the genome as CG or CAC. Methylation levels for each site were 

estimated by counting the number of reported C (‘methylated’ reads) divided by the total 

number of reported C and T (‘methylated’ plus ‘unmethylated’ reads) at the same position of 

the reference genome. To identify differentially methylated regions in the CG context, we 

performed a strand-independent analysis of CG methylation where counts from the two Cs in 

a CG and its reverse complement (position i on the plus strand and position i+1 on the minus 

strand) were combined and assigned to the position of the C in the plus strand. The 

summarized methylation estimates of strand-merged CG sites from the 21 ELA and 17 control 
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samples were used to identify differences in methylation, using the R package 

BSmooth/BSseq10 at default parameters. To minimize noise in methylation estimates due to 

low-coverage data, we restricted the differential methylation analysis to CpG sites with 

coverage of ≥4 sequence reads in at least 10 samples in each condition, which still allowed us 

to interrogate changes in methylation levels at ~18 million CG and ~39 CAC million sites. The 

same strategy was applied for differential methylation analysis in the CAC context, except that 

by definition methylation data originated for each CAC site from one DNA strand only. We 

identified differentially methylated regions (DMRs) as regions containing at least 5 consecutive 

CG, or CAC, sites that were significantly differentially methylated using an unpaired Welch t-

test (p < 0.001) and that exhibited at least a 1% difference in mean methylation levels between 

ELA and C groups. Genomic features were attributed to DMRs using the region_analysis 

package, similar to the annotation of ChIP-Seq DS or ST. 

 
RNA-Sequencing library preparation 
RNA was extracted from homogenized brain samples using the RNeasy Lipid Tissue Mini Kit 

(Qiagen). Quantity and quality of extracted RNAs were measured using an Agilent 2100 

Bioanalyzer. RNA-Sequencing libraries were prepared by expert technicians at the McGill 

University and Genome Quebec Innovation Center, using IHEC procedures. Briefly, we used 

the TrueSeq Stranded Total RNA Sample Preparation kit (Illumina), using the Ribo-Zero Gold 

kit (Illumina) for depletion of ribosomal RNA, followed by first and second strand cDNA 

synthesis and fragmentation of dsDNA. Then, fragmented DNA was used for A-tailing, adaptor 

ligation and 12 cycles of PCR amplification. Libraries were quantified using high sensitivity chip 

on a Labchip (PerkinElmer), quantitative PCR (KAPA Library Quantification, Kapa 

Biosystems), and PicoGreen (Life Technologies). Three libraries were run per lane of an 

Illumina HiSeq 2000 (100bp paired-end), yielding ≈54 million reads/library (Fig.S13b).  

 
RNA-Sequencing data processing 
Alignment, counting, and differential expression analysis. As described previously22, 23, 

we used: FASTX-Toolkit (hannonlab.cshl.edu/fastx_toolkit/links.html) and Trimmomatic15 for 

adapter trimming; Bowtie2 for alignment ; TopHat24 for transcript alignment; HTSeq-count or 

Kallisto for counting ; and DESeq211 for differential expression analysis. Alignment. Following 

high-throughput sequencing, 100bp paired-end reads were aligned to the hg19 human 

genome using TopHat v2.1.0 (tophat.cbcb.umd.edu/) with a mate insert distance of 75 bp (-r) 

and library type fr-unstranded. Reads passing a mapping quality of at least 50 were used for 

gene and transcript quantification. Quantification. Gene annotations from the Ensembl release 

75 were used for gene-level quantification quantification. First, we used HTSeq-count version 

0.6.1p1 (www-huber.embl.de/users/anders/HTSeq/doc/overview.html)25, using the 
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intersection-nonempty mode, and results were combined to form a count matrix of 20,893 

transcribed RNAs across 50 samples. As an alternative strategy to HTSeq-count, we also 

processed reads through the pseudo-aligner Kallisto26. Here, expression counts were obtained 

for isoforms using Kallisto (v. 0.43.0). Then, the tximport (v. 1.0.3) R package was used to 

reconstruct gene-level counts using the isoform-level counts generated by Kallisto. Differential 

expression analysis. Genes with no mapped fragments were removed from the analysis. 

Furthermore, genes with low counts were removed by keeping only those with at least 20 

counts per subject in average. For both HTSeq-count or Kallisto gene-level counts (see 

Fig.S14a), differential expression analysis was performed using the DESeq2 general linear 

model (GLM) using the following covariates: gender27, age28, and RIN29, based on previous 

literature documenting their impact on human brain RNA-Seq datasets. 

Gene Set Enrichment Analysis (GSEA). GSEA was performed as previously described23, 30. 

Log2 fold changes were obtained for each gene from the differential gene expression analysis. 

Genes were ranked based on their fold changes where genes with the highest positive fold 

changes were at the top of the list and those with the lowest negative fold changes were at the 

bottom of the list. The ranked gene list was then used as an input for the GSEAPreranked tool, 

with the “classic” enrichment score calculation option selected. The C2 curated gene sets 

molecular signatures database was used to identify enriched gene sets.  

 
Gene ontology 

We used the GREAT tool to identify the enrichment of gene categories in differential sites (DS) 

or state transition sites (ST) obtained from ChIP-Seq experiments31. DS and ST were 

associated with genes using the default proximal (5kb upstream, 1kb downstream of TSS) and 

distal (+/- 1Mb of TSS) definition of regulatory regions. Biological process and molecular 

function gene categories were kept if they passed both the hypergeometric and binomial tests 

with a fold enrichment ≥1.5 and FDR Q≤0.1. Significant GO terms with less than 5 genes 

associated with ST or DS were discarded. To account for the recurrence of terms across 

multiple combinations of ST, we calculated a co-occurrence score for each GO term, consisting 

of the sum of the –log10 of the binomial p-value for each ST enriched in this term, as described 

by Feng et al32.  
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Supplementary Figures legends. 
Supplementary Figure 1. Quality controls for chromatin immunoprecipitation 
sequencing (ChIP-Seq). (a) ChIP-Seq libraries were prepared and sequenced by expert 

technicians at the Genome Québec Innovation Center, in the framework of the International 

Human Epigenomics Consortium (IHEC). We compared psychiatrically healthy controls (C) 

and subjects with a history of early-life adversity (ELA), and analyzed 4 ‘broad’ (H3K9me3, 

H3K27me3, H3K36me3, H3K4me1) and 2 ‘narrow’ (H3K4me3, H3K27ac) marks, for which we 

aimed at sequencing roughly 60 and 30 million reads per library, respectively, as per the IHEC 

consortium’s guidelines. A two-way ANOVA indicated that there was no difference among C 

and ELA groups in terms of sequencing depths [F(1,63)=0.52; p=0.47]. (b) Quality controls 

analyses showed that samples for narrow marks showed greater than 0.8 and 1.05 Relative 

Strand Cross and Normalized Strand Cross correlations, respectively, thereby meeting 

ENCODE consensus thresholds for quality control33. Values are mean±sem. 
 
Supplementary Figure 2. Comparison of amygdalar histone mark profiles with datasets 
from inferior temporal lobe (Inf Temp), anterior caudate (Ant Caud), and peripheral 
blood mononuclear cells (Blood). Data were downloaded from the Roadmap Epigenomics 

Consortium (ncbi.nlm.nih.gov/geo/roadmap/epigenomics/) and compared to each C and ELA 

amygdalar sample from the present study, using deepTools’ Pearson correlations and 

unsupervised clustering34, for each of the 6 histone marks: (a) H3K4me1; (b) H3K27ac; (c) 
H3K4me3; (d) H3K36me3; (e) H3K9me3; (f) H3K27me3. Accession numbers: 1) for inferior 

temporal lobe: datasets GSM772995 (H3K27ac), GSM772993 (H3K27me3), GSM772982 

(H3K36me3), GSM772992 (H3K4me1), GSM772996 (H3K4me3), GSM772994 (H3K9me3); 

2) for anterior caudate: datasets GSM772832 (H3K27ac), GSM772827 (H3K27me3), 

GSM772828 (H3K36me3), GSM772830 (H3K4me1), GSM772829 (H3K4me3), GSM772831 

(H3K9me3); 3) for blood mononuclear cells: datasets GSM1127145 (H3K27ac), GSM1127130 

(H3K27me3), GSM1127131 (H3K36me3), GSM1127143 (H3K4me1), GSM1127126 

(H3K4me3), GSM1127133 (H3K9me3). Of note, H3K4me1, H3K27ac and H3K27me3 better 

discriminated between tissue types than the 3 other marks. 

 
Supplementary Figure 3. Quality controls for whole-genome bisulfite sequencing 
libraries (WGBS). To compare DNA methylation patterns among psychiatrically healthy 

individuals (controls, C) and subjects with a history of severe child abuse (early-life adversity, 

ELA), WGBS libraries were prepared. (a) Bisulfite conversion efficiencies were measured for 

each DNA sample using spiked-in unmethylated lambda DNA, and were similar between 

groups: C: 99.3±0.07%, ELA: 99.2±0.06% (t=0.63, p=0.53). (b) In addition, over-conversion 

(i.e. methylated cytosines converted to uraciles during bisulfite conversion) was determined 
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experimentally using spiked-in fully methylated pUC19 DNA, and similar values were observed 

between groups: C: 5.6±0.10%, ELA: 5.7±0.05% (t=0.19, p=0.85). (c) Each WGBS library was 

then sequenced on 1 lane of a HiSeq 2000 (100 base pair, paired-end sequencing) at the 

Génome Québec Innovation Center, yielding similar sequencing depth across groups: C: 

164±3 million reads, ELA: 163±3 million reads (t=0.15, p=0.88). (d) During the processing of 

raw sequencing data, duplicates were removed from downstream analysis, and results 

indicated similar diversity (t=1.18, p=0.25) among libraries from the C (C:22.5±1.2%) and ELA 

(C:20.8±0.9%) groups. (e) The graphs depicts the number of CG sites that met distinct average 

coverages among the 38 WGBS libraries. For the characterization of genome-wide abundance 

and distribution of CG and CAC methylation levels (Fig.2 and Fig.S4-6), we focused on 

cytosines with a coverage >= 5. Cov., coverage. Values are mean±sem. 

 
Supplementary Figure 4. Distribution of non-CG DNA methylation in the human brain 
lateral amygdala. (a) The graph, taken from Mo et al35, depicts the distribution in the mouse 

of non-CG methylation, measured in 3 neuronal subtypes: glutamatergic neurons (Exc), and 

parvalbumin-expressing (PV) and vasoactive intestinal peptide (VIP)-expressing inhibitory 

neurons. (b) A very similar distribution of genome-wide average non-CG methylation levels 

was observed in the human brain lateral amygdala, in healthy controls (C) and subjects with a 

history of child abuse (early-life adversity, ELA). Values are mean±sem. (c) While most 

cytosines in non-CG contexts were unmethylated, a minority of these positions nevertheless 

showed methylation levels between 5 and 25%, whatever the 3-letter context considered, with 

a peak between 15 to 20%. These results indicate that while different numbers of cytosines 

might be methylated across various non-CG contexts, the abundance of DNA methylation (i.e., 

the proportion of cells affected) at those sites seems relatively homogeneous. Box plots show 

median and interquartile range, with whiskers representing minimum and maximum values. 
 

Supplementary Figure 5. Distribution of CG and CAC DNA methylation among distinct 
chromosomes and genomic features. (a) CAC and CG methylation levels were computed 

across distinct genomic features defined using the region_analysis package12. In the CG 

context, DNA methylation levels strongly varied as a function of the genomic feature 

[F(7,252)=953; p<0.0001], while there was no significant difference [F(1,36)=0.50; p=0.48] 

among psychiatrically healthy individuals (C) and subjects with a history of early-life adversity 

(ELA). Post-hoc comparisons confirmed that, as expected, lowest CG methylation levels were 

observed in promoter regions, in particular within a 250-base pair distance from the TSS 

(ProximalPromoter), where methylation levels were significantly lower than in any other gene 

feature (p<0.0001). In the CAC context, similar significant and non-significant effects were 
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found for genomic features [F(7,252)=917; p<0.0001] and for clinical grouping [F(1,36)=0.03; 

p=0.85], respectively. In contrast with the CG context, lowest CAC methylation levels were 

observed in pericentromeric regions (defined by region_analysis as regions located between 

the boundary of a centromere and the closest gene minus 10kbp of that gene's regulatory 

region12), which showed strongly significant differences with all other features (p<0.0001). (b) 
CAC and CG methylation levels were computed in each chromosome across the whole cohort. 

As expected, DNA methylation levels were much higher in the CG than in the CAC context (2-

way ANOVA; context effect: [F(1,1850)=1238951; p<0.0001]), and methylation abundance 

strongly varied among chromosomes in each context (chromosome effect: [F(24,1850)=2673; 

p<0.0001]). As expected also, methylation was extremely low in the mitochondrial genome in 

both the CG and CAC contexts. Values are mean±sem. 
 

Supplementary Figure 6. Correlations between the expression of genes and DNA 
methylation levels in their sense or antisense strands, in the CG and CAC contexts. The 

1000 most highly (top1000) and 1000 most lowly expressed genes were identified using RNA-

Sequencing data (see Fig.S13-14), and compared for abundance of DNA methylation in: (a,d) 
both DNA strands; (b,e) the strand where genes are located (sense strand), and (c,f) the strand  

antisense to the one where genes are located. Negative correlations between DNA methylation 

and gene expression were observed in all cases: (a) [F(1,74)=736.1; p<2E-16] (b) 
[F(1,74)=742.8; p<2E-16] (c) [F(1,74)=615.1; p<2E-16] (d) [F(1,74)=145.3; p<2E-16] (e) 
[F(1,74)=119.2; p<2E-16] (f) [F(1,74)=142.6; p<2E-16] (2-way repeated measures ANOVA, 

main effects of gene category, top1000 versus bottom1000 averaged over 100 bins). Results 

therefore indicate that gene expression is predicted to the same extent by mCAC on either 

strand, at least for the coverage achieved in this study. 

 
Supplementary Figure 7. Distributions of histone reads across gene bodies and 
differential sites (DS). For each histone mark, the figure depicts the distribution of reads 

(average enrichment of ChIP-seq reads over input) across all gene bodies (All Genes). In 

addition, and as a control, we also analyzed their distribution at genomic sites where Up- and 

Down-DS were identified between control (C) and early-life adversity (ELA) groups. Values are 

mean±sem. 
 
Supplementary Figure 8. Identification of genomic features where histone differential 
sites (DS) were localized. (a) Localization of DS (identified using diffRep, see Methods) 

among distinct genomic features (defined using region_analysis12), for each histone mark. The 

observed distributions were significantly different across histone marks (df=25, χ2 =1244, 

p<0.001). In addition, comparisons between observed and expected (genome-wide distribution 
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of reads among genomic features in the 2 C and ELA groups combined) distributions showed 

that, for each type of histone modification, ELA-associated DS were non-randomly located in 

specific genomic features: H3K27ac (df=1, χ2 =81.2, p<0.001); H3K27me3 (df=1, χ2 =42.3, 

p<0.001); H3K36me3 (df=1, χ2 =138, p<0.001); H3K4me1 (df=1, χ2 =287, p<0.001); H3K4me3 

(df=1, χ2 =90.9, p<0.001); H3K9me3 (df=1, χ2 =22.6, p<0.001). (b) Analysis of the directionality 

of DS showed that ELA more frequently associated with decreases (Down-DS) than increases 

(Up-DS) in read density, as found for 4 marks: H3K4me1 (df=1, χ2 =231, p<0.001); H3K4me3 

(df=1, χ2 =73, p<0.001); H3K36me3 (df=1, χ2 =345, p<0.001); H3K27me3 (df=1, χ2 =228, 

p<0.001). DS were equally distributed among Up- and Down-DS for the 2 remaining marks: 

H3K27ac (df=1, χ2 =0.13, p=0.19); H3K9me3 (df=1, χ2 =1.7, p=0.19). 
 

Supplementary Figure 9. Integrin signaling enrichment across multiple histone changes 
and state transitions. GREAT pathway analysis using MsigDB showed recurrent enrichment 

of the integrin signaling pathway across six types of state transitions, as well as for H3K27ac 

down-DS (differential sites). Each analysis passed hypergeometric and binomial testing (fold 

change ≥ 1.5 and Q ≤ 0.1 for both tests). Negative logarithmic P-value is shown for the binomial 

test. Chromatin states: Str-Trans, strong transcription; Wk-Trans, weak transcription; Str-Enh, 

strong enhancer; Enh, enhancer.  

 
Supplementary Figure 10. Comparison of main metrics for CG and CAC differentially 
methylated regions (DMR). DMRs were identified using BSmooth (see Methods). (a) 
Compared to CG-DMRs, CAC-DMRs were composed of slightly fewer cytosines (CG: 

7.63±0.11; CAC: 7.14±0.08; [t(1,1614.1)=3.63, p=2.9E-04]), and (b) were smaller (CG: 321±7 

bp; CAC: 245±4 bp; [t(1,1494.9)=9.40, p<2.2E-16]). The amplitude of methylation changes 

observed in subjects from the ELA group was smaller in the CAC than in the CG context, as 

shown by (c) smaller % changes in methylation levels (CG: 7.75±0.05%; CAC: 4.6±0.03%; 

[t(1,1338.4)=58.89], p<2.2E-16), and (d) smaller areaStat values (a metric measuring the 

statistical strength of methylation changes among cytosines composing each DMR10; CG: 

32.3±0.5%; CAC: 28.9±0.4%; [t(1,1575.1)=5.45], p=5.8E-08). Box plots show median and 

interquartile range, with whiskers representing minimum and maximum values. 

 
Supplementary Figure 11. Comparison of histone mark profiles at CG and CAC DMRs. 
Average enrichments of ChIP-seq reads over input are shown for each histone mark around 

each type of DMRs (CG, green; CAC, orange). Histone reads enrichment significantly varied 

within DMRs and flanking regions (+/- 2 kilobases, kb) for the 6 marks (2-way repeated 

measures ANOVA, main effects of cytosine position, x-axis; p<0.0001). Also, significant 

differences in histone reads density (y-axis) among the 2 cytosine contexts were observed for 
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4 marks (H3K27ac, H3K4me3, H3K27me3, H3K4me1; p<0.05), but not for H3K9me3 (p=0.08) 

or H3K36me3 (p=0.57). Importantly, significant interactions between histone reads density and 

cytosine position within DMRs were observed for all marks (p<0.0001). In particular, post-hoc 

comparisons confirmed that, compared with their flanking regions, CAC-DMRs were 

significantly enriched for H3K36me3 and depleted in H3K9me3; in contrast, CG-DMRs were 

characterized by significant enrichments for H3K4me1, H3K4me3, and H3K27ac, and a 

depletion in H3K36me3 (p<0.0001 for each post-hoc comparison). Values are mean±sem. 

 

Supplementary Figure 12. Enrichment of CG and CAC differentially methylated regions 
(DMRs) in each chromatin state. The figure depicts the enrichment of each chromatin state 

(as identified using ChromHMM and the combination of all 6 histone marks, see main text) 

among genomic regions corresponding to CG- and CAC-DMRs, compared to their relative 

abundance in the overall human genome. CG-DMRs shown in blue, CAC-DMRs shown in red. 

Chromatin states: Act-Prom, active promoter; Wk-Prom, weak promoter; Flk-Prom, flanking 

promoter; Str-Trans, strong transcription; Wk-Trans, weak transcription; Str-Enh, strong 

enhancer; Enh, enhancer; PcR, polycomb repressed; Heterochr, heterochromatin.  

 
Supplementary Figure 13. RNA-Sequencing quality controls. Total RNAs extracted from 

lateral amygdala tissue (controls, C, n=17; early-life adversity, ELA, n=21) were used for the 

preparation of RNA-Sequencing libraries and processed in parallel. (a) RNA integrity values 

(RIN) were not significantly different across RNA samples extracted from C (n=17) and ELA 

(n=21) subjects (Mann-Whitney U=171; p=0.83). (b) The number of reads sequenced in each 

library was similar across C and ELA groups (t-test t=0.72; p=0.48). (c-d) Similarly, there was 

no significant difference in percentages of duplicates (t=1.25; p=0.22) nor in alignment rate 

(t=0.51; p=0.62) between the 2 groups. Values are mean±sem. 

 
Supplementary Figure 14. RNA-Sequencing results. (a) Very similar results (r=0.82, 

t=199.69, p< 2.2E-16) were obtained using 2 distinct bio-informatic pipelines for the analysis 

of RNA-Sequencing data. Raw reads were aligned & counted using either HTSeq-count or 

Kallisto, followed by the analysis of differential expression between C and ELA groups using 

DESeq2. (b) Gene Set Enrichment Analysis (GSEA) of RNA-Sequencing data. Depicted are 

the 2 single gene lists that achieved the highest normalized enrichment scores in the c2 

MSigDB gene set. As shown in the left panel, a collection of genes related to oligodendrocytes 

and myelin physiology, which we recently found downregulated in the anterior cingulate cortex 

of subjects with a history of ELA23, showed an opposite upregulation in the lateral amygdala 

(normalized enrichment score=2.91; FWER q-value<0.05), suggesting that opposed 

transcriptional adaptations might occur as a function of ELA between cortical and subcortical 
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structures in this glial population. This finding was reinforced by the second best gene list (right 

panel), which was significantly enriched for upregulated genes in our amygdala data 

(normalized enrichment score=2.75; FWER q-value<0.05). The later gene collection was 

previously associated with depression in the middle temporal gyrus36, and was found enriched 

in myelin-related genes, suggesting that similar stress-related transcriptomic changes may 

affect oligodendrocytes among distinct portions of the temporal lobe. (c) Identification of Gene 

ontology (GO) processes most consistently affected by early-life adversity (ELA), as identified 

by the combined analysis of individual histone marks, chromatin states, DNA methylation, and 

gene expression (see main text). 
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