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Abstract

Growth rate is a near-universal selective pressure across microbial species. High growth
rates require hundreds of metabolic enzymes, each with different nonlinear kinetics, to
be precisely tuned within the bounds set by physicochemical constraints. Yet, the
metabolic behaviour of many species is characterized by simple relations between
growth rate, enzyme expression levels and metabolic rates. We asked if this simplicity
could be the outcome of optimisation by evolution. Indeed, when the growth rate is
maximized –in a static environment under mass-conservation and enzyme expression
constraints– we prove mathematically that the resulting optimal metabolic flux
distribution is described by a limited number of subnetworks, known as Elementary
Flux Modes (EFMs). We show that, because EFMs are the minimal subnetworks
leading to growth, a small active number automatically leads to the simple relations
that are measured. We find that the maximal number of flux-carrying EFMs is
determined only by the number of imposed constraints on enzyme expression, not by
the size, kinetics or topology of the network. This minimal-EFM extremum principle is
illustrated in a graphical framework, which explains qualitative changes in microbial
behaviours, such as overflow metabolism and co-consumption, and provides a method
for identification of the enzyme expression constraints that limit growth under the
prevalent conditions. The extremum principle applies to all microorganisms that are
selected for maximal growth rates under protein concentration constraints, for example
the solvent capacities of cytosol, membrane or periplasmic space.

Author summary

The microbial genome encodes for a large network of enzyme-catalyzed reactions. The
reaction rates depend on concentrations of enzymes and metabolites, which in turn
depend on those rates. Cells face a number of biophysical constraints on enzyme
expression, for example due to a limited membrane area or cytosolic volume.
Considering this complexity and nonlinearity of metabolism, how is it possible, that
experimental data can often be described by simple linear models? We show that it is
evolution itself that selects for simplicity. When reproductive rate is maximised, the
number of active independent metabolic pathways is bounded by the number of
growth-limiting enzyme constraints, which is typically small. A small number of
pathways automatically generates the measured simple relations. We identify the
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importance of growth-limiting constraints in shaping microbial behaviour, by focussing
on their mechanistic nature. We demonstrate that overflow metabolism – an important
phenomenon in bacteria, yeasts, and cancer cells – is caused by two constraints on
enzyme expression. We derive experimental guidelines for constraint identification in
microorganisms. Knowing these constraints leads to increased understanding of
metabolism, and thereby to better predictions and more effective manipulations.

Introduction 1

Fitter microorganisms drive competitors to extinction by synthesising more viable 2

offspring [1, 2]. The rate of offspring-cell synthesis per cell, i.e., the specific growth rate, 3

is a common determinant of evolutionary success across microbial species [1]. A high 4

growth rate requires high metabolic rates, which in turn require high enzyme 5

concentrations [3]. Due to limited biosynthetic resources, such as ribosomes, 6

polymerases, energy and nutrients, the expression of any enzyme is at the expense of 7

others [4, 5]. Consequently, the selective pressure towards maximal growth rate requires 8

the benefits and costs of all enzymes to be properly balanced, resulting in 9

optimally-tuned enzyme expressions [6–9]. 10

Tuning all enzyme expression levels appears to be a highly complex task. First, the 11

genome of a microorganism encodes for thousands of reactions with associated enzymes. 12

Second, a change in expression level of one enzyme not only affects the rate of its 13

associated reaction, but also changes intracellular metabolite concentrations. These 14

metabolite concentrations influence the activities of many other enzymes in a nonlinear 15

fashion. In mathematical terms, microorganisms thus have to solve a high-dimensional 16

nonlinear optimization problem. 17

Surprisingly, experiments on many different microorganisms often show simple linear 18

relations between growth rate, enzyme expression levels and metabolic rates [10–12], 19

and the data can often be described by coarse-grained linear models. This suggests that 20

microorganisms in fact only use few regulatory degrees of freedom for tuning metabolic 21

flux and protein expression. It is currently unclear why this simple, low-dimensional 22

behaviour results from the a priori enormously complicated tuning task. Given that the 23

tendency towards simplicity is widespread amongst microorganisms, we expected this to 24

be due to a general –evolutionary– principle. 25

We found an evolutionary extremum principle: growth-rate maximization drives 26

microorganisms to minimal metabolic complexity. We provide the mathematical proof 27

of this principle in the Model setup and theoretical derivations section. It is derived 28

from basic principles, more specifically from (i) mass conservation, i.e., steady-state 29

reaction-stoichiometry relations, and (ii) enzyme biochemistry, i.e., the linear 30

dependence of enzyme activity on the amount of enzyme and its nonlinear dependence 31

on substrate and product concentrations. Our results provide a novel perspective on 32

metabolic regulation, one in which the complexity is not determined by the size of the 33

network or the rate equations, but by the constraints acting on the enzyme 34

concentrations. 35

Model setup and theoretical derivations 36

In this section we will introduce the class of models that we studied, and 37

mathematically prove our main result: the extremum principle. Readers that would like 38

to skip the mathematical proof are strongly suggested to read the biological summary of 39

the results at the end of the section. 40
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The model: Evolutionary rate maximization can only be studied 41

in a kinetic model of metabolism with constraints on enzyme 42

concentrations 43

The structure of any metabolic network can be given by a stoichiometric matrix N , 44

indicating which metabolites (rows) are consumed or produced in each reaction 45

(columns). Because we can split reversible reactions in two irreversible reactions [13], we 46

will from now on assume that all reactions are irreversible. A steady-state flux 47

distribution is then given by a vector of reaction rates v such that there is no 48

accumulation or depletion of metabolites, and such that all irreversibility constraints are 49

satisfied. The solutions together form a flux cone: 50

P = {v ∈ Rr | N · v = 0, vi ≥ 0}, (1)

where r is the number of reactions. In steady state, we maximize the objective flux, 51

which is a (linear combination of) component(s) of this flux vector. Often, the objective 52

is chosen to be the overall cell-synthesis reaction, also called the biomass reaction vBM, 53

which makes all cellular components in the right proportions according to the biomass 54

composition [14]. 55

To understand the resource allocation associated with a particular metabolic activity, 56

we need to know the relation between the rates of enzyme-catalyzed reactions and 57

enzyme concentrations. At constant metabolite concentrations, these are in general 58

proportional [3] as captured by the rate equation: 59

vi = eikcat,ifi(x), (2)

where ei is the concentration of the enzyme catalyzing this reaction, kcat,i is its 60

maximal catalytic rate and fi(x) is the ‘saturation function’ of the enzyme, which is 61

dependent on metabolite concentrations x. This function, fi(x), is often nonlinear, 62

includes the thermodynamic driving force, (allosteric) activation or inhibition, and other 63

enzyme-specific effects. 64

To model the maximization of the cell-synthesis flux we have to account for bounds
on enzyme concentrations, originating for example from limited solvent capacities of
cellular compartments, or from a limited ribosomal protein synthesis capacity. We
model these biophysical limits by imposing K constraints, each modelled by a weighted
sum of enzyme concentrations:

C
(1)
Σ :=

∑
i

w
(1)
i ei ≤ 1 . . . C

(K)
Σ :=

∑
i

w
(K)
i ei ≤ 1.

These constraints correspond to limited enzyme pools. Overexpression of one enzyme is 65

therefore at the expense of others that are subject to the same biophysical constraint. 66

The weights, w
(j)
i , determine the fraction that one mole/liter of the ith enzyme uses up 67

from the jth constrained enzyme pool. For example, for a constraint describing the 68

limited solvent capacity of the membrane, the weight of an enzyme is the fraction of the 69

available membrane area that is used up by this enzyme; this weight is thus nonzero 70

only for membrane proteins. We call a constraint ‘active’ when it limits the cell in 71

increasing its growth rate, indicating that the corresponding enzyme pool is fully used. 72

One enzyme can belong to one, several or none of these limited pools. 73

Note that these constraints on enzyme concentrations are different from the 74

constraints on reaction rates that are often used in stoichiometric methods (e.g., through 75

Flux Balance Analysis). For these linear models, it is known -similar to what we will 76

derive in the general, nonlinear case in this work- that few minimal pathways constitute 77

the optimal solutions in such models [15]. However, constraints on reaction rates do not 78
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reflect the ability of microorganisms to adjust their enzyme content: any reaction rate 79

constraint could in principle be overcome by an increase of the corresponding enzyme’s 80

concentration. The enzyme constraints that we model are due to biophysical laws and 81

can thus not be alleviated by metabolic regulation. These must thus be investigated to 82

study the evolution of metabolism, although this forces us to include the complicated 83

(and often unknown) enzyme saturation functions, fi(x), in our theory. 84

The number of constraints and the exact value of the weights may vary per organism. 85

In general we expect this number to be low, and indeed not many different enzyme 86

expression constraints have been proposed in the literature. Many aspects of microbial 87

growth have been successfully described using constraints that are (or can be 88

reformulated as) enzyme expression constraints, like limited reaction rates and limited 89

solvent capacities within cellular compartments [4, 5, 10,16–20]. 90

The introduction of enzyme kinetics in Equation (2) allows us to rewrite the enzyme 91

constraints as: 92

∑
i

w
(1)
i

kcat,ifi(x)
vi ≤ 1 . . .

∑
i

w
(K)
i

kcat,ifi(x)
vi ≤ 1. (3)

We note that, although written in terms of the fluxes, these constraints are not 93

equivalent to the normal flux constraints used in FBA, since the weighted sums now 94

depend on metabolite concentrations. To maximize the cell-synthesis flux, not only the 95

enzyme concentrations should be optimized, but also the intracellular metabolite 96

concentrations. Due to the necessary inclusion of enzyme kinetics, flux maximization is 97

turned into a complicated nonlinear problem. This is the problem we have investigated. 98

Remarkably, we will prove below that the solution still uses only a few minimal 99

metabolic pathways. 100

The minimal building blocks: Elementary Flux Modes 101

A minimal metabolic pathway is called an ‘Elementary Flux Mode’ (EFM). In words, 102

EFMs are support-minimal subnetworks that can sustain a steady state [21]. The 103

‘support’ of a flux vector is the set of participating reactions: R(v) = {j : vj 6= 0}. That 104

an EFM, EFM, is support-minimal means that if there is another flux vector, v′ ∈ P, 105

such that R(v′) ⊆ R(EFM) then we must have v′ = αEFM for some α ≥ 0. Another 106

way of phrasing this is that none of the used reactions can be set to zero in the EFM 107

without violating the steady state condition. These metabolic subnetworks turn out to 108

be determined completely by reaction stoichiometry, and thus for their identification no 109

kinetic information is needed. However, because of the many combinations of parallel, 110

alternative metabolic routes in metabolic networks, it is currently computationally 111

infeasible to find the complete set of EFMs in a genome-scale network [22,23]. 112

We exploit EFMs because any steady state flux distribution can be decomposed into 113

positive linear combinations of EFMs. Indeed, Gagneur and Klamt showed that in any 114

metabolic network in which reversible reactions are split in two irreversible reactions, 115

the EFMs coincide with the extreme rays of the pointed polyhedral cone P [13]. We can 116

thus write: 117

v = λ1EFM1 + . . .+ λFEFMF , where λi ≥ 0, (4)

where the multiplication factors λi denote how much the ith EFM is used and F 118

denotes the total number of EFMs in the network. Equation (4) shows that EFMs are 119

the basic building blocks of steady state metabolism. Note that, although the 120

Elementary Flux Modes are constant vectors defined by stoichiometry, the λi-factors are 121

variable and dependent on metabolite concentrations. We will make this dependence 122

more precise in S1 Appendix Section 5. 123
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EFMs are defined up to a constant: if v is an EFM, then so is αv for any α ∈ R≥0. 124

This has two important consequences. First, the ratio between flux entries in an EFM 125

are fixed, and second, we may scale one entry of an EFM to 1. We will consider 126

optimisation of some objective flux vr at steady state. Therefore, we only need to 127

consider those EFMs which have a nonzero rth flux value. Without loss of generality, we 128

can make this the last entry in the vector, and we will always scale this entry to 1. The 129

ith EFM can thus be denoted by EFMi = (V i
1 , . . . , V

i
r−1, 1)T ∈ Rr, with all V i

j uniquely 130

determined by stoichiometry. The λi factor in (4) can now be reinterpreted as the flux 131

that EFMi contributes to the objective flux. 132

Using EFMs, we can unambiguously quantify metabolic complexity as the number of 133

flux-carrying Elementary Flux Modes. We call an EFM a minimal unit of metabolic 134

complexity because the flux values through its participating reactions can only scale 135

with one overall factor. A flux distribution that is a sum of K EFMs thus has K flux 136

degrees of freedom. A small number of degrees of freedom gives rise to metabolic 137

behaviour with simple relations between the growth rate and flux values. 138

The cost vectors: a low-dimensional view at metabolism 139

Given K constraints, we can, for each EFM, calculate the cost per constraint for 140

making one unit objective flux. These K costs turn out to comprise all relevant 141

information for growth rate optimisation. Therefore, we will here define the cost vectors 142

that have these costs as their entries. We will use the cost vectors to study metabolism 143

in low-dimensional constraint space throughout this paper. 144

As discussed above, we can rescale each EFM such that it is a vector of the form 145

EFMi = (V i
1 , . . . , V

i
r−1, 1)T ∈ Rr. To produce one unit objective flux, we thus need a 146

flux of V i
j through reaction j. Since we have vj = kcat,jejfj(x), we get 147

eij =
V i
j

kcat,jfj(x)
,

where eij denotes the necessary concentration of enzyme j for one unit objective flux

through EFM i. We can then define the cost vector di(x) for the ith EFM, with
components given by the total costs that this EFM brings per constraint:

dik(x) :=
r∑

j=1

w
(k)
j eij ,

=

r∑
j=1

w
(k)
j

V i
j

kcat,jfj(x)
(5)

Because enzyme kinetics determine the enzyme concentrations and thereby the 148

enzymatic costs, it is unlikely that several EFMs have exactly the same costs. Different 149

EFMs use at least one different enzyme, and it is highly improbable that the necessary 150

concentrations of these different enzymes are exactly the same real number. If one of 151

these non-overlapping enzymes is part of a constrained pool, the EFMs will thus have 152

different costs.1 If, however, none of the non-overlapping enzymes are part of the 153

constrained pools, several EFMs can indeed have the same costs. To deal with this case 154

we introduce the notion of equivalent EFMs. 155

Definition 1. Given a set of constraints, C
(1)
Σ , . . . , C

(K)
Σ , two EFMs, EFM1,EFM2, 156

are called equivalent with respect to the constraints if their associated cost vectors are 157

equal: d1(x) = d2(x). 158

1In modelling methods that do not include kinetic information, such as FBA, it is much more
probable for two EFMs to have the same costs. The optimal solutions in these modelling methods are
therefore often multi-dimensional subspaces.
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The op�mal solu�on uses one EFM The op�mal solu�on uses two EFMs

Op�mal cost vector if only using blue EFM

Op�mal cost vector if only using orange EFM

Cost vector for blue EFM if using a mixture

Ranking of mixture of EFMs  

Feasible cost vector posi�ons for 
different metabolite concentra�ons

Cost vector for orange EFM if using a mixture

Ranking of single EFMs  

vopt=λ1 EFM1

vopt=λ1 EFM1 + λ2 EFM2

Fig 1. The cost vector formalism shows what determines the number of
EFMs in the optimal solution. We here consider a simplified model with 2 EFMs
(blue and orange), and 2 constraints. In reality, the costs of many more EFMs have to
be compared, and potentially also of more constraints. The cost vector
di(x) = [di1(x), di2(x)]T of the ith EFM denotes the fractions of the first and second
constrained enzyme pool that this EFM uses when producing one unit of objective flux.
The cell-synthesis flux produced by EFM i is denoted by λi, and the corresponding
enzyme costs are λidi(x). The cost of mixing EFMs 1 and 2 corresponds to the
weighted sum of the cost vectors: λ1d

1(x) + λ2d
2(x). The mixture is feasible as long as

none of the constraints is exceeded: λ1d
1(x) + λ2d

2(x) ≤ 1. The objective value,
λ1 + λ2, is maximized by fitting a vector sum of as many vectors as possible in the
constraint box. This solution is shown by the dashed vectors. The pure usage of one
EFM with off-diagonal cost vector leads to underuse of one constraint, while diagonal
cost vectors can exhaust both constrained pools. A mixture of EFMs will always be a
combination of an above-diagonal and a below-diagonal vector. All EFMs and mixtures
thereof, can be ranked by a dot on the diagonal that denotes the average cost per unit
cell-synthesis flux (see Lemma 4 in S1 Appendix for a proof). Pure usage of
above-diagonal cost vectors is ranked by projecting the cost vector horizontally to the
diagonal, while pure usage of below-diagonal vectors is ranked by vertical projection.
Mixtures are ranked by placing a dot at the intersection of the diagonal with the line
between the two cost vectors. The (mixture of) EFM(s) with the lowest average cost
(i.e., with the dot closest to the origin) leads to the highest growth rate (the
mathematical proof is included in S1 Appendix). The enzymatic costs of an EFM
depend on the intracellular metabolite concentrations, i.e., the saturation of enzymes.
The shaded regions indicate alternative positions for the cost vectors at different
intracellular metabolite concentrations, two of them are shown. The blue and orange
cost vectors lead to the highest growth rate when using only that EFM. We see that in
the left figure the orange EFM gives rise to a higher growth rate. Upon a change of
environmental conditions, the cost vectors can change, and the mixture of EFMs can
become better than either single EFM (right figure). A change like this would lead to a
change in metabolic behaviour.
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Because the cost vectors play a central role in the whole paper, we illustrated their 159

definition and use in Figure 1. Many of our results followed from studying these cost 160

vectors. 161

The extremum principle: the number of active EFMs is 162

determined by the number of constraints on enzyme expression 163

We here prove the main result of this study, the extremum principle. For a general 164

metabolic model, as introduced above, it states a necessary condition for a flux vector 165

v ∈ P to be a maximizer of the objective flux. 166

Theorem 1. Consider a metabolic network characterized by the stoichiometric matrix 167

N . Let vr be an objective flux, which is to be maximized at steady state, under K linear 168

enzymatic constraints of the form: 169

C
(k)
Σ :=

r∑
j=1

w
(k)
j ej ≤ 1 for k ∈ {1, . . . ,K}.

Then, at most K non-equivalent Elementary Flux Modes are used in the optimal 170

solution. 171

Proof. We assumed that vj ≥ 0 for all reactions in the network because, without loss of 172

generality, we split all reversible reactions into a forward and a backward reaction [13]. 173

Let us for now also assume that none of the EFMs are equivalent (where equivalence is 174

defined according to Definition 1) we will handle the case with equivalent EFMs at the 175

end of the proof. 176

According to Equation (4), the optimal solution can always be expressed as a conical 177

combination of EFMs. As before, we rescale every EFM such that it is a vector of the 178

form EFMi = (V i
1 , . . . , V

i
r−1, 1)T ∈ Rr. The objective flux for a flux vector v can now 179

be written as 180

vr =
(
λ1EFM1 + . . .+ λMEFMM

)
r

= λ1 + λ2 + . . .+ λM , where λi ≥ 0, (6)

where M is the number of EFMs containing a nonzero vr. Since the EFMs are fixed 181

vectors, the λi become our optimisation variables. Since 182∑M
i=1 λiV

i
j = vj = kcat,iejfj(x), we have 183

ej =

M∑
i=1

λi
V i
j

kcat,jfj(x)
.

This allows us to rewrite enzyme constraint C
(k)
Σ as

C
(k)
Σ =

r∑
j=1

w
(k)
j ej

=
r∑

j=1

w
(k)
j

M∑
i=1

λi
V i
j

kcat,jfj(x)

=
M∑
i=1

λi

r∑
j=1

w
(k)
j

V i
j

kcat,jfj(x)

=:

M∑
i=1

λid
i
k(x). (7)
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In the last step, we recognized the cost vector components defined in Equation (5). 184

The kth entry of cost vector i denotes the cost for the enzymes in constraint k (the 185

k-enzymes) to obtain one unit of objective flux through EFMi (and therefore also the 186

enzymatic cost to increase this flux by some factor). We can rewrite our optimization 187

problem in terms of these cost vectors. We will hereby designate each metabolite 188

concentration as either external, xE , or internal, xI , such that: x = (xE ,xI). This 189

distinction is important, because the external concentrations are given by the 190

environment and therefore part of the parmeters of the optimisation problem, while the 191

internal concentrations can be tuned by the cell and are therefore part of the solution. 192

We need to solve 193

max
xI ,ej

{
vr

∣∣∣ v ∈ P, C(k)
Σ ≤ 1 for 1 ≤ k ≤ K

}
, (8)

and using Equations (6) and (7), this is equivalent to 194

max
xI ,λ

{∑
λi

∣∣∣ λi ≥ 0, D(x) · λ ≤ 1
}
, (9)

where D =
[
d1(x) · · · dr(x)

]
is the cost vector matrix. The relation D(x) · λ ≤ 1 195

shows that the optimal λ vector indeed depends on the metabolite concentrations x, as 196

was indicated below equation (4). 197

Following2 Wortel et al. [24], we now use a subtle mathematical argument. We fix 198

x = x0, so that the enzyme saturations fj(x0) are constant. This will give us a fixed 199

cost vector for each EFM. The remaining optimization problem is then visualized in 200

Figure 1, where cost vectors of some EFMs are plotted in a box of constraints. Finding 201

the optimal solution is equivalent to finding a sum of scalar multiples of the cost vectors 202

without leaving the box of constraints while maximizing the sum of these multiplicities. 203

The example in Figure 1 shows only 2 constraints, but in general we would have M 204

vectors in a K-dimensional cube. 205

In the general case, it might seem intuitive that K constraints lead to the usage of at 206

most K EFMs since all K linearly-independent vectors form a basis of a K-dimensional 207

space. We can thus always take a combination of K vectors to reach the point where all 208

constraints are met with equality. However, we should be careful because we could end 209

up with negative λ’s for some of the EFMs. We continue with the proof by rewriting 210

the problem in a Linear Programming (LP) form, 211

Maximize vr = 1 · λ, 212

subject to 213

Aλ ≤ z, 214

where 215

A =

(
−IM×M
D

)
, z =

(
0M×1

1K×1

)
.

The solutions of this linear programming problem form a polytope in RM , bounded by 216

the hypersurfaces given by the constraints. The most important theorem of LP teaches 217

us that an optimal solution is found among the vertices of this polytope. The dimension 218

of such vertices is zero, which means that optimal solutions satisfy at least M of the 219

K +M constraints with equality. Therefore at most (K +M)−M = K constraints can 220

be satisfied with strict inequality. These K inequalities could be concentrated in the 221

λi ≥ 0 part, which means that the corresponding K Elementary Flux Modes are used. 222

2Note that in the proof of Wortel et al. the vector of metabolite concentrations x was fixed to its
optimal value xopt before proceeding. This is not directly possible, since the optimal value is dependent
on the choice of enzyme concentrations and these have yet to be determined. We use a small adaptation:
we give an argument that works for all fixed x, and therewith for the optimal x.
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Thus, an optimal solution can use no more EFMs than there are active constraints in 223

the system, thereby proving the theorem for any arbitrary vector of metabolite 224

concentrations x. 225

There is one possible exception to the above reasoning. Let’s say that K EFMs are 226

used in the optimum: vopt =
∑K

i=1 λiEFMi. If one EFM, say EFMK , has an 227

equivalent EFM, say EFMK+1, then we can replace the usage of EFM K by any 228

convex combination of EFMs K and K + 1 and the solution will still be optimal. So, in 229

the case that the costs of several EFMs are the same, the optimal flux vector could 230

consist of more EFMs than the number of constraints. That’s why the theorem only 231

tells us that no more than K non-equivalent EFMs are used in the optimal solution. 232

Finally, it follows that, since the theorem is true for any set of metabolite 233

concentrations x, it is of course also true for the optimal set, xopt = (xE ,xIopt). 234

We note that the optimal internal concentrations, the choice of EFMs, and thereby 235

the optimal enzyme concentrations, all depend on the external concentrations xE . 236

Which specific EFMs are the optimal ones, thus does not follow directly from the 237

theorem. 238

We think that the case where several EFMs are equivalent is not very common in 239

biology. First, the constraints on enzyme expression are due to biophysical limits and 240

we expect these to act on many enzymes together. This reduces the chance of having 241

several EFMs that use exactly the same enzymes within the constrained pool of 242

enzymes. Second, even if several EFMs would use the same enzymes, then the enzyme 243

costs depend on the enzyme saturations, and these depend on the optimal metabolite 244

concentrations. These optimal concentrations depend on the rest of metabolism, such 245

that the non-overlapping part of the EFMs can still influence the enzyme costs. For 246

these two reasons, we will assume in the rest of this work that EFMs are generally not 247

equivalent. 248

The previously published theorem that maximal specific flux, vBM

etot
, is attained in an 249

EFM [24,25] is a special case of Theorem 1. In the cost vector formalism that we 250

described in Figure 1, it is visualized by cost vectors on a line rather than in a box, 251

because there is only one enzymatic constraint (total enzyme concentration is bounded). 252

In this case, there is indeed a shortest cost vector for all but a negligible subset of 253

situations (as discussed in the proof). 254

The following corollary can be used to find out how many constraints are active 255

when we observe a certain number of active EFMs. It is the contrapositive of Theorem 1 256

and therefore mathematically equivalent. The reason that it is stated separately is the 257

difference in biological applicability: the theorem is a predictive statement while the 258

corollary is descriptive. As we will see in the Results section, the theorem tells us that 259

metabolic complexity is low because the number of enzymatic constraints is typically 260

low. The corollary however, enables us to infer from experimental data how many 261

constraints must be active, and thus gives us physiological insight from population-level 262

data. 263

Corollary 2. If a flux vr is optimized and K non-equivalent Elementary Flux Modes 264

are used, then at least K linear enzymatic constraints must be active. 265

EFMs are not the only set of building blocks that we could have used. In the context of 266

Flux Balance Analysis, constraint-based rate maximization can be studied by 267

calculating Elementary Flux Vectors (EFVs) [26,27], which are the minimal pathways 268

that generate all flux distributions that satisfy not only the steady-state assumption, 269

but also the additional constraints. Therefore, for fixed enzyme saturations and 270

constraints, EFVs provide a set of feasible building blocks of which convex combinations 271

automatically satisfy all constraints. However, since every EFV is a conical combination 272

of EFMs, and since we wanted to study evolutionary growth-rate maximization, we 273
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preferred to do our analysis on the set of EFMs. This is because the EFMs provide a set 274

of invariant (at least on timescales on which stoichiometry is not evolved) objects for 275

which regulatory circuits can be evolved. In principle, the extremum principle can also 276

be written in terms of EFVs. We can show, in a similar manner as in the proof above, 277

that rate-maximal solutions will use only one EFV, which is a convex combination of at 278

most K EFMs. 279

Biological summary of the extremum principle and its proof 280

The extremum principle, stated in Theorem 1, is a statement about all metabolic 281

networks, independent of the network size, topology, or the specific enzyme kinetics. All 282

microorganisms are subjected to a small number of enzymatic constraints, and all 283

metabolic networks have Elementary Flux Modes as their building blocks: minimal 284

pathways that make all cellular components from external sources. The fluxes through 285

the participating reactions in an EFM can only be rescaled with one overall factor. We 286

concluded that the use of an additional EFM thus only adds one flux degree of freedom, 287

so that experimental data will show low complexity if few EFMs are used. We then 288

proved the extremum principle, stating that the number of flux-carrying EFMs in the 289

maximal growth rate solution is always bounded by the number of constraints on 290

enzyme expression. As a whole, this leads to the prediction that microbial behaviour 291

will show low complexity. 292

In the proof, we compared the costs and benefits of the different EFMs. To be 293

precise, we rescaled the EFMs such that the benefit of each EFM was equal: they all 294

give one unit of objective flux. If we have K constraints, we also have K different costs 295

for which we need to compare the different EFMs. We showed that the optimal solution 296

is a combination of up to K of these EFMs. This is in accordance with the intuition 297

that one EFM can be selected for each constraint because it has a low cost with respect 298

to this constraint. 299

To find the proof, we developed a framework using cost vectors. In Figure 1 we 300

summarize how this framework allows us to study high-dimensional metabolism in the 301

few dimensions that actually matter: we can compare the enzyme costs of all EFMs in 302

the low-dimensional ‘constraint space’ defined by the limited enzyme pools. This 303

perspective enables us to design experiments that characterize the active biophysical 304

constraints, as we will discuss in the Results section. 305

Results 306

The metabolic complexity is typically very low 307

We called an EFM a minimal unit of metabolic complexity because the ratios between 308

the fluxes through all participating reactions are fixed, and none of its reactions can be 309

removed. Consequently, a microorganism that uses one EFM can only change all 310

reaction rates with the same factor. In other words, there is only one regulatory degree 311

of freedom, instead of many if all reaction rates could have been tuned separately. In 312

this case, flux values can be described by only one straight line. This becomes more 313

complex when the number of flux-carrying (active) EFMs increases. Using this 314

knowledge, the number of active EFMs can be estimated from flux measurements. 315

We re-analysed data from carbon-limited chemostats and indeed observed that 316

uptake rates of glucose and oxygen could be described by a straight line for a large 317

range of growth rates, testimony of single EFM usage (S1 Appendix Section 8). A 318

possibility that we cannot exclude, however, is that many EFMs are used, but that 319

these EFMs all have the same relation between growth rate, glucose uptake and oxygen 320
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Fig 2. Proportionality of reaction rates and growth rates, shown by many
microorganisms, is an indication of low metabolic complexity. Measured
uptake rates [28–33] were gathered from experiments in which growth rate was varied in
carbon-limited chemostats. For each species we normalized the measured growth rate to
the so-called critical growth rate: the growth rate at which the production of overflow
products starts. Uptake rates were normalized relative to the uptake rate of the species
at the critical growth rate. Up to the critical growth rate, all microorganisms show a
simple proportional relation between the growth rate and uptake rates of glucose and
oxygen. In Section 8 we explain why this proportionality is an indication of the usage of
only one EFM. After the critical growth rate, the reaction rates are no longer
proportional, a phenomenon called overflow metabolism.

uptake. On the other hand, the experimentally measured linear growth laws between 321

cellular building blocks and growth [11,12,18], and the success of coarse-grained 322

models [4, 5], do provide some additional indications of the usage of a small number of 323

EFMs. A more definite proof could be found in two ways. First, if many different 324

reaction rates are measured in balanced growth across slightly different environments, or 325

second, if all internal fluxes in the cell are measured, and complete knowledge of the 326

stoichiometric network is available. However, to our knowledge, currently available 327

fluxome datasets were collected across mutants, or across very different growth 328

environments, making them unsuitable for our purposes. For now, based on the 329

available data, we cautiously argue that the number of simultaneously active EFMs is 330

typically very low, in the order of 1 to 3. That microorganisms would choose only a 331

handful of EFMs out of billions of alternatives is in accordance to our extremum 332

principle, Theorem 1. These alternatives are apparently not evolutionarily equivalent, 333

and only a small number has been selected because of their superior kinetics. 334

The extremum principle: the low number of biophysical 335

constraints causes low metabolic complexity 336

The extremum principle states: when the rate of a particular reaction in a metabolic 337

network is maximized, the number of flux-carrying EFMs is at most equal to the 338

number of constraints on enzyme concentrations that limit the objective flux. In 339
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Fig 3. Illustration of the extremum principle. The extremum principle states
that the dimensionality of the solution space is determined by the number of
enzyme-expression constraints, rather than by the dimensionality of the metabolic
network. The constraints result from biophysical limits, e.g., limited solvent capacities
within cellular compartments. Our cost vector formalism, explained in Figure 1, enables
us to analyze metabolism in the low-dimensional constraint space, instead of in the
high-dimensional flux space that is normally used.

particular, the principle holds for the cell-synthesis reaction. Therefore, if the number of 340

active constraints is low, so is the number of active EFMs at maximal growth rate. This 341

is the basis of our finding that maximal growth rate requires minimal metabolic 342

complexity, and this extends the result that rates are maximized by one EFM under a 343

total protein constraint [24,25]. This earlier result could not explain –from a resource 344

allocation perspective– datasets in which several metabolic pathways are used, such as 345

overflow metabolism, metabolic switches, and the expression of unutilized proteins. 346

The extremum principle holds regardless of the complexity of the metabolic network, 347

i.e., of its kinetics and its structure. The metabolic complexity is only determined by 348

the number of active constraints; the kinetics and structure subsequently determine 349

which EFMs are optimal and selected by evolution - as illustrated by in silico evolution 350

of metabolic regulation towards only one active EFM [34]. For this reason, also 351

genome-scale metabolic models, which contain all the annotated metabolic reactions 352

that a microorganism’s genome encodes [35], and even the ones that have been studied 353

with different additional resource constraints [36,37], behave qualitatively similar to 354
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simplified core models. Coarse-grained models can thus be used without loss of 355

generality, which greatly facilitates our understanding of metabolic behaviour. 356

Using the cost vector formalism that we used in the proof of Theorem 1, we can 357

study metabolism in the low-dimensional constraint space, instead of in the 358

high-dimensional flux space (see Figure 3). In the case of two constraints (also 359

illustrated in Figure 1), the extremum principle states that both constrained enzyme 360

pools can always be fully used with two cost vectors (EFMs), not more. However, an 361

EFM with a diagonal cost vector can make full use of both pools on its own: hence, the 362

number of EFMs that maximize flux can also be less than the number of active 363

constraints. Another instance in which only one EFM is optimal, is when all cost 364

vectors lie above or below the diagonal. In this case, there is only one active constraint; 365

the other pool does not limit the total possible flux of the system under these 366

conditions. We have derived the necessary and sufficient conditions under which it is 367

optimal to use EFMs in mixtures (S1 Appendix Section 5). Plotting the cost vectors for 368

different internal metabolite concentrations also shows that the length and direction of 369

the cost vectors are affected by metabolite concentrations via enzyme kinetics (depicted 370

by the shaded areas in Figure 1). We show in S1 Appendix Section 5 that this 371

metabolite-dependency makes it much more probable that less than K EFMs are used 372

in a system with K constraints, because internal concentrations can be changed to make 373

cost vectors diagonal. 374

The number of enzymatic constraints can be inferred from 375

experimental data: the extremum principle applied to overflow 376

metabolism 377

A well-known phenomenon observed across microbes is overflow metabolism: the 378

apparently wasteful excretion of products. Examples are the aerobic production of 379

ethanol by yeasts (Crabtree effect), lactate by cancer cells (Warburg) or acetate by 380

Escherichia coli [4, 38,39]. The onset of overflow metabolism is generally studied as a 381

function of growth rate (e.g., in chemostats where the growth rate is set by the dilution 382

rate of the culture). Before some critical growth rate, cells fully respire, but when the 383

growth rate is increased above some critical value, respiratory flux decreases and the 384

flux of overflow metabolism emerges. 385

According to our theory, an additional enzymatic constraint must have become 386

active at the critical growth rate (see Figure 2). Below the critical growth rate, the 387

respiratory flux is proportional to the growth rate, which is a characteristic of single 388

EFM usage (see S1 Appendix). Above the critical growth rate however, the decreasing 389

respiratory flux and increasing overflow flux indicate that at least two EFMs and 390

therefore two constraints must be active. Indeed, current models of overflow metabolism 391

all use such an additional constraint, but the biophysical nature of the first constraint 392

(mostly an uptake constraint) is often kept implicit. Many explanations of overflow 393

metabolism therefore appeared to have only one constraint, for example linked to total 394

protein [4], or membrane protein [40], but within our theory an optimal flux distribution 395

with two EFMs is only possible with at least two constraints. 396

We can gain more insight on overflow metabolism by applying the cost vector 397

formalism on a coarse-grained model (Figure 4). Note however, that this model has an 398

illustrative purpose only, to show that overflow metabolism can be easily explained with 399

two enzyme expression constraints. We do not claim that the imposed constraints are 400

the real constraints; for this, experiments are needed, as we will explain later. The 401

model includes a respiration pathway and an acetate overflow branch. All steps include 402

enzyme kinetics, and constraints are imposed on two enzyme pools: total cytosolic 403

protein, and total membrane protein. We model overflow metabolism as a function of 404
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Fig 4. The cost vector formalism provides insight in how growth rate
maximization leads to overflow metabolism. a) A core model with two EFMs
that individually lead to cell synthesis (orange: respiration and blue: acetate overflow).
All considered reactions have an associated enzyme, whose activity depends on kinetic
parameters and the metabolite concentrations. We varied growth rate by changing the
external substrate concentration. Given this external condition, the growth rate was
optimized under two enzymatic constraints (limited cytosolic enzyme Σ ei,cyto ≤ 1 and
limited membrane area etransport ≤ 0.3). b) The predicted substrate uptake fluxes
directed towards respiration and overflow are in qualitative agreement with the
experimental data (shown before in Figure 2) of several microorganisms scaled with
respect to the growth rate (µcrit) and uptake rate (qcrit) at the onset of
overflow [4, 38, 39]. c) The cost vectors (solid arrows) of the two EFMs before (left) and
after (right) the respirofermentative switch. The x-coordinate of the cost vectors denote
the fraction of the cytosolic volume that is needed to produce one unit objective flux
with the corresponding EFM. The y-coordinate shows the necessary fraction of the
available mebrane area. The position of the cost vectors are shown for the optimized
metabolite concentrations; the shaded regions show alternative positions of the cost
vectors at different enzyme and metabolite concentrations. The dashed vectors show the
usage of the EFMs in the optimal solution.
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the glucose concentration.3 At low extracelullar glucose concentrations, all cost vectors 405

have high membrane costs and lie above or at best at the diagonal (as the membrane 406

constraint is on the y-axis): the membrane pool limits substrate uptake and therefore 407

favours efficient use of glucose via respiration. Our core model predicts that, as 408

extracellular glucose concentrations increase, so does the saturation level of the 409

glycolytic enzymes such that flux can increase without a change in protein level. 410

Consequently, across a large range of external substrate concentrations pure respiration 411

leads to maximal growth rate by fully exploiting the two available enzyme pools. The 412

membrane constraint is however more growth-limiting, i.e., loosening this constraint will 413

give a larger growth rate benefit. At high glucose concentrations, transporters are more 414

saturated (cost vectors become shorter in the membrane direction) and the respiration 415

cost vector becomes below-diagonal: pure respiration will leave the membrane protein 416

pool underused, while the cytosolic pool limits respiration. A better strategy is to 417

respire less and make some of the cytosolic pool available for another EFM that can 418

exploit the underused membrane pool. The net outcome is that a mixture of EFMs 419

attains a higher growth rate than either of the two EFMs alone. 420

We think that many published explanations of overflow metabolism are unified by 421

the extremum principle. The added value is not that it gives yet another model that 422

qualitatively captures overflow metabolism, but rather that it explains why published 423

models are successful by offering an overarching theory. Indeed, we show in S1 424

Appendix Section 4 that explanations for overflow metabolism offered by other 425

modeling methods, imposing different constraints, such as coarse-grained whole cell 426

models [4, 5] and constraint-based genome-scale M-models [19,41–43] are 427

mathematically all instances (or simplifications) of the exact same constrained 428

optimization problem that we study here. Their maximizers thus all follow the 429

extremum principle, and overflow metabolism must be the result of a second constraint 430

that becomes active. So-called ME-models [36] fall under a slightly different class of 431

mathematical problems, but the onset of overflow metabolism is still caused by an 432

additional active constraint. However, since the above explanations all capture the 433

phenomenon with different constraints and solve the same mathematical problem, we 434

cannot conclude on the mechanistic nature of the constraints, yet. 435

The identity of the enzymatic constraints can be revealed by 436

experimental perturbations 437

We can predict the effect of experimental perturbations on metabolism with the cost 438

vector formalism. Examples of such perturbations are the expression of non-functional 439

proteins or the inhibition of enzymes, which can respectively be interpreted as reducing 440

a limited enzyme pool, or lengthening the cost vectors. The effect of such perturbations 441

on growth, when two EFMs are expressed, was analysed in the cost vector formalism 442

(see S1 Appendix Section 6 and 7 for the analysis). In Figure 5a-d we predict the 443

(qualitative) effect of reducing the accessible area in constraint space for two cases (i) 444

reduction of both enzyme pools by the same amount; or (ii) reduction of only the first 445

constrained pool. We subsequently compare these predictions with the perturbation 446

experiments carried out by Basan et al. [4] (see SI for a mathematical analysis). 447

With this analysis, we suggest a broadly-applicable experimental approach for 448

validating likely growth-limiting constraints. Given a candidate constraint, the theory 449

suggests a perturbation of the size of the corresponding limited enzyme pool, e.g., by 450

the expression of a nonfunctional protein in this pool. Then, the effect of this 451

perturbation on the flux through the active EFMs can be compared with the 452

3Although experimentally the growth rate is set by the dilution rate of the glucose-limited chemostat,
growth rate always correlates with the available glucose concentration.
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predictions, as in Figure 5. Now, we can validate or falsify whether certain limited 453

enzyme pools are truly growth-limiting.4 454

The perturbation predictions can also be used to re-interpret published experiments. 455

For example, the overexpression of the unused protein LacZ coincides with our predicted 456

effect of an equal reduction of two enzyme pools (Figure 5e). The cost of making the 457

cytosolic protein LacZ thus takes up an equal fraction of both constraints. We think 458

this can be explained because LacZ can be considered an average protein in terms of 459

resource requirements. Since metabolism was already tuned to optimally use both 460

limited enzyme pools, all EFMs will now require more of both limited enzyme pools to 461

maintain the growth rate (the cost vectors are lengthened). Therefore, the additional 462

synthesis costs reduce both constrained pools to a similar extent. As a consequence, this 463

analysis cannot decide on the biological interpretation of the constraints. 464

The addition of chloramphenicol is an example where our analysis does indicate that 465

one enzymatic pool is affected more than the other (Figure 5f)). Chloramphenicol 466

inhibits translation and the cell therefore needs a larger number of ribosomes per unit 467

flux. This again adds a cost for protein synthesis, thereby reducing both pools. The 468

dataset however shows that chloramphenicol has a more dominant effect on the first 469

pool (x-axis) than on the second pool (y-axis). This means that the increased number of 470

ribosomes has an additional effect on the first pool, which could well be related to the 471

large cytosolic volume that the ribosomes take up. This suggests that one of the 472

constrained pools is the sum of cytosolic proteins.5 473

Our kinetic, constraint-based approach provides novel biological 474

insight 475

Under-utilization of enzymes appears to be in conflict with optimal resource allocation. 476

For example, Goel et al. [44] studied the switch of L. lactis from mixed-acid 477

fermentation to homolactic fermentation. Since they found constant protein expression 478

as a function of growth rate, they concluded that this metabolic switch cannot be 479

explained from protein cost considerations. However, in Figure 6a) we show that a 480

kinetic model that incorporates different strengths of product inhibition of ATP onto 481

the fermentation pathways can lead to the experimentally observed behaviour when 482

protein allocation is optimized. In our model, the saturation of homolactic fermentation 483

enzymes rapidly increases with growth rate, while the saturation of mixed acid 484

fermentation enzymes decreases slightly due to the increased product inhibition of ATP. 485

As such, metabolic flux can be reallocated without a change in protein allocation (we 486

provide the details in S1 Appendix Section 10). Another example is the expression of 487

large fractions of under-utilized proteins by E. coli at low growth rates [45]. This is also 488

in agreement with optimal resource allocation when one considers the kinetics of 489

enzymes, such that their saturation with reactants is variable. In these two examples, 490

the underutilization of proteins is thus used as an indication that microorganisms do 491

not optimally allocate their resources. We here showed that these supposed 492

counterexamples can in fact be in agreement with optimal resource allocation when one 493

considers a kinetic model, thus including variable metabolite concentrations and enzyme 494

saturations. 495

In the presence of multiple carbon sources, microorganisms might consume them 496

simultaneously [46–48]. We confirmed experimentally that E. coli only co-consumes 497

carbon sources when this increases its growth rate (S1 Appendix Section 12). However, 498

4Alternatively, a specific enzyme could be inhibited; this however introduces the risk of inhibiting
some EFMs more than others, leaving the results potentially uninterpretable.

5Technically, the inhibition of translation could possibly lengthen the cost vectors of all EFMs in the
x-direction to different extents. We study this case separately in S1 Appendix Section 7 and show that
the effects are equivalent to the effects of resizing the first enzyme pool.
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Fig 5. Predictions and experimental results of the perturbation of the size
of limited enzyme pools during growth using a mixture of EFMs. In the cost
vector plots, panels a) and b), the red vector denotes the optimal solution in the
unperturbed organism. Upon experimental perturbation, the available area in
constraint space can change, indicated by the shaded grey areas. The green, blue, and
grey vectors show the new optimal solutions under increasingly strong perturbations.
The predicted effect on the flux through the acetate branch is shown in panels c and d).
a,c) Analysis of perturbations that tighten both protein pools with the same amount
shows that flux and growth rate will decrease proportionally, as observed experimentally
(e)) for the overexpression of LacZ on different carbon sources (data from Basan et
al. [4]). b,d) Perturbations that tighten an enzyme pool that is mostly used by one
EFM (here denoted by CO2) initially cause an increase in flux through the other EFM
in the mixture(Ac). Eventually, at stronger limitations, this flux also decreases. f) This
behaviour is observed, a.o., for translation inhibitor experiments using chloramphenicol
(S1 Appendix Section 7).
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it is yet unclear why co-consumption can be favourable. Optimization models have been 499

made that show simultaneous substrate uptake [47, 48], but the approach of Hermsen et 500

al. [47] is mechanistic and does not provide a fundamental cause, and Beg et al. [48] 501

state that “cells preferentially using the more efficient carbon source would outgrow 502

those that allow the simultaneous utilization of other carbon sources”. Aidelberg et 503

al. [46] state that single objective optimization approaches cannot explain 504

co-consumption. However, we show that co-consuming EFMs (S1 Appendix Section 11) 505

exist that reduce resource costs per unit growth rate, hence leading to higher growth 506

rates. These new EFMs exist when each substrate makes a different set of precursors 507

(see Figure 6b) for an illustration). Consequently, co-consumption can become 508

favourable when reactions connecting a carbon source to a distant precursor are no 509

longer essential. Following this reasoning, one would expect the largest growth benefit if 510

substrates are co-consumed that enter the metabolic network far from each other. 511

Indeed we, as well as others [47], observed the largest growth benefit when 512

lower-glycolytic substrates are combined with upper-glycolytic substrates. 513

Some microbial strategies are seemingly growth rate reducing, such as the 514

anticipatory expression of stress proteins [39] and alternative nutrient transporters [49], 515

and the overcapacity of ribosomes [50]. That these strategies were still selected by 516

evolution is often ascribed to fitness benefits in dynamic conditions. However, in our 517

constraint-based approach these types of behaviours do not have to be growth rate 518

reducing. Some of the protein pools might not be completely exploited, and the 519

expression of proteins might then bring little or no costs. For example, our analysis of 520

overflow metabolism shows that one of the constrained enzyme pools is underused at 521

low growth rates. This underused pool can accommodate proteins that might be 522

favourable for future conditions. For example, say that a microorganism faces a 523

cytosolic and a membrane constraint, but suppose that only the membrane constraint is 524

active at low growth rates. The unused cytosolic capacity can then be exploited for 525

other purposes. The sole activity of a membrane constraint at low growth rates indeed 526

explains why O’Brien et al. observed E. coli to have a ‘nutrient-limited’ [36] growth 527

region at slow growth. 528

Discussion 529

The extremum principle that we derived and illustrated in this work predicts the 530

evolutionary direction on a short timescale, dictating optimal enzyme expression levels. 531

At a given time, the extremum principle predicts that resources are reallocated to the 532

most efficient enzymes at the expense of others that are less active per unit enzyme: 533

evolution reduces the number of active EFMs. On a longer timescale, kinetic 534

parameters and network stoichiometry can evolve, thereby changing the phenotypic 535

potential: evolution modifies the cost vectors. In this new setting, the extremum 536

principle will again predict minimal complexity, although the EFMs that are selected 537

and the flux through these EFMs may have changed. Our theory predicts that a 538

microorganism selected for maximal growth rate will, in static conditions, only express a 539

small number of EFMs and therefore its metabolism is low-dimensional. This could very 540

well be the explanation of the simple linear relations that many experimentally 541

measured relations show [10–12]. This simplicity may also provide an explanation how 542

only a few number of metabolites or proteins (”master regulators” such as CcpA or Crp) 543

seem to regulate (central) metabolism [51]. 544

The insight that the dimensionality of metabolism is bounded by the number of 545

active constraints is applicable to earlier modelling approaches that have used resource 546

allocation principles. Furthermore, we show that the same principles also hold for 547

nonlinear models that include enzyme kinetics and thereby metabolite dependencies. 548

December 21, 2018 18/25

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/167171doi: bioRxiv preprint 

https://doi.org/10.1101/167171
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell-synthesis

Transport

Homolac�c fermenta�on

Mixed-acid fermenta�on

0.1 0.2 0.3 0.4 0.5 0.6
Growth rate

-2

-1

0

1

2

lo
g 2

 o
f 

n
o

rm
al

iz
ed

 
en

zy
m

e 
co

n
ce

n
tr

a�
o

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Growth rate

0

1

fr
ac
�

o
n

 o
f 

to
ta

l
fe

rm
en

ta
�

o
n

 fl
u

x

a) b)
Xylose

Succinate

Succinate EFM
Xylose EFM
Co-consump�on EFM

Cell components

G
ro

w
th

 r
at

e

0.25

0.50

0.75

Fig 6. Under-utilization of enzymes and co-consumption can be
understood with our kinetic, constrained-based approach. a) Model
simulations of the metabolic switch of L. lactis are shown (dashed lines), along with
experimental data from [44]. The flux predictions for both pathways are expressed as a
fraction of the total flux through both pathways. Enzyme concentrations are normalized
to the concentrations at a growth rate of 0.15 and then log-scaled. The model
reproduces the switch from mixed-acid to homolactic fermentation at constant enzyme
concentrations, because of its consideration of enzyme kinetics. Details of this model are
described in S1 Appendix Section 10. To obtain a perfect fit with the data, a larger
model should be invoked, but this is beyond the scope of this paper. We emphasize that
protein concentrations can remain constant while pathway usage changes. b) An
example is shown of a metabolic network with EFMs that use either succinate or xylose
(orange and blue circles respectively), and an EFM (green circles) that uses two carbon
sources. Grey squares denote products that are essential for cell growth. The
co-consumption EFM can synthesize one cell component with succinate, and the other
with xylose. The reaction that connects the upper and lower parts of the network
therefore becomes inessential. This leads to a possible reduction in protein costs and
therefore to a growth rate advantage. We indeed measured a growth rate increase by
the co-consumption of succinate and xylose, as shown in the inset in which different
biological replicates are indicated with different points. Results of the other
combinations that were tested can be found in S1 Appendix Section 12.
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The kinetic self-replicator model presented by Molenaar et al. [5] for example, does not 549

show mixed strategies, but an abrupt switch between respiration and fermentation, 550

testimony of a single active constraint. Indeed, although a membrane protein constraint 551

was included, the size of cells could be freely adjusted to alleviate this constraint. In 552

many studies with genome-scale stoichiometric models, mixed strategies do occur. In all 553

these studies the glucose uptake flux was constrained (first constraint), in combination 554

with some linear combination of fluxes that reflects the (second) constraint that was the 555

focus of the study (solvent capacity, osmotic pressure [19,52], proteome limits [4, 42], 556

membrane [20, 40]). Also in so-called ME (Metabolism and Expression) models [36] and 557

variants thereof [53], growth rate is fixed and nutrient uptake is minimized. Again, 558

overflow is observed in these models when an additional constraint (total proteome) is 559

hit. 560

Even though growth-rate maximization at constant conditions might at times be a 561

rather crude approximation of the selective pressure, we expect the extremum principle 562

to provide an ‘evolutionary arrow of time’. When conditions change frequently, other 563

aspects might come into play and fitness will be captured by the mean growth rate over 564

environments, i.e., the geometric growth rate [1]. Whether extremum principles hold for 565

the maximization of geometric growth rate is an open problem for future theoretical 566

work. 567

Even in static conditions, our theory is based on the assumption that a metabolic 568

rate is maximized. In principle, this rate does not have to be the cell-synthesis rate, but 569

could be another metabolic reaction. This might for example occur in case of 570

specialization in multicellular organisms. However, we do not know if in these cases the 571

selective pressure is strong enough to maximize this rate. Moreover, even 572

microorganisms are not always optimally tuned, as it was shown that titration of ArcA 573

could increase the growth rate of E. coli on glycolytic substrates significantly [54]. 574

Indeed, the extremum principle does not describe metabolism if no rate is maximized, 575

and our theory thus does not describe all suboptimal points in the fitness landscape. 576

However, a principle that characterizes the peaks and shows the direction of increase at 577

every point in a landscape, can still be of great guidance. 578

The success of constraint-based modeling methods suggests that indeed biophysical 579

constraints shape microbial metabolism. However, most constraints used in the 580

literature are postulated and remain unvalidated. Also, the imposed constraints can 581

often not be directly deduced from the physiology of the microorganisms. Our theory 582

suggests a mechanistic way forward for future constraint-based modeling methods. Our 583

theory suggests that a constraint should be imposed for each cellular compartment with 584

a limited solvent capacity for proteins. Since the number of compartments in 585

prokaryotes is generally less than in eukaryotes, because they lack organelles, metabolic 586

behaviour of prokaryotes is generally simpler. 587

Large-scale kinetic models are not yet used to study optimal metabolism. Growth 588

rate maximization in such models quickly becomes computationally infeasible, because 589

all metabolite and enzyme concentrations have to be tuned. Our results can offer some 590

guidance in these large, nonlinear optimization problems. Say there are K constraints in 591

the model, the extremum principle ensures that the optimum has to be found among 592

conical combinations of K EFMs. This fact was already exploited in the case of one 593

constraint in a medium-scale network [55]: EFMs could be optimized separately (which 594

is a strictly convex problem [56]) and the one with the highest growth rate was picked. 595

However, it is doubtful if this computational feasibility can be extended to models with 596

more constraints. With two constraints all pairs of EFMs should already be considered 597

and rate maximization in two EFMs under two constraints is not convex anymore. 598

The extremum principle is a null hypothesis about the course of a particular 599

evolutionary process [57]. It has direct operational implications for evolutionary 600
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engineering strategies, when increasing or decreasing the complexity of microbial 601

metabolism might be desired, for example in industrial biotechnology when 602

co-consumption of different sugars from biomass-hydrolysates is pursued, or if 603

prevention of overflow metabolism during heterologous protein production is attempted. 604

Perhaps, when the growth-limiting constraints for the microorganism of interest have 605

been identified, these could be perturbed to direct evolution in the preferred direction. 606

Conclusion 607

Our theory suggests that metabolism has only a few operational degrees of freedom. By 608

shifting perspective on rate maximization from the entire metabolic network to its 609

representation in the cost vector formalism, we have reduced the problem to its essential 610

dimensions, equal to the number of growth-limiting biophysical constraints. Together 611

with the extremum principle, this work provides a species-overarching, molecular, 612

constraint-based perspective on microbial metabolism. 613

Supporting information 614

S1 Appendix Theoretical derivations, mathematical proofs, core models, 615

and a co-consumption experiment. 616

S1 Source Code Data Analysis Coconsumption Experiment. All raw data 617

and the Matlab-code used for data analysis can be found in the compressed folder 618

attached to the supplements. 619

S2 Source Code Kinetic model of overflow metabolism. The Matlab-code 620

used for modeling overflow metabolism is attached in a compressed folder as a 621

supplement. In the compressed folder, we have also added a text-file with instructions. 622

S3 Source Code Kinetic model of L. lactis. The Matlab-code used for the 623

kinetic model of L. lactis is attached in a compressed folder as a supplement. In the 624

compressed folder, we have also added a text-file with instructions. 625

S4 Source Code Finding coconsumption EFMs The Python and Matlab-code 626

used for finding co-consuming EFMs are attached in a compressed folder as a 627

supplement. In the compressed folder, we have also added a text-file with instructions. 628

S1 Dataset Growth rates co-consumption experiments. 629

SI_growth_rates.txt Estimated growth rates from separate biological replicates. 630

S2 Dataset Substrate concentrations co-consumption experiments. 631

SI_OD_conc_per_cond.xlsx For all different growth media, we include an excell-sheet. 632

Shown are the measured concentrations of carbon sources (normalized for initial 633

concentration), with the corresponding Optical Density (OD). The letters that indicate 634

the conditions denote the available carbon sources in the medium: S=Succinate, 635

L=maLtose, M=Mannose, X=Xylose, G=Glucose. 636
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S3 Dataset Estimated uptake rates co-consumption experiments. 637

SI_q_S_comp_cond.xlsx Shown are the estimated uptake rates (mean and standard 638

deviation) of different carbon sources (normalized for initial concentration) on the 639

different growth media. The letters that indicate the conditions denote the available 640

carbon sources in the medium: S=Succinate, L=maLtose, M=Mannose, X=Xylose, 641

G=Glucose. 642
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