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Abstract 15 

Markers of biological ageing have potential utility in primary care and public health. We 16 
developed an elastic net regression model of age based on untargeted metabolic profiling 17 
across multiple platforms, including nuclear magnetic resonance spectroscopy and liquid 18 
chromatography-mass spectrometry in urine and serum (almost 100,000 features assayed), 19 
within a large sample (N=2,239) from the UK occupational Airwave cohort. We investigated 20 
the determinants of accelerated ageing, including genetic, lifestyle and psychological risk 21 
factors for premature mortality.  The metabolomic age model was well correlated with 22 
chronological age (r=0.85 in independent test set). Increased metabolomic age acceleration 23 
(mAA) was associated (p<0.0025) with overweight/obesity and depression and nominally 24 
associated (p<0.05) with high alcohol use and low income. DNA methylation age 25 
acceleration (N=1,102) was nominally associated (p<0.05) with high alcohol use, anxiety and 26 
post-traumatic stress disorder, but not correlated with mAA. Biological age acceleration may 27 
present an important mechanism linking psycho-social stress to age-related disease. 28 

Introduction 29 

Ageing can be defined as the “time-dependent decline of functional capacity and stress 30 
resistance, associated with increased risk of morbidity and mortality” (Burkle et al., 2015). 31 
Environmental stressors, including social adversity (Fiorito et al., 2017; Stringhini et al., 32 
2017) , psychological disorders (Chiu et al., 2018; Wolf & Morrison, 2017), and genetic 33 
factors(McDaid et al., 2017) may influence the ageing process , leading to differing ageing 34 
rates. Traditionally, quantitative assessment of “the rate of ageing” relies on the analysis of 35 
mortality curves of populations. However, at the level of a living individual, this method does 36 
not allow assessment of the state of ageing (i.e. the state of the functional decline) and a 37 
prediction of the risk of morbidity and remaining life expectancy. Therefore, markers of 38 
‘biological age’ (the ageing state typical of one’s chronological age) that can be assessed at 39 
any point in the lifespan therefore, may have enormous potential in both personalised 40 
medicine and public health.  Since ageing is a process that affects almost all tissues and 41 
organs of the body and involves cross-talk between multiple physiological systems, there 42 
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has been increased research into composite markers of ageing, involving multiple 43 
parameters (Jylhävä, Pedersen, & Hägg, 2017). Levine (Levine, 2013) employed 10 44 
biomarkers representing multiple systems to develop a biological age score, that could better 45 
predict mortality than chronological age. Belsky et al. (Belsky et al., 2015) used a similar 46 
selection of biomarkers measured longitudinally in young adults to develop a biological age 47 
score and found that increased pace of ageing was associated with measures of functional 48 
decline such as cognitive ability. Modern ‘omics’ platforms have provided new opportunities 49 
for the systematic assessment of biological ageing. For example, Horvath (Horvath, 2013) 50 
and Hannum et al. (Hannum et al., 2013) employed genome-wide DNA methylation to 51 
develop highly predictive models of age based on multiple methylated CpG loci. 52 
Furthermore, it has been shown that ‘age acceleration’, defined as having a greater DNA 53 
methylation age than chronological age, is associated with multiple risk factors of mortality 54 
such as low social class, smoking, and alcohol use (Fiorito et al., 2017) and is predictive of 55 
mortality (B. H. Chen et al., 2016; Dugue et al., 2018). Agnostic metabolomics is a promising 56 
candidate technology to develop biomarkers of ageing. Several metabolomic studies have 57 
found strong associations between numerous metabolites and age, although in a limited 58 
sample size (Chaleckis, Murakami, Takada, Kondoh, & Yanagida, 2016; Rist et al., 2017) or 59 
through employing targeted analyses that give limited coverage of the full metabolome (Auro 60 
et al., 2014) (Hertel et al., 2016; Yu et al., 2012). Only the study of Hertel et al. (Hertel et al., 61 
2016) combined a small set of markers to provide an overall assessment of biological 62 
ageing, observing that the predicted metabolomic age was associated with time to death, 63 
after adjustment for chronological age and other risk factors. 64 

In the present study, we have employed untargeted metabolomics across multiple analytical 65 
platforms, providing unprecedented metabolome coverage (almost 100,000 features 66 
assayed), to develop a predictive model of age, within a large sample from the UK 67 
occupational Airwave cohort. A second cohort was used for longitudinal validation of 68 
selected metabolic age predictors. We have explored the relationship between metabolomic 69 
age and DNA methylation age and lifespan associated genetic factors. Furthermore, we 70 
have investigated the determinants of accelerated ageing, focussing on risk factors of 71 
premature mortality, including the WHO “25 x 25” risk factors (World Health Organisation, 72 
2013) (hypertension, diabetes, obesity, smoking, alcohol use and physical inactivity) and 73 
socio-economic and psychological risk factors (income, depression, anxiety, post-traumatic 74 
stress disorder (PTSD)). We show that obesity and depression are associated with 75 
accelerated metabolomic ageing. 76 

Results 77 

Building and validation of the metabolomic age model 78 

The study population included 2,238 participants of the AIRWAVE cohort that had full 79 
metabolomic data. 60.5% of participants were male and mean age was 41.24 years (SD:  80 
9.1, range: 19.2 – 65.2 years). Most participants (97.5%) were of white British ethnicity and 81 
27.8% of participants were educated to degree level. The demographic characteristics of this 82 
sample are representative of the wider cohort(Elliott et al., 2014). Further covariate 83 
information is provided in table 1.  84 

  85 
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Table 1: Demographic and covariate information of participants with metabolomic 86 
data, and bivariate associations with metabolomic age acceleration 87 

   
BIVARIATE ASSOCIATION 
WITH METABOLOMIC AGE 

ACCELERATION 
  

N (%) or Mean (SD) β (95% CI) p value 

DEMOGRAPHIC AND NCD RISK FACTORS 

AGE years 41.24 (9.1) - - 

SEX Female 884 (39.5) - - 
 

Male 1354 (60.5) -0.01 (-0.26, 0.24) 0.94 

MARITAL STATUS Married/cohabiting 1751 (80.2) - - 
 

other 431 (19.8) 0.11 (-0.2, 0.41) 0.5 

ETHNICITY White 2181 (97.5) - - 
 

other 56 (2.5) -0.37 (-1.14, 0.4) 0.35 

BODY MASS INDEX <25 731 (32.7) - - 
 

>=25 & < 30 (overweight) 1041 (46.5) 0.5 (0.23, 0.77) 0.00035 
 

>=30 (obese) 466 (20.8) 1.01 (0.67, 1.34) 4.6E-09 

DIABETIC STATUS Normal 2157 (96.4) - - 
 

Diabetic 80 (3.6) 0.78 (0.13, 1.42) 0.019 

HYPERTENSION No 1540 (68.8) - - 
 

Yes 697 (31.2) 0.20 (-0.06, 0.46) 0.13 

INCOME High 879 (39.4) - - 
 

Medium 812 (36.4) 0.26 (-0.01, 0.54) 0.062 
 

Low 538 (24.1) 0.2 (-0.11, 0.51) 0.2 

ALCOHOL 
CONSUMPTION 

None 174 (7.8) - - 

 
Moderate 1876 (83.9) 0.13 (-0.32, 0.58) 0.57 

 
Heavy 187 (8.4) 1.02 (0.42, 1.62) 0.00085 

SMOKING Non-smoker 1539 (68.8) - - 
 

Former smoker 477 (21.3) 0.41 (0.11, 0.7) 0.0077 
 

Current smoker 221 (9.9) -0.23 (-0.64, 0.18) 0.28 

PHYSICAL 
ACTIVITY 

High 1305 (58.3) - - 

 
Moderate 585 (26.1) -0.21 (-0.5, 0.07) 0.14 

 
Low 348 (15.5) 0.21 (-0.13, 0.56) 0.23 

PSYCHOLOGICAL FACTORS 

DEPRESSION 
DIAGNOSIS 

Normal 1545 (69.1) - - 

 
Minimal symptoms 501 (22.4) 0.45 (0.16, 0.74) 0.0023 

 
Depression 191 (8.5) 0.91 (0.47, 1.34) 4.5E-05 

ANXIETY 
DIAGNOSIS 

Normal 1733 (79) - - 

 
Borderline 274 (12.5) 0.20 (-0.17, 0.56) 0.3 

 
Anxiety case 188 (8.6) 0.52 (0.09, 0.96) 0.019 

EXPERIENCED 
TRAUMA IN LAST 6 

MONTHS 

No 1896 (84.7) - - 

 
Yes, without PTSD 261 (11.7) 0.14 (-0.24, 0.51) 0.47 

 
Yes, with PTSD 81 (3.6) 0.42 (-0.22, 1.07) 0.2 

DIETARY VARIABLES 
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FISH 
CONSUMPTION 

None 541 (28.6) - - 

 
Medium 697 (36.8) 0.25 (-0.08, 0.58) 0.14 

 
High 654 (34.6) 0.51 (0.17, 0.84) 0.0029 

FRUIT 
CONSUMPTION 

Low 634 (33.5) - - 

 
Medium 637 (33.7) 0.11 (-0.22, 0.43) 0.51 

 
High 621 (32.8) 0.11 (-0.21, 0.44) 0.50 

RED MEAT 
CONSUMPTION 

Low 580 (30.7) - - 

 
Medium 704 (37.2) 0.21 (-0.11, 0.54) 0.20 

 
High 608 (32.1) 0.12 (-0.22, 0.45) 0.49 

VEGETABLE 
CONSUMPTION 

Low 23 (1.2) - - 

 
Medium 627 (33.1) 0.17 (-0.16, 0.5) 0.31 

 
High 617 (32.6) 0.08 (-0.24, 0.41) 0.61 

WHOLE GRAIN 
CONSUMPTION 

Low 648 (34.2) - - 

 
Medium 604 (31.9) 0.23 (-0.1, 0.56) 0.17 

 
High 661 (34.9) 0.17 (-0.15, 0.49) 0.3 

DASH SCORE <20 (least healthy) 344 (18.2) - - 
 

≥20 and <23 357 (18.9) 0.54 (0.1, 0.97) 0.015 
 

≥23 and <25 297 (15.7) 0.18 (-0.28, 0.63) 0.45 
 

≥25 and <28 396 (20.9) 0.67 (0.24, 1.09) 0.002 
 

> 28 (most healthy) 498 (26.3) 0.23 (-0.17, 0.64) 0.26 

MEDITERRANEAN 
DIET SCORE 

continuous (1-10) 4.73 (1.82) -0.03 (-0.11, 0.04) 0.35 

CLINICAL BIOMARKERS 

SYSTOLIC BLOOD 
PRESSURE 

mmHg 130.85 (15.21) 0.01 (0, 0.01) 0.082 

DIASTOLIC BLOOD 
PRESSURE 

mmHg 79.67 (10.1) 0.01 (-0.01, 0.02) 0.28 

PULSE beats/minute 70.37 (11.44) 0 (-0.01, 0.01) 0.76 

FIBRINOGEN g/L 3.87 (0.88) 0.02 (-0.12, 0.16) 0.75 

PROTHROMBIN 
TIME 

seconds 13.64 (1.41) -0.08 (-0.17, 0) 0.058 

C-REACTIVE 
PROTEIN 

mg/l 1.92 (3.1) 0.02 (-0.02, 0.06) 0.40 

CREATININE µmol / L 92.35 (12.73) 0.01 (0, 0.02) 0.017 

TOTAL 
CHOLESTEROL 

mmol/l 5.25 (1.01) 0.41 (0.29, 0.53) 9.6E-12 

HIGH DENSITY 
LIPOPROTEIN 

mmol/L 1.5 (0.39) 0.06 (-0.24, 0.37) 0.68 

Γ-GLUTAMYL 
TRANSFERASE 

U/L 31.35 (24.06) 0.01 (0.01, 0.02) 1.7E-05 

APOLIPOPROTEIN 
A 

g/L 1.35 (0.3) -0.14 (-0.54, 0.25) 0.48 

APOLIPOPROTEIN 
B 

g/L 0.93 (0.23) 1.55 (1.04, 2.07) 3.9E-09 

% GLYCATED 
HAEMOGLOBIN 

% 5.63 (0.48) 0.32 (0.07, 0.57) 0.013 

UREA µmol / L 5.04 (1.17) 0.08 (-0.02, 0.18) 0.12 

 88 

Metabolomic data were acquired from both urine and serum samples using multiple Nuclear 89 
Magnetic Resonance Spectroscopy (NMR) and Ultra-Performance Liquid Chromatography - 90 
Mass Spectrometry (UPLC-MS) platforms, providing in total nine different metabolomic data 91 
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types (table s1). For purposes of constructing the main predictive model of age through 92 
elastic net regression, these data types were combined into one metabolomic dataset, giving 93 
a total of 98,824 metabolic features. 94 

In the first stage of model building, an analysis by metabolomic platform (sequentially leaving  95 
on platform out each time) indicated that predictive performance (minimisation of mean 96 
squared error in 10-fold cross validation) was improved through using only the four following 97 
platforms (figure s1): Bruker IVDr Lipoprotein Subclass Analysis derived from NMR in serum 98 
(“sBiLISA”), lipid-targeted reverse-phase UPLC-MS in positive mode in serum (“sLPOS”), 99 
reverse-phase UPLC-MS in positive mode in urine (“uRPOS”) and hydrophilic interaction 100 
UPLC-MS in positive mode in urine (“uHPOS”) to give a total of 28941 metabolic features. 101 
The final predictive model selected 525 predictors from across this set (see table s2 for list of 102 
predictors along with table s3 annotation information), including 8 lipoprotein subclasses 103 
from sBiLISA and 219, 104 and 194 features (retention time-m/z pairs) from the sLPOS, 104 
uHPOS and uRPOS platforms respectively. The model predicted age with high accuracy 105 
(mean absolute error, (MAE) = 1.47 years) in the building data set (80% of data n= 1790), 106 
with a correlation between chronological age and predicted age of 0.96 (figure 1a). When 107 
this model was applied to the independent validation dataset, consisting of the remaining 108 
20% of study participants (N = 448), the MAE was 3.80 years and the correlation between 109 
predicted age and chronological age was 0.85 (figure 1a). 110 

 111 

Figure 1: Summary of metabolomic age prediction model. A: Predicted age plotted 112 
against chronological age in training set. Pearson’s correlation coefficient (r) is 113 
shown. B: Predicted age plotted against chronological age in test set. Pearson’s 114 
correlation coefficient (r) is shown 115 

Pathway enrichment analysis, using the Mummichog algorithm performed across the UPLC-116 
MS derived model predictors, identified enrichment (p < 0.05) in eleven metabolic pathways 117 
(table 2): Vitamin E metabolism, Tryptophan metabolism, CoA Catabolism, Urea cycle/amino 118 
group metabolism, Lysine metabolism, Carnitine shuttle, Vitamin B5 - CoA biosynthesis from 119 
pantothenate, Biopterin metabolism, Drug metabolism - cytochrome P450, Tyrosine 120 
metabolism, and Aspartate and asparagine metabolism. 121 
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Table 2: Significantly enriched metabolic pathways among metabolomic age 122 
predictors 123 

PATHWAYS 
OVERLAP 

SIZE 
PATHWAY 

SIZE 
P-

VALUE 

VITAMIN E METABOLISM 15 37 0.00128 

TRYPTOPHAN METABOLISM 23 69 0.00165 

COA CATABOLISM 4 6 0.00255 

UREA CYCLE/AMINO GROUP METABOLISM 17 52 0.0027 

LYSINE METABOLISM 10 29 0.00452 

CARNITINE SHUTTLE 11 33 0.00476 

VITAMIN B5 - COA BIOSYNTHESIS FROM 
PANTOTHENATE 

5 11 0.00492 

BIOPTERIN METABOLISM 6 15 0.00563 

DRUG METABOLISM - CYTOCHROME P450 15 52 0.00942 

TYROSINE METABOLISM 24 91 0.0146 

ASPARTATE AND ASPARAGINE METABOLISM 18 71 0.03215 

 124 

We examined concentration changes of nine metabolites included in our age prediction 125 
model, that were available in an independent cohort, the Northern Finnish Birth Cohort 1966, 126 
that had serum NMR metabolomic data measured at two ages, 31 and 46 yrs, among 2144 127 
individuals. Seven of these metabolites (77%) changed significantly with age (p < 0.05), in 128 
the same direction as predicted in the metabolomic age model (table 3). 129 

Table 3: Validation of selected metabolomic age predictors in the Northern Finnish 130 
Birth Cohort 131 

PLATFORM 
FEATURE 

NAME 
MOLECULE 

CO-
EFFICIENT 

IN 
AIRWAVEA 

MEAN 
CHANGE 
IN NFBC B 

(SD) 

P 
VALUE 

IN NFBC 

 
U_RPOS 

1.49_154.0
844m/z 

L-Leucine -0.24 
-0.05 
(0.19) 

2.20E-
12 

U_RPOS 
1.10_147.0

285m/z 
Citrate 0.20 0.11 (0.21) 

2.20E-
12 

S_BILISA IDPL 
Phospoholipids in intermediate density 

lipoproteins 
-0.20 0.09 (0.23) 1 

S_BILISA HDTG 
Triglycerides in high density 

lipoproteins 
0.20 0.01 (0.36) 0.08 

S_BILISA L3TG 
Triglycerides in low density lipoproteins 

(medium size  subclass) 
0.12 0.01 (0.46) 

2.20E-
12 

S_BILISA V6TG 
Triglycerides in very low density  

lipoproteins (smallest size 6 subclass) 
-0.37 

-0.02 
(0.35) 

0.004 

S_BILISA V6CH 
Cholesterol in very low density 

lipoproteins (smallest size 6 subclass) 
-0.44 

-0.03 
(0.23) 

9.60E-
10 

S_BILISA TPA1 Apo-A1 in total plasma 0.31 0.05 (0.15) 
2.20E-

12 

S_BILISA H1TG 
Triglycerides in high density  

lipoproteins (largest size 1 subclass) 
0.20 0.02 (0.46) 

5.00E-
02 

A Per standard deviation change in feature intensity. B Mean difference between measurements at 31 132 
and 46 years. NFBC = Northern Finnish Birth Cohort 1966 133 

Metabolomic age, DNA methylation and genetic predictors of longevity 134 

DNA methylation age was assessed for 1102 participants. Demographic characteristics for 135 
this sample were similar to those for participants with metabolomic age available (table s4). 136 
DNA methylation age predicted chronological age with a MAE of 4.37 years. DNA 137 
methylation age was strongly correlated with chronological age (r=0.91, figure 2a) and 138 
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metabolomic age (n = 837, r = 0.85, figure 2b). Age acceleration scores were derived for 139 
both DNA methylation age acceleration (DNAmAA) and metabolomic age acceleration 140 
(mAA), as the difference, at a given age, between actual and predicted age. However, no 141 
correlation was observed between DNAmAA and mAA (r = 0.02, figure 2c). 142 

 143 

Figure 2: Relationships between different age measures. A. DNA methylation age 144 
plotted against chronological age. B: metabolic age plotted against DNA methylation 145 
age. C. MetAA plotted against DNAmethAA. Pearson’s correlation coefficients (r) are 146 
shown 147 

Table s5 shows mean age acceleration scores by genotype for 10 single nucleotide 148 
polymorphisms (SNPs), that have robust associations with parental attained age, identified 149 
in two recent studies within the UK Biobank (Joshi et al., 2017; Pilling et al., 2017). 150 
Associations of borderline nominal significance that were consistent with genetic effects on 151 
lifespan (i.e. age acceleration increases with genotype associated with shorter lifespan or 152 
visa versa) were observed only for a SNP in APOE locus with both mAA (p = 0.05) and 153 
DNAmAA (p =0.07). A weighted genetic risk score (GRS) for shortened lifespan (derived 154 
from these 10 SNPs) increased mAA by 1.55 (95% confidence interval (CI): -1.71, 4.81) and 155 
DNAmAA by 2.87 (95% CI:  -1.56, 7.29) per GIS unit, although this was not statistically 156 
significant (p=0.35 with mAA and p=0.20 with DNAmAA). 157 

Risk factors of age acceleration 158 

In bivariate analyses (table 1) we observed increased mAA (p < 0.05) among participants 159 
who were diabetic, heavy drinkers, overweight or obese, former smokers, or were suffering 160 
from depression, anxiety or PTSD. Clinical biomarkers associated with mAA included 161 
creatinine, total cholesterol, γ-glutamyl transferase (GGT) apolipoprotein B and glycated 162 
haemoglobin (%HBa1C). Regarding dietary intake in the week prior to sampling, those who 163 
reported high fish consumption and those in the second or fourth quintiles of the DASH 164 
score (compared to the first quintile, the least healthy dietary pattern) also had increased 165 
mAA. In bivariate analyses with DNAmAA (table s4), sex was associated at p<0.05, with an 166 
increase in DNAmAA of 0.89 (interpretable as years of increase in DNA methylation age, 167 
95% CI:  0.47, 1.30) in men compared to women. Clinical biomarkers associated with 168 
DNAmAA in bivariate analyses included creatinine, high density lipoproteins, GGT and 169 
apolipoprotein A. 170 

Table 5 shows adjusted associations with mAA and DNAmAA for non-communicable 171 
disease and psychological risk factors (adjusted for sex, ethnicity, study centre, income, 172 
hypertension, diabetes, BMI, smoking, alcohol intake, physical activity, DASH score and fish 173 
consumption). We observed nominally significant increases (p<0.05) in mAA with 174 
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overweight, obesity, heavy drinking, lower income, depressive symptoms and depression, 175 
ranging from 0.35 (95% CI: 0.01, 0.69) for low income compared to those with high income, 176 
to 0.97 (95% CI: 0.57, 1.37) for obesity compared to those of normal weight. Significant 177 
increases in DNAmAA were observed with heavy drinking, anxiety and PTSD, ranging 0.92 178 
(95% CI: 0.03, 1.80) for anxiety compared to those without anxiety symptoms, to 2.15 (95% 179 
CI: 0.31, 4.00) for PTSD compared to those who had not experienced trauma in the past six 180 
months. Associations between overweight/obesity and depression and mAA remained 181 
significant (p < 0.0025) after correction for multiple testing.  182 

Table 5: Adjusted associations between disease risk factors and age acceleration 183 
scores 184 

  
ADJUSTED ASSOCIATIONS 
WITH METABOLOMIC AGE 

ACCELERATION 

ADJUSTED 
ASSOCIATIONS WITH 

DNA METHYLATION AGE 
ACCELERATION   

β (95% CI) p value β (95% CI) p 
value 

DIABETIC STATUS Normal - - - - 
 

Diabetic 0.34 (-0.41, 1.1) 0.37 0.54 (-0.75, 1.83) 0.41 

HYPERTENSION No - - - - 
 

Yes -0.05 (-0.36, 0.25) 0.73 -0.12 (-0.66, 0.42) 0.66 

INCOME High - - - - 
 

Medium 0.36 (0.06, 0.67) 0.019 -0.01 (-0.55, 0.54) 0.98 
 

Low 0.35 (0.01, 0.69) 0.042 0.50 (-0.10, 1.10) 0.10 

ALCOHOL 
CONSUMPTION 

None - - - - 

 
Moderate 0.08 (-0.42, 0.58) 0.75 0.67 (-0.28, 1.61) 0.17 

 
Heavy 0.91 (0.23, 1.58) 0.008 1.37 (0.09, 2.64) 0.036 

BMI <25 - - - - 
 

>=25 & < 30 
(overweight) 

0.57 (0.26, 0.89) 4.2E-04* 0.04 (-0.51, 0.6) 0.88 

 
>=30 (obese) 0.97 (0.57, 1.37) 2.1E-06* 0.11 (-0.61, 0.82) 0.77 

SMOKING Non-smoker - - - - 
 

Former smoker 0.29 (-0.04, 0.62) 0.086 -0.13 (-0.69, 0.42) 0.64 
 

Current smoker -0.32 (-0.77, 0.13) 0.17 -0.6 (-1.41, 0.2) 0.14 

PHYSICAL 
ACTIVITY 

High - - - - 

 
Moderate -0.28 (-0.59, 0.03) 0.074 -0.28 (-0.83, 0.27) 0.32 

 
Low 0.22 (-0.16, 0.6) 0.26 -0.11 (-0.77, 0.56) 0.75 

 DEPRESSION 
DIAGNOSIS 

Normal - - - - 

 
Minimal 

symptoms 
0.38 (0.05, 0.7) 0.023 0.20 (-0.38, 0.78) 0.50 

 
Depression 0.74 (0.26, 1.22) 0.0024* 0.14 (-0.71, 0.99) 0.75 

 ANXIETY 
DIAGNOSIS 

Normal - - - - 

 
Borderline 0.11 (-0.29, 0.51) 0.59 0.03 (-0.67, 0.74) 0.92 

 
Anxiety case 0.49 (-0.01, 0.98) 0.055 0.92 (0.03, 1.8) 0.043 

EXPERIENCED 
TRAUMA IN LAST 6 

MONTHS 

No - - - - 

 
Yes, without 

PTSD 
0.29 (-0.11, 0.7) 0.16 -0.22 (-0.9, 0.45) 0.51 

 
Yes, with PTSD 0.59 (-0.13, 1.31) 0.11 2.15 (0.31, 4) 0.022 
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Models adjusted for sex, ethnicity, study centre, income, hypertension, diabetes, BMI, smoking, 185 
alcohol intake, physical activity, DASH score and fish consumption. * indicates p values that pass 186 
multiple testing correction. 187 

Discussion 188 

In an important proof of principle study, we have demonstrated in a large nationwide cohort 189 
study that metabolomic profiling may be used to predict chronological age with high 190 
accuracy among working age adults. We employed a wide range of metabolomic platforms 191 
to provide the broadest metabolome coverage yet presented in population-based studies. 192 
We found that metabolomic age acceleration, defined as having a greater predicted 193 
metabolomic age than chronological age, was associated, after multiple testing correction, 194 
with overweight/obesity and depression and nominally associated with low income and high 195 
alcohol intake. We did not observe an association between epigenetic age acceleration and 196 
metabolomic age acceleration, suggesting these measures capture separate aspects of the 197 
ageing process. We observed a different pattern of risk factors nominally associated with 198 
epigenetic accelerated ageing including being male, heavy drinking, anxiety and PTSD. 199 

The correlation between chronological and predicted age, of our measure of metabolomic 200 
ageing (r= 0.86 in the validation dataset), was somewhat lower than that of the Hannum 201 
epigenetic age clock in our cohort (r= 0.91) but greater than reported for other biological 202 
ageing markers, including the measure based on urinary NMR data (Hertel et al., 2016)(r = 203 
0.53 in men and  0.61 in women in validation dataset), the blood transcriptomic clock (Peters 204 
et al., 2015) (r = 0.35- 0.74 depending on cohort) and telomere length (r ~ 0.3 (Muezzinler, 205 
Zaineddin, & Brenner, 2013)). Biological ageing markers aim to better capture the body’s 206 
rate of decline or physiological breakdown than chronological age itself and should therefore 207 
also be more predictive of mortality and age-related disease. The associations we observed 208 
between accelerated metabolomic ageing and factors known to increase risk of mortality, 209 
suggest that metabolomic age may capture this physiological decline.  210 

Strong associations with mAA were observed with overweight and obesity. These conditions 211 
are forms of metabolic dysregulation and their additional metabolic burden may increase the 212 
rate of decline of the metabolic systems of the body. Genetic predisposition to longevity is 213 
associated with low levels of abdominal visceral fat (Sala et al., 2015) and many different 214 
conditions that prolong lifespan in animal models also improve obesity-related conditions. 215 
Furthermore, obesity has been linked to telomere shortening, and drastic measures to 216 
combat morbid obesity like bariatric surgery can actually cause a recovery in telomere length 217 
(Laimer et al., 2015).  Much is now known about the ageing process at the molecular level 218 
primarily from experimental work. López-Otín et al.(López-Otín, Blasco, Partridge, Serrano, 219 
& Kroemer, 2013) proposed nine ‘hallmarks of ageing’ that may all be expected to have 220 
detectable effects on the metabolome and overlap significantly with the effects of metabolic 221 
disorders (López-Otín, Galluzzi, Freije, Madeo, & Kroemer, 2016). For instance, the hallmark 222 
‘deregulated nutrient signalling’ refers to pathways that sense and respond to nutrient 223 
availability such as “insulin and IGF1 signalling” (IIS) pathway, which is altered among 224 
diabetics.  225 

We observed multiple metabolomic pathways enriched among the predictors of our 226 
metabolomic clock that reflect fundamental metabolic processes and are closely related to 227 
these hallmarks.  We observed enrichment of the pathway related to metabolism of Vitamin 228 
E, a potent anti-oxidant and anti-inflammatory agent that protects cell membranes from 229 
oxidative damage that can induce genome instability (Claycombe & Meydani, 2001). As a 230 
primary hallmark, genome instability has far-reaching and complex consequences including 231 
altered nutrient sensing, energy metabolism and redox balance (Garinis, van der Horst, Vijg, 232 
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& H.J. Hoeijmakers, 2008). Many human progerias are disorders accompanied by the 233 
hyperactivation of DNA repair machinery dependent on nicotinamide adenine dinucleotide 234 
(NAD+). This hyperactivation leads to NAD+ depletion, resulting in inhibition of the NAD+-235 
dependent nutrient sensor sirtuin 1 (SIRT1) (Fang et al., 2014). Levels of NAD+ are also 236 
affected by other factors including circadian rhythm disruption, chronic inflammation (Verdin, 237 
2015) and tryptophan metabolism (also enriched among the metabolomic clock predictors). 238 
The functional impairment of SIRT1 (Gomes et al., 2013), which limits expression of nuclear 239 
genes encoding mitochondrial proteins, leads directly to the hallmark mitochondrial 240 
dysfunction. We observed enrichment among the metabolomic clock predictors of the 241 
pathways CoA catabolism, Vitamin B5 - CoA biosynthesis from pantothenate and lysine 242 
metabolism, which all maintain acetyl-coA levels necessary for mitochondrial reactions, and 243 
carnitine shuttle, which is required for the transport of fatty acids for beta-oxidation in the 244 
mitochondria. The enrichment of these pathways suggests the importance of the 245 
mitochondrial dysfunction hallmark in our metabolomic ageing model. SIRT1 also contributes 246 
to regulating the circadian oscillation of acetyl-coA levels (Sahar et al., 2014) which has 247 
been linked to the ageing process (Chang & Guarente, 2013) and epigenetic alterations 248 
through acetylation (Su, Wellen, & Rabinowitz, 2016). Mitochondrial fitness further has 249 
impact on other ageing hallmarks (López-Otín et al., 2016), including genomic instability 250 
(dysfunctional mitochondria are major sources of genotoxic ROS), altered intercellular 251 
communication (ROS overgeneration is connected to the secretion of inflammatory 252 
mediators) and stem cell exhaustion (which are particularly sensitive to ROS (Ito et al., 253 
2006)). The observed enrichment of the urea cycle and aspartate and asparagine 254 
metabolism pathways will also result from perturbation to the Krebs and urea cycles 255 
following changes in mitochondrial fitness. 256 

The enrichment of the tryptophan, tyrosine and biopterin metabolic pathways appear to 257 
relate to the hallmark ‘altered intercellular communication’. Tyrosine is required for signal 258 
transduction through incorporation into protein kinases, while tryptophan and biopterin are 259 
necessary for synthesis of neurotransmitters including dopamine, norepinephrine, 260 
epinepherine, serotonin and melatonin. Alterations to neurotransmitter levels may underlie 261 
the associations we observed between mAA with depressive symptoms and depression. 262 
Both psychological distress and major depression had similar hazard ratios for mortality in a 263 
recent prospective study (Chiu et al., 2018), which would be consistent with the observed 264 
increases in mAA for both  depressive symptoms and depression. Anxiety was also 265 
associated with increased mAA, albeit a smaller increase than observed for depression. 266 
While in this cross-sectional study we cannot disentangle the causal direction between 267 
depression and mAA, a study of biological ageing among elderly people found that 268 
accelerated biological age was associated with depressive symptoms at baseline and was 269 
also predictive of depressive symptoms at follow-up (Brown et al., 2017). Consistent 270 
evidence demonstrates a bi-directional association between depression and so-called 271 
metabolic syndrome, suggesting common pathological roots (Marazziti, Rutigliano, Baroni, 272 
Landi, & Dell'Osso, 2014). Proposed pathophysiological commonalities include abnormal 273 
activation of the hypothalamic–pituitary–adrenal (HPA) axis and altered levels of circulating 274 
leptin and ghrelin, two peripheral hormones that are classically implicated in the homeostatic 275 
control of food intake. A large body of research has investigated the concept of ‘allostatic 276 
load’ whereby repeated activation of the HPA axis leads to biological ‘wear and tear’ or 277 
physiological decline of downstream metabolic, immune and cardiovascular systems 278 
(McEwen & Seeman, 1999). Many studies have demonstrated a link between social 279 
adversity (Castagne et al., 2018; Dowd, Simanek, & Aiello, 2009) and allostatic load and it is 280 
theorised that chronic stress associated with low socio-economic position leads to prolonged 281 
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activation of the HPA axis. We observed that lower income was nominally associated with 282 
increased mAA, which may similarly be considered to capture physiological decline.  283 

We observed increases in DNAmAA associated with anxiety, PTSD and low income that 284 
were generally of greater size than for mAA. Meta-analyses have shown that both PTSD 285 
(Wolf & Morrison, 2017) and low socio-economic position (Fiorito et al., 2017) to be 286 
associated with increases in DNAmAA. We did not observe any evidence for an association 287 
between depression and DNAmAA, suggesting the two ageing measures may be sensitive 288 
to separate dimensions of mental health. The DNA methylation clock has been shown to 289 
perform well as marker of biological age since it is predictive of all-cause mortality, even 290 
after adjusting for chronological age and a variety of known risk factors, and is associated 291 
with physical measures of ageing such as frailty and cognitive decline (Horvath et al., 2016). 292 
However, other biological ageing markers may add value in capturing different aspects of the 293 
ageing process. Peters et al. (Peters et al., 2015) reported that transcriptomic age was only 294 
moderately correlated with DNA methylation age and the different measures were 295 
associated with different ageing phenotypes. Similarly, Belsky et al. (Belsky et al., 2016) 296 
report only weak correlations between telomere length, DNA methylation age, and a 297 
composite biomarker-based measure of biological ageing among young adults. While 298 
metabolomic and DNA methylation age were correlated in our study, there was no 299 
association between mAA and DNAmAA. DNAmAA has been shown to be predictive of 300 
cancer related mortality but not CVD (Dugue et al., 2018; Horvath et al., 2016) while the risk 301 
factors associated with mAA suggest it may be predictive of cardio-metabolic related 302 
disease. Accelerated transcriptomic age was found to be similarly associated with CVD risk 303 
factors, although it was not related to mental health (Peters et al., 2015). Further research 304 
into biological ageing may consider combining markers at different levels of biological 305 
organisation to provide a more complete picture of the ageing process. 306 

There was suggestive evidence for a small association between the APOE gene and both 307 
mAA and DNAmAA. This gene has the strongest effects on attained age and is the only 308 
genetic variant replicated across populations in studies of human longevity (Partridge, 309 
Deelen, & Slagboom, 2018). It plays a key role in lipoprotein metabolism and has been 310 
associated with multiple are-related disorders including cognitive decline (De Jager et al., 311 
2012) and Alzheimer’s disease (Marioni et al., 2018) . The role of the APOE gene in these 312 
biological age markers, requires further study in larger, independent populations. 313 

This study had some important limitations. The study was cross-sectional, based on a single 314 
biological sampling from participants at a wide range of ages. It is therefore difficult to 315 
separate processes relating to the ageing itself from cohort effects associated with the 316 
different environment of people at different ages. This is particularly a problem for analyses 317 
of the metabolome which contains both endogenous metabolites related to physiological 318 
processes such as ageing and short-lived exogenous metabolites related to factors such as 319 
diet and medication. Indeed, we observed that fish consumption, which is associated with 320 
reduced risk of mortality (Zhao et al., 2016), actually increased mAA, likely due to the 321 
confounding of our model by cohort effects. We addressed these points in two ways: Firstly, 322 
we validated some of the metabolomic age predictors that were available in an independent 323 
cohort at two timepoints (15 years apart) in the early adult life of the same individuals. We 324 
found that there were highly significant changes in levels of the majority of metabolites we 325 
checked, in the same direction as predicted by the metabolomic age model. Secondly, we 326 
adjusted associations with mAA for diet that had been assessed through a food diary in the 327 
week prior to sampling. Pathways that were enriched in our model were generally related to 328 
physiological processes known to be related to ageing, with the possible exception of the 329 
drug metabolism pathway. However, medication history was unavailable in this study. Also, 330 
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we did not have participants at the oldest ages (>65 yrs). It is known that biological ageing 331 
becomes more variable within the elderly and further work is required to test the 332 
performance of our modelling approach within older populations.  333 

The use of untargeted metabolomics presents both strengths and limitations. Untargeted 334 
analyses reduce the potential to apply the full model in separate metabolomic datasets due 335 
to differences in retention time and mass accuracy in different runs of spectral acquisition. 336 
Furthermore, full laboratory annotation of all predictors was outside the scope of the present 337 
study and may not even be possible for some predictors without current database matches. 338 
However, the aim of the study was to develop an overall predictive model to assess 339 
metabolic ageing rather than identify individual predictors. Indeed, the nature of the variable 340 
selection method used means that an equally valid predictive model can be built on different 341 
sets of predictors. We used the Mummichog pathway analysis tool to extract information at 342 
the pathway level, as the algorithm bypasses laboratory annotation based on the assumption 343 
that misidentification will apply equally both to the feature set (metabolites included in the 344 
age prediction model) and the reference set (metabolites not selected into the model). The 345 
tool has been validated in separate datasets that have also undergone full laboratory 346 
annotation (Li et al., 2013). We incorporated a range of MS platforms able to detect both 347 
lipophilic and hydrophilic molecules at low concentrations and NMR platforms able to detect 348 
larger structures such as lipoproteins that would be destroyed during MS acquisition. We 349 
also analysed both serum and urine that contain different sets of metabolites – more 350 
lipophilic molecules in serum and more polar molecules that are present at higher 351 
concentrations in urine. Together, we were able to assay a large portion of the metabolome 352 
that would not be possible with current targeted methods.  353 

Other strengths include the incorporation of genomic and DNA methylation data, the wide 354 
age range of participants including those in early adult life where ageing interventions may 355 
be most effective (Moffitt, Belsky, Danese, Poulton, & Caspi, 2017), and the use of validated 356 
psychological instruments. Future work will assess the effects of mAA on functional ageing 357 
measures and other health endpoints and assess metabolomic age in longitudinal, repeat 358 
samples. 359 

In conclusion, we have developed a predictive indicator of aging based on broad 360 
metabolomic analysis among working age adults. We found that while mAA, the difference 361 
between metabolomic and chronological age, was not related to DNAmAA, it was associated 362 
with mortality risk factors including overweight/obesity, heavy alcohol use and psycho-social 363 
factors including depression and lower income. Biological age acceleration may be an 364 
important mechanism linking psycho-social stress to age-related disease. Advances in life 365 
expectancies have led to an increased prevalence of age-related morbidities. Targeting the 366 
process of ageing itself, through changes in living conditions, behaviours or therapeutic 367 
interventions, may help more people experience healthy ageing. 368 

Materials and Methods 369 

Cohort and covariate information 370 

The Airwave Health Monitoring Study is an occupational cohort of employees of 28 police 371 
forces from across Great Britain. Full details of the cohort and methods are available in 372 
Elliott et al (Elliott et al., 2014). The study started recruitment in 2006 and now contains 373 
53,280 participants. The study received ethical approval from the National Health Service 374 
Multi-Site Research Ethics Committee (MREC/13/NW/0588). At the baseline health 375 
screening, participants underwent health examination, self-completed a computer 376 
questionnaire and provided urine and blood samples. Blood samples were spun at the health 377 
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clinic and the biological samples were stored in a Thermoporter (LaminarMedica) and sent 378 
overnight from the clinics for next-day analysis of standard clinical chemistry tests or were 379 
frozen at -80 °C long term storage. DNA samples and plasma for metabolomic analysis were 380 
extracted from blood collected in EDTA tubes. 381 

Important covariates in the analysis were categorised from self-report or clinical data as 382 
follows: Ethnicity was defined as ‘white’ or otherwise. Marital status was defined as living 383 
with partner or otherwise. Income was defined as low, medium or high, based on terciles of 384 
total net household income after adjustment for the number of dependant household 385 
members. Alcohol use was classed as non-drinker, moderate drinker (≤ 14 alcohol 386 
units/week for women and ≤ 21 alcohol units/week for men) or heavy drinker (> 14 alcohol 387 
units/week for women and >21 alcohol units/week for men).  Hypertension was defined as 388 
ether reported diagnosis or systolic blood pressure ≥ 140 mmHg or diastolic blood pressure 389 
≥ 90 mmHg. Diabetic status was defined as normal (no diagnosis and HbA1c < 6.5%), or 390 
diabetic (diagnosis or HbA1c ≥ 6.5%). Physical activity was defined as low, moderate or high 391 
based on the scoring protocol of the International Physical Activity Questionnaire (The IPAQ 392 
group, 2016) . 393 

Psychological instruments 394 

The Patient Health Questionnaire – 9 depression questionnaire was used to define 395 
participants as “normal (i.e. no depression)”, “minimal symptoms of depression” or as a 396 
“depression case” (Kroenke, Spitzer, & Williams, 2001). The Hospital Anxiety and 397 
Depression Scale questionnaire was used to assess anxiety levels as “normal (i.e. no 398 
anxiety)”, “borderline” and “anxiety case” (Zigmond & Snaith, 1983). Participants were asked 399 
if they had experienced a work-related traumatic incident in the previous six months. Those 400 
who reported a traumatic incident were then asked to complete a brief screening instrument 401 
for post-traumatic stress disorder (PTSD) (Brewin et al., 2002). Participants were thus 402 
classed into three categories: “not experienced traumatic incident in past 6 months”, 403 
“experienced traumatic incident in past 6 months without leading to PTSD”, and 404 
“experienced traumatic incident in past 6 months leading to PTSD”, 405 

Assessment of Diet 406 

Dietary intake was measured using validated 7-day estimated weight food diaries as fully 407 
described previously (Gibson et al., 2017). Nutritional intake was calculated using 408 
Dietplan6.7 software (Forestfield Software, Horsham, UK) which is based on the McCance 409 
and Widdowson's 6th Edition Composition of Foods UK Nutritional Data set (UKN) by a team 410 
of trained coders trained to match food and drink items to the UKN database code and a 411 
portion size. 412 

Energy adjusted average consumption of fruit, vegetables, red meat, processed meat, 413 
wholegrain and dairy over the week was categorised into tertiles. For fish, consumption was 414 
divided into none, medium (below median consumption among consumers) and high (above 415 
median consumption). Two overall dietary scores were calculated: The Dietary Approaches 416 
to Stop Hypertension (DASH) diet score divided into quintiles (Fung et al., 2008) and the 417 
Mediterranean Diet score as a continuous measure (Trichopoulou, Costacou, Bamia, & 418 
Trichopoulos, 2003).  419 

Metabolomic data acquisition  420 

Metabolomic analysis of serum and urine was performed at the National Phenome Centre, 421 
based at Imperial College London. Samples were randomly sorted into batches of 80 and 422 
thawed to 4°C, centrifuged to remove particulate matter, and the supernatant dispensed 423 
across dedicated 96-well plates for each assay. Study-Reference (SR) samples, a pool of all 424 
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samples for each matrix in the study, and Long-Term Reference (LTR) samples, a pool of 425 
samples external to study, were included in each analytical run to allow for quantification and 426 
correction of technical variation. Samples are prepared and analysed daily in batches of 80 427 
study samples with the addition of 4 quality controls (2 SR and 2 LTR). Samples were 428 
maintained at 4°C during preparation for, and while awaiting, acquisition. 429 

Acquisition of Nuclear Magnetic Resonance Spectroscopy (NMR) profiles (the NOESY 430 
experiment in urine and the CPMG experiment in serum) was conducted as described in 431 
(Dona et al., 2014). Lipoprotein parameters were generated by the Bruker B.I.-LISA (Bruker 432 
IVDr Lipoprotein Subclass Analysis platform, derived from NMR of serum. Spectra were 433 
acquired at 600 MHz with Bruker Ascend 600 magnets and Avance III HD consoles 434 
configured to the Bruker IVDr specification (Bruker Corporation, Billerica, MA, USA). 435 

Ultra-Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) acquisitions 436 
were conducted in batches of up to 1000 study-samples, interleaved with alternating SR and 437 
LTR samples every five injections (16 per 80 samples), each batch was flanked by a serial 438 
dilution of the SR sample to assess linearity of response.  Multiple analytical experiments 439 
were performed to increase metabolomic coverage. Hydrophilic interaction chromatography 440 
was performed in both urine and serum as described in (Lewis et al., 2016). Reversed-phase 441 
chromatography was performed on urine samples in both positive and negative modes as 442 
described in (Lewis et al., 2016). Lipid-targeted reverse-phase chromatography was applied 443 
in serum ionised in both positive and negative modes as described in (Sarafian et al., 2014). 444 
All UPLC-MS profiling assays were acquired on Waters G2-S ToF mass spectrometers, with 445 
Acquity UPLC chromatography systems (Waters Corporation, Milford, MA, USA). 446 

Metabolomic data processing 447 

NMR spectra were automatically processed in TopSpin 3.2, followed by a suite of in house 448 
scripts (Dona et al., 2014). Each spectrum was automatically checked, before all spectra 449 
were aligned to a common reference scale. Analytical quality was further assessed manually 450 
on four factors:  Line width of less than 0.9 Hz, quality of water-suppression, even baseline 451 
signal and accurate chemical shift referencing. Urine samples were referenced to an internal 452 
spiked standard 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid (TSP) at 0 ppm. Plasma 453 
samples were referenced to the α-anomeric glucose doublet at 5.233 ppm. Spectra were 454 
aligned to a common reference scale, running from 10 to -1 ppm, and interpolated onto a 455 
common 20,000 point grid.  Lipoprotein parameters were validated according to Bruker's 456 
B.I.-LISA protocols. 457 

Chromatograms and mass spectra instrument raw files were imported into Progenesis QI 458 
(Waters Corp. Milford, MA, USA) for retention-time alignment and feature detection. 459 
Progenesis QI was configured to align retention time to the central LTR sample of the 460 
acquisition. Peak detection was configured with a minimum chromatographic peak width of 461 
0.01 minutes, and automatic noise detection set to the minimum threshold of 1. Peaks 462 
arising from isotopes and chemical adducts were automatically resolved according to the 463 
observed m/z and chromatographic peak shape, and peaks areas integrated. Further 464 
processing and filtering of UPLC-MS profiling datasets was conducted with in-house scripts, 465 
and used to account for analytical run-order effects and remove noise from each dataset.  466 

Analytical run-order effects were accounted for with an adaption of the method described in 467 
(Zelena et al., 2009). A robust LOWESS regression was generated per-feature, based on 468 
the SR samples, in run-order, with the window scaled to include 21 SR samples. The 469 
smoothed response values for each feature were then interpolated to the intermediate study 470 
sample injections using simple linear interpolation.  471 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/411603doi: bioRxiv preprint 

https://doi.org/10.1101/411603
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

Finally, the median intensity of each feature in each analytical batch was aligned. Extracted 472 
features spuriously arising from analytical noise were removed from the dataset by a pair of 473 
approaches, both applied on a per-feature basis. First, a serial dilution of the study reference 474 
sample was used to assess the linearity of responses of each feature. Detected features 475 
were correlated to their expected intensity in the dilution series, and those features showing 476 
a Pearson’s r of less than 0.7 were excluded from further analysis. Second, the relative 477 
standard deviation (RSD) of each feature across the study reference samples was 478 
calculated, and those features where the RSD exceeded 30%, or the observed biological 479 
variance was less than 1.5 times the RSD, were excluded. 480 

Metabolomic age model 481 

Untargeted NMR datasets were glog-transformed (Parsons, Ludwig, Gunther, & Viant, 482 
2007), the quantified BiLISA data was log-transformed, and the UPLC-MS data were log 483 
transformed, following unit addition to every value to allow transformation of zero values. 484 
Data were then mean centred and scaled to unit variance.  485 

A predictive model of metabolomic age was constructed using elastic net regression (Zou & 486 
Hastie, 2005) in the “glmnet” package (Friedman, Hastie, & Tibshirani, 2010) in R.  The 487 
model was fitted on metabolic features from across all metabolomic datasets, using a multi-488 
step process on 80% of the data (the training dataset). The remaining 20% was reserved for 489 
assessment of the predictive ability (Pearson’s correlation between predicted and 490 
chronological age) of the model in an independent dataset (the test dataset). The steps were 491 
as follows: 492 

Step 1 Parameterisation:  Elastic net model parameters, α (that defines mixing between 493 
lasso and ridge penalties) and λ (overall strength of penalty), were found following 10-fold 494 
cross validation. A line search across α, between 0 and 1 in 0.01 increments, was performed 495 
to find the minimum mean cross-validated error (MSE) using the optimal value of λ found 496 
using the ‘cvfit’ command for each α value. 497 

Step 2 Leave platform out analysis: Due to potential redundancy between metabolomic 498 
datasets, we performed the parameterisation step above on data with one metabolomic 499 
platform left out each time. Platforms were removed from further analysis if model performed 500 
better (lower MSE) with their exclusion. We continued this process leaving further platforms 501 
out each time until no improvement in MSE was observed. 502 

Step 3 Stability analysis: Using the selected metabolomic datasets, we repeated elastic net 503 
regression on 100 subsamples of the training dataset (a random selection of 80% each 504 
time).  The metabolic features selected in each model was stored for each iteration.  505 

Step 4 Metabolomic data restriction: On the same subsample for 101 iterations, the number 506 
of metabolic features available to build an elastic net model was restricted by the percentage 507 
of iterations in step 3 that a feature was selected, moving from 100% to 0%, in 1% 508 
decrements for each subsequent iteration. The correlation between predicted and 509 
chronological age in remaining 20% of training set was stored for each iteration and the 510 
percentage restriction value that gave the best correlation, was chosen for the final 511 
metabolic feature restriction in step 5. 512 

Step 5 Final model building: On the complete training dataset, a final elastic net model was 513 
constructed using metabolic features restricted to those present in a set percentage of 514 
models, as found in step 4. 515 

Metabolomic age acceleration (metAA) was defined as the difference between chronological 516 
age and predicted age, adjusted on actual age as previously defined for DNA methylation 517 
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age acceleration (Horvath, 2013). That is, we define mAA as the residuals of a linear 518 
regression between the chronological age and predicted age difference, with chronological 519 
age itself.  520 

Metabolic feature and pathway annotation 521 

Tentative annotations were provided for mass-spectrometry based metabolic features bases 522 
on m/z searches across the Human metabolome database (Wishart et al., 2018), for the ion 523 
forms M+2H, M+H+NH4, M+NH4, M+H, M+ACN+H, M+CH3OH+H, M+Na, M+K, 2M+H at 524 
± 8 ppm mass tolerance.  525 

For five UPLC-MS based metabolic features that were both tentatively annotated by exact 526 
mass within our metabolomic age model and also available in repeat measurements within 527 
the Northern Finnish Birth Cohort dataset, we performed further annotation procedures. Two 528 
of these annotations, for citrate (as in-source fragmentation product) and leucine (M+Na 529 
ionic form), were supported by matching retention times and accurate mass to an internal 530 
reference standard database.  531 

Significantly enriched metabolic pathways were predicted using the mummichog program (Li 532 
et al., 2013). The algorithm searches tentative compound lists from metabolite reference 533 
databases against an integrated model of human metabolism to identify functional activity. 534 
Fisher’s exact tests and permutation are used to infer p-values for likelihood of pathway 535 
enrichment among significant features as compared to pathways identified among the entire 536 
compound set present in reference list (the entire metabolome dataset), considering the 537 
probability of mapping the significant m/z features to pathways. Mummichog parameters 538 
were set to match against ions included in the ‘generic positive mode’ setting at ± 8 ppm 539 
mass tolerance. 540 

 541 

Metabolite validation in the Northern Finnish Birth Cohort 1966 542 

The Northern Finnish Birth Cohort 1966 is a prospective birth cohort that sampled 12,058 543 
live births in 1966, including 96.3% of all births in the regions of Oulu and Lapland in Finland 544 
(Rantakallio, 1988). Fasting blood samples were collected at follow-up of participants at 545 
ages 31 and 46 yrs and stored at -80 °C for subsequent biomarker profiling. A high-546 
throughput NMR metabolomics platform was used for the analysis of 87 metabolic measures 547 
(Soininen, Kangas, Wurtz, Suna, & Ala-Korpela, 2015). This metabolomics platform provides 548 
simultaneous quantification of routine lipids and lipid concentrations of 14 lipoprotein 549 
subclasses and major sub-fractions, and further quantifies abundant fatty acids, amino acids, 550 
ketone bodies and gluconeogenesis-related metabolites in absolute concentration units. 551 

We assessed changes of nine metabolites, that were available in this dataset and also 552 
included in our predictive model, between these two sampling points using 1-tailed t-tests. 553 

DNA methylation analysis 554 

For the microarray, bisulphite conversion of 500 ng of each DNA sample was performed 555 
using the EZ DNA Methylation-Lightning™ Kit according to the manufacturer’s protocol 556 
(Zymo Research, Orange, CA). Then, bisulfite-converted DNA was used for hybridization on 557 
the Infinium HumanMethylation EPIC BeadChip, following the Illumina Infinium HD 558 
Methylation protocol. Briefly, a whole genome amplification step was followed by enzymatic 559 
end-point fragmentation and hybridization to HumanMethylation EPIC BeadChips at 48°C for 560 
17 h, followed by single nucleotide extension. The incorporated nucleotides were labelled 561 
with biotin (ddCTP and ddGTP) and 2,4-dinitrophenol (DNP) (ddATP and ddTTP). After the 562 
extension step and staining, the BeadChip was washed and scanned using the Illumina 563 
HiScan SQ scanner. The intensities of the images were extracted using the GenomeStudio 564 
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(v.2011.1) Methylation module (1.9.0) software, which normalizes within-sample data using 565 
different internal controls that are present on the HumanMethylation EPIC BeadChip and 566 
internal background probes. The methylation score for each CpG was represented as a β-567 
value according to the fluorescent intensity ratio representing any value between 0 568 
(unmethylated) and 1 (completely methylated). 569 

DNA methylation (DNAm) data were pre-processed and normalized using in-house software 570 
written for the R statistical computing environment, including background and color bias 571 
correction, quantile normalization, and Beta MIxture Quantile dilation (BMIQ) procedure to 572 
remove type I/type II probes bias, as described elsewhere (Fiorito et al., 2017). DNAm levels 573 
were expressed as the ratio of the intensities of methylated cytosines over the total 574 
intensities (β values). Cross-reactive and polymorphic probes - with minor allele frequency 575 
greater than 0.01 in Europeans (Y. A. Chen et al., 2013) - were excluded. Methylation 576 
measures were set to missing if the detection p-value was greater than 0.01. Samples with 577 
the bisulfite conversion control fluorescence intensity lower than 10,000 for both type I and 578 
type II probes and those with total call rate lower than 95% were excluded. Finally, samples 579 
were excluded if the predicted sex (based on chromosome X methylation) did not match that 580 
self-reported. 581 

DNA methylation age was computed according to the algorithm described by Hannum et al. 582 
(Hannum et al., 2013) based on a set of 71 blood-specific age-associated CpG sites. We 583 
used this algorithm, rather than the algorithm of Hovarth, since it was developed specifically 584 
for blood samples and found to be the most predictive of mortality (B. H. Chen et al., 2016). 585 
Age acceleration (AA) was defined as the difference between epigenetic and chronological 586 
age. Since AA could be correlated with chronological age and WBC percentage, we 587 
computed the so-called intrinsic epigenetic age acceleration (B. H. Chen et al., 2016), which 588 
is defined as the residuals from the linear regression of AA with chronological age and blood 589 
cell counts (measured using flow cytometry) for neutrophils, lymphocytes, monocytes and 590 
eosinophils. 591 

Genotyping 592 

Genotyping was performed on the Illumina Infinium HumanCoreExome-12v1-1 BeadChip 593 
and quality control filters including call rate (>=97%), heterozygosity rate (<=3SD from the 594 
mean) were applied on the samples. Duplicated and second-degree relatives were further 595 
excluded and 14,062 samples of European ancestry based on principle component analysis 596 
remained. Markers were removed for high missing rate (>2%), deviation from Hardy-597 
Weinberg equilibrium (P<1E-5) or minor allele frequency below 1%, resulting in 254,027 598 
high-quality and common markers. Imputation was performed using the Haplotype 599 
Reference Consortium (HRC) panel (version r1.1 2016). 600 

We selected 10 SNPs, previously associated with parental attained age (Joshi et al., 2017; 601 
Pilling et al., 2017) from (Pilling et al., 2017), and tested their associations with both 602 
DNAmAA and mAA, in bivariate linear models. DNAmAA or mAA was used as the 603 
dependent variable and the dosage of the effect allele for each SNP (i.e. 0,1 or 2) was used 604 
as the independent variable. We also defined a weighted continuous genetic risk score 605 
calculated as described in (Pilling et al., 2017) for these 10 SNPs and tested its associations 606 
with DNAmAA and mAA in bivariate linear models. 607 

Analysis of risk factors of biological age acceleration 608 

We analysed associations between mortality risk factors and age acceleration scores in 609 
separate adjusted linear regression models.  To allow comparison across multiple risk 610 
factors, the adjustment set, included in all models, was chosen a priori. It included 611 
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demographic variables (sex, ethnicity, study centre, income), the 25 x 25 main NCD risk 612 
factors, (hypertension, diabetes, BMI, smoking, alcohol intake, physical activity), and dietary 613 
indicators (DASH score and fish consumption, chosen following significant bivariate 614 
associations with mAA). Considering the exploratory nature of the analysis, we considered p 615 
values below 0.05 as “nominally significant” and p values below 0.0025 as significant after 616 
correction for multiple testing (Bonferroni-corrected for 10 risk factors x 2 outcomes). 617 
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Supplementary figures and tables 839 

 840 

Table s1: Summary of metabolomic platforms used in analysis 841 

Platform Sample Abbreviation Details 
N features/ 

spectral 
resolution 

NMR 
NOESY 

urine uNMR 
highly robust, repeatable and precise 

platform for the detection of small 
molecules in human biofluids 

24493 

MS HPOS urine uHPOS 

Hydrophilic interaction chromatography 
(HILIC), provides enhanced separation of 
small, highly polar molecules ionised in 

positive mode 

7325 

MS RPOS urine uRPOS Reversed-phase chromatography targets 
small moderately polar molecules, ionised 

in positive and negative  modes 

14300 

MS RNEG urine uRNEG 14481 

NMR 
CPMG 

serum sNMR 
highly robust, repeatable and precise 

platform for the detection of small 
molecules in human biofluids 

23571 

NMR 
BiLISA 

serum sBiLISA 

Quantifies cholesterol, free cholesterol, 
phospholipids, triglycerides, 

apolipoproteins A1, A2, B and particle 
numbers for the primary plasma and serum 

lipoproteins and their subclasses 

105 

MS HPOS serum sHPOS 

Hydrophilic interaction chromatography 
(HILIC), provides enhanced separation of 
small, highly polar molecules ionised in 

positive mode 

1505 

MS LPOS serum sLPOS 
lipid-targeted reverse-phase 

chromatography  provides maximal 
resolution of fattyacids, triglycerides, and 

phospholipids, , ionised in positive and 
negative  modes 

7211 

MS LNEG serum sLNEG 5833 

 842 

Table s2: Model predictors with coefficients 843 

Please see separate excel file. 844 

Table s3 Tentative annotations of model predictors 845 

Please see separate excel file. 846 

  847 
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Table s4: Demographic and covariate information of participants with DNA 848 
methylation data, and bivariate associations with DNA methylation age acceleration 849 

      
Bivariate association 

with DNA methylation 
Age Acceleration 

    
N (%) or 

Mean (SD) 
 β (95% CI)  

p 
value 

Demographic and NCD risk factors 

age years 41.6 (9.27) - - 

sex Female 445 (40.4) - - 

  Male 657 (59.6) 0.89 (0.47, 1.3) 
3.50E-

05 

Marital status Married/cohabiting 858 (80.1) - - 

  other 213 (19.9) 
-0.02 (-0.55, 

0.5) 
0.94 

ethnicity White 1073 (97.4) - - 

  other 29 (2.6) 
-0.33 (-1.62, 

0.96) 
0.62 

BMI <25 354 (32.1) - - 

  >=25 & < 30 (overweight)  526 (47.7) 
0.19 (-0.28, 

0.66) 
0.43 

  >=30 (obese)  222 (20.1) 
0.13 (-0.46, 

0.72) 
0.67 

diabetic status Normal 1058 (96.1) - - 

  Diabetic 43 (3.9) 0.33 (-0.73, 1.4) 0.54 

Hypertension No 730 (66.3) - - 

  Yes 371 (33.7) 0.13 (-0.3, 0.57) 0.55 

Income High 413 (37.7) - - 

  Medium 406 (37) 
0.04 (-0.44, 

0.52) 
0.87 

  Low 277 (25.3) 
0.38 (-0.15, 

0.91) 
0.16 

Alcohol consumption None 79 (7.2) - - 

  Moderate 944 (85.7) 
0.16 (-0.65, 

0.96) 
0.7 

  Heavy 78 (7.1) 
0.46 (-0.64, 

1.55) 
0.41 

smoking Non-smoker 719 (65.2) - - 

  Former smoker 269 (24.4) 
-0.07 (-0.56, 

0.42) 
0.79 

  Current smoker 114 (10.3) 
-0.45 (-1.14, 

0.24) 
0.2 

Physical activity  High 629 (57.1) - - 

  Moderate 296 (26.9) 
-0.26 (-0.74, 

0.22) 
0.29 

  Low 177 (16.1) 
-0.27 (-0.85, 

0.31) 
0.36 

Psychological factors 

Depression diagnosis Normal 753 (68.4) - - 

  Minimal symptoms 254 (23.1) 
0.01 (-0.49, 

0.51) 
0.97 

  Depression 94 (8.5) 
-0.16 (-0.92, 

0.59) 
0.67 

Anxiety diagnosis Normal 842 (78.3) - - 

  Borderline  140 (13) 
-0.3 (-0.93, 

0.33) 
0.35 
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  Anxiety case 94 (8.7) 
0.38 (-0.37, 

1.13) 
0.32 

Experienced trauma in last 6 
months 

No 935 (84.8) - - 

  Yes, without PTSD 150 (13.6) 
-0.09 (-0.7, 

0.51) 
0.76 

  Yes, with PTSD 17 (1.5) 1.4 (-0.28, 3.08) 0.1 

Dietary variables 

Fish consumption None 269 (29.1) - - 

  Medium 333 (36.1) 0 (-0.58, 0.58) 1 

  High 321 (34.8) 
-0.12 (-0.71, 

0.46) 
0.68 

Fruit consumption Low 295 (32) - - 

  Medium 299 (32.4) 
0.55 (-0.03, 

1.13) 
0.063 

  High 329 (35.6) 
-0.02 (-0.59, 

0.54) 
0.94 

Red meat consumption Low 297 (32.2) - - 

  Medium 330 (35.8) 
-0.13 (-0.7, 

0.43) 
0.64 

  High 296 (32.1) 
-0.14 (-0.72, 

0.44) 
0.64 

Vegetable consumption Low 299 (32.4) - - 

  Medium 306 (33.2) 0.22 (-0.35, 0.8) 0.45 

  High 318 (34.5) 
-0.19 (-0.76, 

0.38) 
0.51 

Whole grain consumption Low 308 (33.4) - - 

  Medium 294 (31.9) 0.12 (-0.45, 0.7) 0.68 

  High 321 (34.8) 
-0.1 (-0.66, 

0.46) 
0.72 

DASH score <20 (least healthy) 153 (16.6) - - 

  ≥20 and <23 172 (18.6) 
-0.16 (-0.94, 

0.63) 
0.69 

  ≥23 and <25 149 (16.1) 0.2 (-0.61, 1.02) 0.62 

  ≥25 and <28 183 (19.8) 
0.43 (-0.34, 

1.21) 
0.27 

  > 28 (most healthy) 266 (28.8) 
-0.01 (-0.73, 

0.71) 
0.98 

Mediterranean diet score continuous (1-10) 4.8 (1.81) 
-0.02 (-0.15, 

0.11) 
0.72 

Clinical biomarkers 

SYSTOLIC Blood pressure mmHg 
131.19 
(15.79) 

0.01 (0, 0.02) 0.13 

DIASTOLIC Blood pressure mmHg 
79.53 

(10.23) 
0.02 (-0.01, 

0.04) 
0.14 

PULSE beats/minute 
70.69 

(11.34) 
-0.02 (-0.03, 0) 0.076 

FIBRINOGEN g/L 3.86 (1.01) -0.1 (-0.31, 0.1) 0.32 

PROTHROMBIN TIME seconds 13.57 (1.67) 
-0.01 (-0.14, 

0.11) 
0.81 

C-REACTIVE PROTEIN mg/l 1.92 (2.8) 
0.01 (-0.07, 

0.08) 
0.83 

CREATININE µmol / L 91.51 (13) 0.02 (0, 0.04) 0.014 

TOTAL CHOLESTEROL mmol/l 5.26 (1.03) 
-0.14 (-0.34, 

0.06) 
0.17 

High Density Lipoprotein mmol/L 1.51 (0.4) -0.52 (-1.04, 0) 0.049 
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γ-glutamyl transferase U/L 
31.05 

(23.49) 
0.01 (0, 0.02) 0.01 

APOLIPOPROTEIN A g/L 1.36 (0.36) 
-0.61 (-1.18, -

0.04) 
0.036 

APOLIPOPROTEIN B g/L 0.93 (0.23) 
-0.55 (-1.44, 

0.33) 
0.22 

% Glycated haemoglobin % 5.64 (0.56) 
-0.01 (-0.38, 

0.36) 
0.95 

UREA µmol / L 5.01 (1.15) 
0.14 (-0.04, 

0.32) 
0.12 

 850 
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Table s5: Association of lifespan-related SNPs with age acceleration scores 852 

 853 

Implicated 
gene(s) 

SNP CHR BP A1 A0 

Association with 
parental lifespana 

Association with mAA Association with DNAmAA 

Beta p-value Beta (95% CI) p-value Beta (95% CI) p-value 

CLESR2 … 
PSRC1 

rs602633 1 109821511 T G −0.0150 2.7E-08 
0.00 (-0.26, 

0.25) 
0.98 

0.12 (-0.24, 
0.48) 

0.51 

HLA-DRB1… 
HLA-DQA1 

rs28383322 6 32592796 C T 0.018 5.3E-11 
-0.3 (-0.57, -

0.02) 
0.03 

-0.11 (-0.47, 
0.26) 

0.57 

LPA rs55730499 6 161005610 C T −0.0361 1.7E-18 0.01 (-0.39, 0.4) 0.98 
0.14 (-0.41, 

0.69) 
0.62 

EPHX2 rs7844965 8 27442064 G A 0.015 7.7E-09 
0.01 (-0.23, 

0.26) 
0.91 

0.05 (-0.29, 
0.39) 

0.78 

CDKN2B-AS1 
(ANRIL) 

rs1556516 9 22100176 G C −0.0181 4.7E-16 
0.01 (-0.21, 

0.22) 
0.95 

-0.12 (-0.41, 
0.18) 

0.45 

SH2B3/ATXN2 rs7137828 12 111932800 C T 0.017 3.4E-14 
0.03 (-0.18, 

0.24) 
0.80 

-0.02 (-0.33, 
0.28) 

0.89 

PROX2 rs61978928 14 75321714 T C 0.014 2.0E-08 
0.02 (-0.21, 

0.25) 
0.86 

0.07 (-0.25, 
0.39) 

0.66 

CHRNA3 rs1317286 15 78896129 A G −0.0254 1.2E-26 
-0.04 (-0.27, 

0.18) 
0.70 

-0.18 (-0.49, 
0.13) 

0.25 

FURIN rs17514846 15 91416550 C A −0.0139 7.1E-10 
0.03 (-0.18, 

0.24) 
0.77 

0.14 (-0.15, 
0.43) 

0.34 

APOE/APOC1 rs429358 19 45411941 T C −0.0566 1.4E-74 
-0.28 (-0.58, 

0.01) 
0.05 

-0.38 (-0.78, 
0.03) 

0.07 

 854 
 855 

a Reproduced from (Pilling et al., 2017). For parental attained age (Martingale residuals) a negative BETA = reduced hazard, i.e. increased attained age. Implicated gene(s) = 856 
Variants in locus usually intronic, or exonic (indicated by underlining). If two genes separated by dots, the SNP is intergenic. BP = Genomic position, build 37 (hg19). Betas = A1 857 
effect on outcome.858 
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Figure s1: Results of 'leave platform out' stage of model building 859 

 860 
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