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Abstract:  
 

Network-biology view of biological systems is a ubiquitous abstraction that emerged in 
the last two decades to allow a high-level understanding of principles governing them. 
However, the principles according to which biological systems are organized are still 15 
unclear. Here, we investigate if biological networks could be approximated as 
overlapping, feed-forward networks where the nodes have non-linear activation 
functions. Such networks have been shown to be universal approximators and their 
stability has been explored in the context of artificial neural networks. Mathematical 
formalization of this model followed by numerical simulations based on genomic data 20 
allowed us to accurately predict the statistics of gene essentiality in yeast and hence 
indicate that biological networks might be better understood as a distributed system, 
comprising potentially unreliable components. 

 
Main Text:  25 

With the advent of the genome-wide association studies (GWAS), the biomedical community has become 
increasingly aware of and interested in complex genetic phenotypes. At the population level, diseases 
such as cancer (1), schizophrenia (2) or autism (3) are not associated with a small set of causative genes 
but are rather caused by a large number of perturbations distributed across numerous genes that lead to 
forms of disorders differing in severity and age of onset. Further investigation has shown that such 30 

complex phenotypes are not an exception but rather a rule. Survival and growth in rich medium upon 
genes deletion, a classical model for the study of the genetic basis of a phenotype (survival) has recently 
revealed itself to be a complex genetic phenotype. Genes required for survival—essential genes—are not 
defined in absolute terms, but can be dispensable in some environments or genetic contexts (4, 5). 
Understanding and predicting complex genetic phenotypes is a crucial step towards getting an actionable 35 

handle on biologically and clinically relevant phenomena.  

Similarly to the previous work (6) a biological system is viewed as a directed weighted graph, where 
transcription factors and their regulated genes are nodes, and regulatory relationships are edges. We go 
one step further and recognize any metabolite, DNA or RNA fragment, and protein or complex as a node. 
We associate a node with chemical reactions producing it. We refer to this abstraction as BOWN, standing 40 

for Biological Organisms as Weighted Networks. Within BOWN, molecules are the nodes while edges 
describe involvement in biochemical reactions that change node states or transform them from one into 
another, weighted by coefficients encompassing stoichiometry and activation intensity. While a variety of 
activation functions are present in biological systems, we assume that they have minimum and maximum 
values and a finite slope between the two. A sigmoidal activation function is used because it simplifies the 45 

mathematical analysis and corresponds to an idealized form of the Hill equation in biochemistry, 
representing ultrasensitive saturating activation by one or more factors.  
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We applied our formalism to the understanding of essential genes, traditionally defined as genes whose 
deletion is lethal to the organism. Essential genes in unicellular organisms are usually highly conserved (7), 
hence considered as performing critical core functions (8, 9) and of prime importance as targets to new 
drugs against unicellular pathogens (10). In a well-studied model organism, the yeast Saccharomyces 
Cerevisiae, about 1100 of the total 6500 genes are essential for growth on rich media (11, 12). Recently, 5 

however, the essentiality of some of those genes has been questioned. MYO1, an essential gene in S. 
Cerevisiae, could be deleted without leading to death, given that the genome was perturbed at a large 
scale by chromosome copy number variation (5). The same work also showed that at least 3 different 
mechanisms could compensate for MYO1 deletion. Among those mechanisms, none relied on paralogs. 
Later, a systemic genome-wide analysis showed that 9% of all essential genes behave similarly and termed  10 

such genes "evolvable essential" (4). These recent studies raised new questions on the origin of essential 
genes, such as how essential genes come to be and what separates them from non-essential ones.  

In the past four decades, the theory of fault tolerance in distributed systems, a branch of  computer 
science (13–15) that studies systems ability to tolerate the failure of some their components,  has led to 
an abstraction to describe nodes whose loss leads to critical failure in a network as single 1 points of failure; 15 

in this formalism, a necessary condition for a system to be robust is not to have any single point of failure. 
The more failing nodes can be tolerated, the more robust is the system. Based on this definition, biological 
networks are not robust with regards to survival as essential genes represent single points of failure. 
Computer scientists might note that biomolecular networks are not composed of redundant nodes 
performing the same task and trying to reach an agreement on the results.  Hence, biomolecular networks 20 

do not conform to core assumptions that underlie most results in distributed computing. Rather than 
agreement-centered distributed systems, BOWN leverages a fault tolerance formalism that is reminiscent 
of the one used for neural networks  (16–18)  which like BOWN, can be seen as (layered) weighted directed 
graphs with non-linear nodes. 

Within BOWN, each node’s state depends on some other nodes. Among those, some nodes are more 25 

important than others -we say nodes weight each other’s output differently. Most importantly, these 
nodes perform different tasks, despite some overlapping functions. Hence, none of the agreement-
centered theories (13–15), traditional to distributed computing, can be directly used to understand the 
robustness of biomolecular networks. Yet, the very notion of a weighted directed graph, defined as a set 
of computing nodes, all interdependent for computation, is an abstraction that could be used to represent 30 

biological networks. This notion has already been applied in genetics context (6), and recently as an error 
propagation model in distributed computing systems such as biological neural networks (19) or artificial 
ones (4, 16, 17). We use this abstraction of weighted directed graphs with nonlinear nodes to model 
biomolecular networks. Here, non-linear nodes are nodes whose output is not necessarily in a linear 
relationship with their input. Sigmoidal functions, for instance occurring in reactions following Hill kinetics, 35 

are examples of such non-linear relationships between the inputs (reagents) and the outputs (products). 

A distributed computing system has two main types of components, processes and communication 
channels (13). In the context of directed weighted graphs, processes are nodes and edges are channels. 
In the context of biomolecular networks, processes are proteins, RNA or small molecules identified with 
the reactions producing them. The reagents then route the information through a biological network by 40 

changing their state through biochemical processes, be it the modification of compartmental localization, 
participation in regulatory or enzymatic complexes, or the transformation into a different physical entity 
by chemical reaction. The biochemical relationships between those processes are viewed as the 
communication channels. The information is transmitted between nodes through the functional 
modification of one node by the other, be it by reaction co-participation, complex formation, or post-45 

                                                           
1 They are called single in the sense that the failure of any one is fatal, even if they are numerous. 
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translational modification. Figure 1 shows the correspondences between those nodes in distributed 
computing (A), directed graphs (B) as well as potential nodes and edges in biological systems (C, D). 

We model a biomolecular network by a layered directed graph (BOWN) as depicted in Figure 1B. Weighted 
directed graphs with nonlinear nodes are proven to be universal computing objects (20, 21), as such they 
can map any environment (input) to any biological system response (output) given enough nodes. The 5 

most explored formalization of these systems are artificial neural networks (22). In BOWN, we 
approximate biological pathways by such layered networks (examples in Figure 1C-D). To analyze such 
network’s stability, we need to look at their properties. First, the reactions are thermodynamically stable, 
meaning that no change in concentration of a reagent will induce an unbounded change in the 
concentration of a reagent downstream. In the parlance of distributed computing, the transmission 10 

channel is limited in throughput. Second, we model reactions by the sigmoidal behavior described by a 
Hill equation. The sigmoidal behavior is not a requirement for BOWN – any function with lower and upper 
limit, and a continuous transition between the two is sufficient as proven previously (20, 21). These two 
considerations allow us to derive mathematical conditions on what it means to be essential in a weighted 
directed graph such as BOWN. This theoretical development is presented more in-depth in (23) (Lemma 15 

1, Proposition 1 and Proposition 2) and provides us with the main formula for the identification of 
essential genes. Briefly, we denote by 𝑙 the layer index, 𝑖, 𝑗 identifiers of nodes in layers, 𝑐𝑖,𝑗 the weight of 

the link between node 𝑖 and node 𝑗, 𝐾𝑗
(𝑙)

 the Hill coefficient connecting nodes in layer 𝑙 − 1 to node 𝑗 in 

layer 𝑙 and finally, 𝜖 the maximum tolerated error in the functional pathway (beyond this error, the 
organism dies). A gene 𝑘 in layer 𝑙′ is considered essential if the suppression of  𝑘 yields a lethal value for 20 

the forward-propagated error at the output, which corresponds to the condition below: 

|𝐾(𝐿+1)(∑ 𝑐𝑖
(𝐿+1)

𝑦𝑖
(𝐿)

(𝑋)

𝑁𝐿

𝑖=1

) − 𝐾(𝐿+1)(∑ 𝑐𝑖
(𝐿+1)

𝑦̃𝑖
(𝐿)

(𝑋)

𝑁𝐿

𝑖=1

)| > 𝜖   

𝑤𝑖𝑡ℎ 𝑦𝑗
(𝑙)

= 𝐾𝑗
(𝑙+1)

( ∑ 𝑐𝑗𝑖
(𝑙)

𝑦𝑖
(𝑙−1)

𝑁𝑙−1

𝑖=1

)(𝑙 ≥ 1); 𝑦𝑗
(0)

(𝑋) = 𝑥𝑗  

𝑎𝑛𝑑 𝑦̃𝑖
(𝑙)

= 𝑦𝑖
(𝑙)

𝑤ℎ𝑒𝑛 (𝑖, 𝑙) ≠ (𝑘, 𝑙′) 𝑎𝑛𝑑 𝑦̃𝑘
(𝑙)

= 0 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑎𝑡 𝑔𝑒𝑛𝑒 𝑘 𝑖𝑠 𝑑𝑒𝑙𝑒𝑡𝑒𝑑   

  

 

 

Eq 1 

The inequality in Eq 1 describes the following: If a node disruption affects another node that is important 
or is a main regulator of sufficiently important proteins, this would lead to a large error in the response of 
the pathway to the input.  The effect becomes lethal when this error exceeds 𝜖, i.e the organism is not 
able to recover from the error propagation described by the left-hand side term (Figure 1E). Similarly, 25 

BOWN allows to check if a disruption of several nodes can lead to a similar lethal error (Figure 1F). 

Equation 1 means that our model predicts that the node criticality, and hence the essentiality of the 
corresponding gene, is amplified by one (or a combination) of three factors. (1) High outgoing weights - 
essential genes are likely to be limiting factors in a number of biochemical reactions. (2) Strong links to 

downstream nodes with high kinetic factors (high 𝑐𝑖𝑗
(𝑙)

 and 𝐾𝑗
(𝑙)

 in Equation S4; since we are interested in 30 

maximum error, Equation S4 assumes the entire network is at the point of highest slope of activation 
function). (3) Being as far upstream as possible in the pathways, and everything else being equal. It is 
important to note that if the exact topology and weights of a biological network were provided, the same 
approach that led to Eq 1 – quantifying error propagation - would pinpoint the critical nodes exactly and 
hence allow us to identify specific essential genes by their indexes. Unfortunately, the availability of the 35 

weights connecting all the nodes are not known, and we hence focus on the prevalence of critical nodes 
in the network, without attempting to predict their identities. These types of predictions can be based on 
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(1) statistics describing the weights connecting the nodes, (2) the distribution of lengths and widths of 
pathways, and (3) the maximal tolerated error 𝜖. 

Due to BOWN’s similarity with neural-networks models, we expect that the statistics of these three 
parameters reflect a trade-off that the organism has to strike between robustness, evolvability and 
network size - the latter being limited by resources - as demonstrated previously (16, 17). Given that those 5 

constraints are general, we opted not to focus on specific networks, such as gene regulation, physical 
protein-protein interaction or phosphorylation network, but rather use combined statistics to 
characterize them. 

First, we estimate a biologically plausible distribution of weights connecting one node to others based on 
the data from a transcription factors (TF) deletion profiling (6). Hu et al. measured expression levels of all 10 

genes in yeast upon deletion of a TF from a set of 250 TFs. Figure 2A represents the pooled distribution of 
gene expression changes for all TF deletions. We use this distribution to sample the multiplicative 

products of the kinetic factors by the stoichiometric ones (corresponding to 𝐾𝑗
(𝑙)

⋅ 𝑐𝑖𝑗
(𝑙+1)

 in Equation 2). 

While the effect of TF deletions on the vast majority of genes are within the margin of experimental error 
(red on Figure 2A), we can see at the extremes of the distribution of a small fraction of genes whose 15 

transcription is strongly regulated by a particular TF, directly or indirectly. Given the sparsity of 
connections within real biological pathways (most proteins tend to interact only with a few proteins and 
most transcription factors regulate expression of only a fraction of genes), we sampled the weights for 
our model from the whole distribution and not only from the extrema. 

Second, we estimate the length and width of pathways in yeast by using published protein-protein 20 

interaction (PPI) data (24, 25), as well as the manually curated Reactome database of biological 
reactions (23, 26). We define a random pathway as a set of paths in PPI and Reactome network that links 
two randomly chosen proteins, limited to most prominent paths in the entire network connecting them. 
Given that the master graph, combining all the links from PPI and Reactome, contains all the pathways, 
the pathways sampled in this way account for pathway overlap and interconnectedness (23). We obtain 25 

the distribution of pathway lengths (Supplementary Figure 1B) and widths (Supplementary Figure 1C), 
which exhibits a correlation (Figure 2B). 

Finally, we retrieve a plausible value for 𝜖, the maximal amount of perturbation of a pathway that is critical 
for organism survival. In order to calculate this value, we used the same dataset of PPI and Reactome, and 
for each random pathway, we evaluated how many paths were passing through a gene known to be 30 

essential (11). We obtained a two-peak distribution, as shown in Figure 2C. One peak is close to 0 and 
corresponds to no pathway disruption, representing the case where the gene was not playing an 
important role in the pathway and was present only by chance. Its essentiality may reside in a different 
pathway, whose genetic support partially overlaps with the pathway at hand. The second peak is centered 
around 1 and corresponds to a total pathway disruption upon gene deletion, meaning that this pathway 35 

depends critically on that gene. We see the transition from one distribution to another at around 0.7. 
There is no correlation between the importance of an essential gene for a random pathway and pathway 
shape, as shown in Figure 2B. 

After retrieving the statistical graph parameters from experimental data, we used Equation 1 to estimate 
the number of essential genes. According to the estimated value for 𝜖 (0.7), essential genes would 40 

correspond to the genes for which deletion results in pathway throughput falling below 30% of its normal 
value. This normal value is computed by a simulation on a network representing a pathway assumed to 
be crucial for organism survival (23). The computation consists of a batch of feed-forward layered 
architectures for which length, width, and weights were drawn from experimentally obtained 
distributions.  45 
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To retrieve the statistics of essential gene abundance, at each round of simulation, we sample the 
essentiality statistics on 100 pathways. We expect the variation from these simulations to be 
representative of the variation in the fraction of essential genes that we would likely to find in organisms 
with a given statistical properties of the network. To get a sufficiently precise estimate of essential genes 
abundance, we performed 1000 rounds of simulations, which allowed us to calculate the distribution of 5 

essential genes abundance (Figure 3A, black), summarized by mean and standard deviation (Figure 3A, 
red). Our model’s 95% prediction interval for essential gene abundance is 9.2%-15.7% with a mean value 
at 12.5% (Figure 3A). The experimental value for the yeast essential genes is 16.9%. This value is not 
within the 95% prediction interval of our model but given the model’s simplicity and usage of raw 
experimental data, the experimentally measured value is still close. 10 

In addition to essential genes, BOWN also allows prediction of synthetically lethal (SL) interactions 
between non-essential genes. SL interactions within our model are co-deletions of non-critical nodes that 
would lead the error over the pathway to exceed 70%. Using the same notations as for Equation 1, genes 
𝑘1 and 𝑘2 (𝑘1 ≠ 𝑘2) in layers 𝑙1 and 𝑙2 (not necessarily different layers) are SL when we have a similar 

condition as in Equation 1, with 𝑦̃𝑘1

(𝑙1)
= 𝑦̃𝑘2

(𝑙2)
= 0 representing the simultaneous deletion of both genes. 15 

Estimating the prevalence of SL interactions requires additional information compared to essential genes 
abundance estimation. While BOWN can only estimate the SL of interactions within the same pathway 
network, experimental data (27) provides SL interaction prevalence among all non-essential genes. We 
therefore need to account for the genes outside the pathway network at hand. Since there are about 17 
independent pathway clusters in yeast (27), we add 16 times the number of genes in the pathway network 20 

as non-lethal interactions when computing the final statistic, to account the genes in similar non-
overlapping networks. This addition corresponds to the intuition that to have a SL interaction, two genes 
need to be involved in the same physiological process, and that we expect that two randomly selected 
genes only have a 1/17 chance to belong to the same pathway. This gives predicted 95% prediction 
interval of 0.76%-1.5% with the mean value at 1.1% for the proportion of the interactions between non-25 

essential genes being SL (Figure 3B). Once again, while not within the 95% prediction interval, this is still 
close to the experimental data suggesting a 1.62% prevalence of SL interactions in yeast (27). 

BOWN can also be tested by attempting to estimate evolvable essential genes abundance. Evolvable 
essential genes are defined as genes that are essential in an unperturbed genome, but whose lethality 
upon deletion can be overcome through large scale alteration of gene stoichiometry such as through 30 

aneuploidy (4).  

In order to capture the effect of aneuploidy on pathway networks, we estimated the perturbation of 
protein abundance from published proteomics data from aneuploid yeast (28). For each protein, we 
calculated the ratio of its abundance in a specific aneuploidy relative to its abundance in the diploid 
population. We then pooled all ratios from different aneuploids into a single distribution (Supplementary 35 

Figure 2A). We simulate aneuploidy by altering nodes activation levels by the factors drawn from that 
distribution. For each node considered essential without perturbation, we assessed whether the node 
deletion in the perturbed network would lead to the network throughput falling below the critical level. 
Aneuploidy generates a stress on the organism by itself, even in the normal conditions (28), which we 
reflect by increasing 𝜖 from 0.3 to 0.4, meaning that a smaller error on the output function could be fatal. 40 

This correction is based on previously reported growth deficiency of aneuploids of approximately 11%-
13% compared to euploid cells (Pavelka et al. 2010), which we interpret as an ~10% lower tolerance to 
pathway disruption. BOWN estimates evolvable essential gene abundance to be 9.48% ± 3.4% (mean ± 
SD), close to the 9% reported previously in experimental studies (4), which falls in the 95% prediction 
interval of our model (Figure 3C). 45 
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Another prediction of BOWN is that the distribution of essential genes will shift, not only as we alter the 
structure or average node activation of the biomolecular network, for instance with aneuploidy, but also 
as we vary the inputs of the network, corresponding to environmental changes. We randomly perturbed 
the inputs for the first layer in our simulations, changing them to values that were sampled randomly from 
a uniform distribution ranging from 50% to 150% of the values associated with the rich medium. To 5 

simulate different conditions, we chose 250 different input samples for each pathway network - we 
stopped at 250, since beyond 250, the prevalence of conditional essential genes does not change (cf. 
Supplementary Figure 2 B). Every gene whose deletion would lead the perturbed network output to drop 
below 30% of its original value would be classified as a conditional essential gene in at least one condition. 
Our model predicts the distribution of conditional essential genes in at least one of the 250 conditions to 10 

be 23.5 ± 2.1% (Figure 3D). This prediction is consistent with experimental data suggesting that almost 
all yeast gene deletions that exhibit no phenotype in the rich medium can result in fitness loss in a stressful 
condition (29). Unfortunately, while the prior work mentions that almost 100% of yeast genes are 
required for optimal growth in at least one of the conditions, the experimental statistics for genes that 
are essential in at least one of the environments are not available. This abundance of condition-essential 15 

genes is a prediction of our model that will need to be validated experimentally in the future. 

Finally, to verify that those predictions were specific to yeast biomolecular network and not due to general 
properties of the model, we altered the distributions used to build the modeled networks by plausible 
alternatives, i.e. given by closest standard deviation to the observed values. First, we replaced the 
distribution of pathway lengths and widths by a uniform distribution ranging from the minimum to the 20 

maximum values found in empirical data (Supplementary Figure 3A). Second, we replaced the edge 
weights distribution by a Gaussian distribution (Figure 2A, red). Third, we replaced aneuploidy 
distributions by a log-normal distribution with parameters 𝜇 = 0 and 𝜎 = 0.5 (Supplementary Figure 3B, 
red). Finally, we chose 𝜖 to be 0.5 instead of 0.3. Table 1 summarizes the effects of these replacements. 
Overall, this shows that the predictions are indeed specific to the yeast biomolecular network and 25 

sensitive to the parameters that were experimentally observed. It is crucial to note that none of the 
parameters were fitted to allow us to retrieve experimentally observed results. 

Another prediction of BOWN is that networks are made more robust by decreasing the kinetic factors of 
reactions (23) (Lemma 2). For instance, slower gene expression leads to more robust organisms. 
Interestingly, this conclusion is a generalization of an earlier observation involving a single pair of 30 

interlinked feedback loop (30).The previous work suggested that slow activation was critical for 
robustness and noise resistance, whereas our theory makes a similar prediction in a more general context. 
BOWN suggests that this observation is connected to a more general and well-known dilemma of 
robustness versus rapid response in distributed computing (31). In distributed computing, safety 
(robustness) usually requires a compromise on liveness (rapid response) and vice-versa (15). 35 

More generally, BOWN can account for perturbations of networks that are more specific than aneuploidy. 
Mutations or modifications of interaction partner patterns, such as common in cancer (32, 33) (cite), or 
upon organism evolution (34, 35) (cite) can also be accounted for by BOWN. Unfortunately, we do not 
have the data to properly validate BOWN with regards to those applications which constitute a promising 
avenue of future exploration. 40 

In summary, BOWN predicts the abundance of essential and evolvable essential genes as well as SL 
interactions between non-essential genes. The predicted statistics are close to experimentally observed 
values. The predictive power of our model is remarkable, given the level of abstraction of the layered 
networks in our model compared to real biological networks. The relative accuracy of our model suggests 
that the positions of physical entities inside the biological computation graph are more important than 45 

the specific functions those physical entities accomplish. 
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Our results argue for the validity of modeling of biomolecular networks as weighted layered graphs with 
nonlinear nodes, which allows prediction of phenotypes associated with gene mutations at the network 
scale based solely on the high-level statistical properties of the network. This last feature enables 
functional dissection of biomolecular networks without being limited by the current lack of detailed 
network description. This could make BOWN a useful approach for improving our understanding of 5 

complex genetic phenotypes and diseases. 
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Fig. 1. Examples of networks and BOWN network model (A) Directed graph. (B) Distributed computation. 
(C, D): Examples of biological implementations of a network. (A-D) All networks have three layers (length 
of 3) with per-layer width of up to two. (E) Maximum error propagation network. The error is calculated 5 

on the output, single deletions leading to over 70% output error correspond to essential genes (red cross). 
(F) Double deletions of non-essential genes leading to an error above 70% are considered as SLs (light 
brown)  
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Fig. 2. Data used to generate the simulated networks. (A) Black - distribution of TF deletion effects on 
gene product abundance in yeast, all 250 TF combined (Z-scores). Red - normal distribution centered 
around 0. (B) Correlation of non-trivial random pathways lengths and widths. Grey area designates 
width/length correlations discarded as likely corresponding to a tight hub (pathway length below 2). Color 5 

codes for the degree of pathway disruption by the deletion of an essential gene found in the path, whether 
the gene essentiality is associated to pathway function or not (see (23)) (C) Distribution of non-trivial 
random pathways disruptions upon essential genes deletion. Blue line - chosen threshold for critical 
network failure (ϵ) at 0.7. 
  10 
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Fig. 3. Results of simulation based on the model. (A) Estimates of the essential gene abundance according 5 

to our model. In black - distribution of essential genes abundances obtained by simulation, in red - 
Gaussian fitted to mean and standard deviation of the simulation data. Black vertical lines are mean and 
95% prediction interval. (B) Estimates of the lethal interaction among non-essential genes in our model. 
In black - distribution of essential genes abundances obtained by simulation, in red - Gaussian fitted to 
mean and standard deviation of the simulation data. Black vertical lines are mean and 95% prediction 10 

interval. (C) Estimates of the abundance of evolvable essential genes among essential genes according to 
our model. In black - distribution of essential genes abundances obtained by simulation, in red - Gaussian 
fitted to mean and standard deviation of the simulation data. Black vertical lines are mean and 95% 
prediction interval. (D) Estimates of the abundance of genes that become essential in at least one of 250 
stress conditions. 15 
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  essential % SL interactions % evolvable essential % 
experimental observations 16.9 1.62 9 
base model 12.5 ± 1.6   1.1 ± 0.18   9.5 ± 2.6 
uniform pathways shape   7.9 ± 1.2 0.35 ± 0.01   8.8 ± 2.4 
normal activations 10.0 ± 1.7   1.1 ± 0.20 14.5 ± 3.1 
log-normal aneuploidy effect 12.6 ± 1.3   1.1 ± 0.17 24.8 ± 3.5 
𝜖 = 0.5 29.0 ± 2.5   2.2 ± 0.24 27.5 ± 3.0 

 
Table 1. Model sensitivity to the network parameters. Perturbations of network parameters according to 
likely distributions lead to a strong deviation of statistics predicted by the model from the experimentally 5 

observed ones. 
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