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Abstract 
Motivation: Integration of next generation sequencing data (NGS) across different research studies can improve the 

power of genetic association testing by increasing sample size and can obviate the need for sequencing controls.  

Unfortunately, if differential genotype uncertainty across studies is not accounted for, combining data sets can also 

produce spurious association results. The robust variance score statistic (RVS) for genetic association of rare and 

common variants has been shown to effectively adjust for bias caused by the differences in read depth in case-

control genetic association studies when the two groups were sequenced using different experimental designs. To 

enable consortium research, the aggregation of several data sets for genetic association analysis of quantitative and 

binary traits with covariate adjustment is required, and we developed the Variant Integration Kit for NGS (VikNGS) 

that expands the functionality of RVS (vRVS) for this purpose.  

Results: VikNGS is a fast and computationally efficient cross-platform software package that provides an 

implementation for vRVS, as well as conventional rare and common variant genotype-based association analysis 

approaches. The package includes a graphical user interface that contains power simulation functionality and data 

visualization tools. 

Availability and Implementation: The VikNGS package can be downloaded at 

http://www.tcag.ca/tools/index.html 

Documentation can be found at https://VikNGSdocs.readthedocs.io/en/latest/ 

Contact: lisa.strug@sickkids.ca 

Supplementary information: Supplementary data are available at Bioinformatics online. 
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1 Introduction 

Genetic association studies have contributed greatly to our understanding of complex traits. 

However, to achieve the sample sizes necessary to carry out genome-wide association 

investigations, the last two decades has seen a shift in the design of studies from individual 

investigator-oriented to collaboration-based research led by large consortia (Austin, Hair, & 

Fullerton, 2012). This has historically been achieved by combining genome-wide genotype array 

data across study groups for meta or mega genome-wide association analysis (Tang & Lin, 2014) 

of common variants.  Structural or rare variants also contribute to disease variation, but are less 

well captured by genotyping arrays (Eichler et al., 2010). Association studies with whole genome 

sequencing (WGS) enables analysis of the full allele frequency spectrum and the decreasing cost 

of this technology continues to make it more accessible. Yet collaboration across study groups 

along with the integration of other publicly available WGS data are required to realize the 

statistical power necessary for the identification of associated loci.   

Depending on resources and the scientific context, different groups may choose different 

experimental designs for their WGS studies. For example, the UK10K Consortium 

(TheUK10KConsortium, 2015) aimed to implement WGS on preexisting cohorts where several 

phenotypes were available. Since sequencing costs scale with read depth, projects with a large 

number of participants may choose to sequence at a lower read depth (average 6.5x for UK10K). 

The large sample size and the broad phenotypic information available in the UK10K Consortium 

data suggests potential as a convenience control group in case-control association studies. The 

1000 Genomes Project is another well known example of publicly available low read depth (4x) 

WGS data that could be used as a control group (The 1000 Genomes Project Consortium, 2015). 

For sequencing of small patient populations, high read depth designs are more frequently 

implemented.  

From next generation sequencing (NGS) data, confidence in a variant call is dependent on, 

among other factors, the sequencing technology, read depth, error rate, base calling algorithm, 

alignment, SNP detection and genotype calling algorithms (Nielsen, Paul, Albrechtsen, & Song, 

2011). (Skotte, Korneliussen, & Albrechtsen, 2012) developed a score statistic which accounts 

for the uncertainty in genotype calls in a given study.  Their method provides a score test where 

genotype calls are substituted by their expected values, and results indicate better control of Type 
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I error and higher power when compared to association methods based on genotype calls. 

Building on the approach by (Skotte, Korneliussen, & Albrechtsen, 2012), (Yan et al., 2015) 

proposed to take genotype calling uncertainty into account through a combined score and 

likelihood ratio test that leverages the advantages of both tests. In their score test they implement 

an alternative information matrix to that used in (Skotte et al., 2012) which improves power.  

(Yan et al., 2015) did not investigate the performance of their method when combining data from 

cohorts sequenced independently, potentially using different sequencing designs, and their 

method was applied for single variant analysis.  

Although not widely appreciated, naively pooling genotype calls from different WGS studies and 

performing an association test can result in spurious association findings due to the bias 

introduced by the differences in genotype call uncertainty across experimental designs. 

Previously, we showed the impact of differential read depth on case-control genetic association 

studies when the cases and controls were sequenced with high and low read depth, respectively 

(Derkach, Chiang, et al., 2014). Building on the method proposed in (Skotte et al., 2012) to 

account for the uncertainty of the genotype calls, we developed a robust variance score statistic 

(RVS) to adjust the bias resulting from read-depth differences (Derkach, Chiang, et al., 2014).  

The approach achieves Type I error rate control when publicly available low-read-depth controls 

are used in case-control association studies with high read-depth sequencing of cases, which has 

already contributed to novel gene discovery (Luo et al., 2017). When combining WGS from 

different study groups spurious association findings can also result from failure to adjust for 

confounders, from unbalanced case-control designs and from the combination of sequence across 

greater than two groups for association studies. Currently, methodology that addresses these 

additional considerations does not exist. 

(Hu, Liao, Johnson, Allen, & Satten, 2016) also considered the scenario for which RVS was 

designed, where cases and controls are sequenced at different read depth using different 

experimental designs.  They developed a screening algorithm to estimate variant loci using the 

read data instead of relying on existing genotype calling approaches. Their score statistic for 

association has the same form as the RVS (Derkach, Chiang, et al., 2014), but their genotype 

likelihoods are calculated from their own algorithm instead of obtaining them from the output of 

a standard genotype calling package.  More recently, (Lee, Kim, & Fuchsberger, 2017) proposed 

a bias correction on the estimate of the log odds ratio when external controls are added to the 
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study and derived a score-type statistic using this bias corrected log odds estimate for single or 

region based rare variant association tests. This approach only requires allele counts from 

external groups which is an appealing property but requires an internally sequenced case and 

control group and assumes only one external control group is to be added. 

Here we introduce the Variant Integration Kit for next generation sequencing (NGS), VikNGS, 

which is a fast and computationally efficient package developed in C++ that enables genetic 

association testing using NGS data. Given a set of variant calls from an arbitrary number of 

studies, VikNGS offers a suite of tests that can be used to identify associated variants. VikNGS 

builds on the RVS framework (Derkach, Chiang, et al., 2014) and includes an extended version 

of the methodology (vRVS) which enables integration of sequence across any arbitrary number 

of data sets that may have been sequenced using different experimental designs and enables 

common and rare variant association testing for binary or quantitative traits with covariate 

adjustment. The software also provides conventional common and rare variant association tests 

with genotype calls, e.g. CAST (Morgenthaler & Thilly, 2007)  and SKAT (Wu et al., 2011), as 

well as power and sample size estimation for study planning. The general workflow for VikNGS 

is shown in Figure 1. In Section 2, we present the vRVS framework and explain the usage of 

VikNGS. We demonstrate the robustness of vRVS through a comprehensive simulation study 

using VikNGS and compare Type I error and power of the vRVS to conventional methods using 

genotype calls with comparison to the true genotypes used as the gold standard. In Section 3, we 

apply VikNGS to genetic association studies in Cystic Fibrosis (CF) and compare results to 

conventional approaches. First, in a proof-of-concept study we integrate NGS from chromosome 

7, which contains the CF-causing cystic fibrosis transmembrane conductance regulator (CFTR; 

chr7:117,110,017-117,318,718; hg19) (Kerem et al., 1989), for 101 individuals of European 

descent with CF sequenced at an average read depth of 30x, 1,927 non-CF individuals from the 

UK10K sequenced at an average read depth of 6.5x and 379 individuals of European descent 

from the 1000 Genomes Project Phase 1 sequenced at 4x read depth. We then implement 

VikNGS in a quantitative trait analysis using 1,927 participants from the UK10K at a previously 

identified CF modifier locus on chromosome 1.  This latter analysis demonstrates VikNGS 

functionality to implement conventional tests and to assess the association evidence of a CF 

modifier gene with lung function in a non-CF population. In Section 4, we discuss the 
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functionality, strengths and limitations of the vRVS framework and VikNGS, along with aspects 

for future development.  

2 Methods 

2.1 The vRVS and the score test 

Consider the joint likelihood of the observed phenotype, 𝑌" , and the observed sequencing data, 

𝐷"$ , for individual 𝑖 at locus 𝑗,  for 𝑖 = 1,… , 𝑛 independent samples, 

𝑝(𝑌,𝐷|𝑧) =1 23 𝑝4𝑦"6𝑧", 𝐺"$ = 𝑔9𝑃4𝐺"$ = 𝑔, 𝐷"$9
;

<=>
?

@

"=A
 

where 𝑌" depends on 𝐷"$ through the unobserved genotype 𝐺"$ (taking values 0,1 or 2) and z can 

be any observed additional covariates.  We derive a score statistic based on this model following 

the approach proposed in (Skotte et al., 2012) and in (Derkach, Chiang, et al., 2014). For case-

control studies it is common to use logistic regression and in this case 𝑝4𝑦"6𝑧", 𝐺"$9 = 𝑒𝑥𝑝(𝛽> +

𝛽A𝑔" + 𝛼𝑧")/41+ 𝑒𝑥𝑝(𝛽> + 𝛽A𝑔" + 𝛼𝑧")9 . If the phenotype is a normally distributed 

quantitative trait, then we assume 𝑌" is distributed as 𝑁(𝛽> + 𝛽A𝑔" + 𝛼𝑧", 𝜎;).	The score function 

under 𝐻>: 𝛽A = 0 is 𝑆$ = ∑ (𝑌" − 𝐸(𝑌"))𝐸(𝐺"$|𝐷"$)@
"=A  and the corresponding score test statistic is 

𝑇$ = 𝑆$;/𝑣𝑎𝑟(𝑆$) and approximately 𝜒;  distributed with 1 degree of freedom (Skotte et al., 

2012). Note that the estimate of 𝐸(𝑌") is simply 𝑌X when there are no covariates in the model and 

𝛼 can be a vector if the number of covariates is greater than one. 𝐸4𝐺"$6𝐷"$9	is calculated using 

the expectation formula, 𝐸4𝐺"$6𝐷"$9 = ∑ 𝑔𝑃(𝐺"$ = 𝑔|𝐷"$);
<=>  where 𝑃4𝐺"$6𝐷"$9 = 𝑃(𝐷"$|𝐺"$ =

𝑔)𝑃(𝐺"$ = 𝑔)/𝑃(𝐷"$). We can obtain the conditional probabilities from the output of standard 

genotype calling packages, such as the variant calling format (VCF) files. The genotype 

probabilities 𝑃(𝐺"$ = 𝑔) can be calculated using an EM algorithm that incorporates the full 

sample (McKenna et al., 2010).  

To briefly summarize how the RVS (Derkach, Chiang, et al., 2014) builds on this model, 

consider the calculation of the variance of the score function, 𝑣𝑎𝑟4𝑆$9, which needs to evaluate 

𝑣𝑎𝑟(𝐸4𝐺"$6𝐷"$9). By the law of total variance, we see that  𝑣𝑎𝑟(𝐺"$) can be decomposed as 

𝑣𝑎𝑟4𝐺"$9 = 𝑣𝑎𝑟(𝐸4𝐺"$6𝐷"$9 + 𝐸(𝑣𝑎𝑟(𝐺"$|𝐷"$). When read depth is high, the probability of 𝐺 

given 𝐷, 𝑃(𝐺"$|𝐷"$), converges to 1. Thus, 𝐸4𝐺"$6𝐷"$9	converges to the true value of genotype 
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𝐺"$  and thus 𝑣𝑎𝑟(𝐸(𝐺"$|𝐷"$)) converges to the 𝑣𝑎𝑟(𝐺"$). However, for low coverage data, 

𝐸(𝑣𝑎𝑟4𝐺"$6𝐷"$9)>0 and 𝑣𝑎𝑟(𝐸(𝐺"$|𝐷"$)) is smaller than 𝑣𝑎𝑟(𝐺"$). That is,  𝑣𝑎𝑟(𝐸4𝐺"$6𝐷"$9 is 

read depth dependent and should be accounted for in the estimation of the variance in the score 

test. In (Derkach, Chiang, et al., 2014) the scenario where cases sequenced at high read depth 

were combined with controls sequenced at low read depth was considered, and the variance 

estimate was shown to be biased with the bias depending on the sample size in each group and 

the variance difference between the two groups. To overcome this bias, the variance of cases and 

controls can be estimated separately and when the number of cases is small, one can replace 

𝑣Y𝑎𝑟Z[\](𝐸(𝐺"$|𝐷"$))	with 𝑣Y𝑎𝑟(𝐸(𝐺"$))	where  𝑣Y𝑎𝑟(𝐸(𝐺"$))	is calculated through the estimated 

𝑃(𝐺"$ = 𝑔) using the full data set. The variance of the control group is calculated using the 

sample variance of the low read depth (LRD) group, e.g. 𝑣Y𝑎𝑟Z^@_ `𝐸4𝐺"$6𝐷"$9a.			 (Derkach, 

Chiang, et al., 2014) showed that the variance of the smaller group (e.g. case at high read depth 

(HRD)) has a larger weight on the variance of 𝑆$  i.e. 𝑉c𝑎𝑟4𝑆$9 = 𝑛Z[\]𝑛Z^@_/

𝑛(𝑛Z^@_𝑉c𝑎𝑟Z[\]d𝐸4𝐺"$6𝐷"$9e + 𝑛Z[\]𝑉c𝑎𝑟Z^@_d𝐸4𝐺"$6𝐷"$9e) , since the sample size for cases 

(𝑛Z[\]) is smaller than the control group (𝑛Z^@_),  and that this variance estimation procedure is 

robust, in that it controls Type I error inflation due to differences in read depth between cases 

and controls. 

Extensions for Binary Trait Analysis 

For combining more than two datasets, if the number of cases is smaller than the number of 

controls, the variance of the case groups will have a larger effect on the variance of 𝑆$. Suppose 

there are 𝐾 groups with sample sizes 𝑛g, 𝑘 = 1,… ,𝐾.	Using the variance formula  𝑉c𝑎𝑟4𝑆$9 =

∑ i∑ (𝑌"g − 𝑌X);𝑉c𝑎𝑟gd𝐸4𝐺"$6𝐷"$9e
@j
"=A kl

g=A 	 to calculate the variance of the score, 𝑆$,	  the  

𝑉c𝑎𝑟gd𝐸4𝐺"$6𝐷"$9e is estimated by 𝑣Y𝑎𝑟(𝐸(𝐺"$))	if group 𝑘 is sequenced at HRD and is estimated 

by the sample variance in group k if group 𝑘 is sequenced at LRD. The effectiveness of the RVS 

is most apparent when the sample size of the HRD groups is smaller than that of the LRD 

groups. When covariates are added to the model, 𝑌X is replaced with 𝑌c", where 𝑌c" is the fitted 

values obtained from the regression model under 𝐻> ; that is 𝑌c"g = exp(𝛽p> + 𝛼Y𝑧"g)/[1 +

exp(𝛽p> + 𝛼Y𝑧"g)]  if 𝑌"g	  is the disease status (𝑌"g = 0,1)  for group k. Thus, 𝑉c𝑎𝑟4𝑆$9 =

∑ i∑ (𝑌"g 	− 𝑌c"g);𝑉c𝑎𝑟gd𝐸4𝐺"$6𝐷"$9e
@j
"=A kl

g=A .	The details of the derivation of the variance of the 
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score test for the multi-group case control set-up as well as for joint rare variant analysis (gene or 

region based) are provided in the Supplementary document, and in these derivations it is 

assumed that the covariates are uncorrelated with the genotype, 𝐺"$ .  

Quantitative Traits Analysis 

Suppose 𝑌"  is a normally distributed quantitative trait and 𝑌c" = 𝛽p> + 𝛼Y𝑧"  when there is no 

association. The variance of the score,	𝑉c𝑎𝑟4𝑆$9, is derived in the Supplementary document. Note 

that 𝑒" = 𝑌" − 𝑌c" is the residual from the model fitted under 𝐻> and 𝐶𝑜𝑣(𝒆) = 𝜎;(Ι − 𝐻), where 

𝜎; is the variance of 𝑌, Ι is an 𝑛𝑥𝑛	identity matrix and 𝐻 is the projection matrix under 𝐻>, i.e. 

𝐻 = 𝑍_(𝑍_𝑍)xA𝑍_ and 𝑍 is an 𝑛	 × (𝑝 + 1)  covariate matrix with 1𝑠 in the first column and 𝑝 is 

the number of covariates. Then 𝑉c𝑎𝑟4𝑆$9 = [𝑆𝑆{/(𝑛 − (𝑝 + 1))]∑ [𝑛g −l
g=A

𝑠𝑢𝑚(𝑑𝑖𝑎𝑔(𝐻g)]𝑉c𝑎𝑟gd𝐸4𝐺"$6𝐷"$9e  where 𝑆𝑆{ = ∑ 4𝑌" − 𝑌c"9
;@

"=A , 𝐻g  is the section of 𝐻 

belonging to group 𝑘, and 𝑠𝑢𝑚(𝑑𝑖𝑎𝑔(𝐻g)) is the sum of the diagonals of 𝐻g. This formula can 

be approximated by a simple form that does not require 𝐻 , i.e. 𝑉c𝑎𝑟4𝑆$9 = (𝑆𝑆{/

𝑛)∑ 𝑛g𝑉c𝑎𝑟gd𝐸4𝐺"$6𝐷"$9el
g=A . Suppose the NGS data from two groups is combined where the 

first group was sequenced at HRD and the second at LRD with 𝑛A < 𝑛;. As opposed to the case-

control set up above, the variance of the smaller groups has less weight on the total variance, but 

the variances of each group are still calculated separately substituting 𝑣Y𝑎𝑟(𝐸(𝐺"$))	 in the 

variance estimate of the HRD group. The derivation of the variance of the score test for a 

quantitative trait and for joint rare variant analysis (gene or region based) is provided in the 

Supplementary document, and again in these derivations it is assumed that the covariates are 

uncorrelated with the genotype, 𝐺"$  . Note that if 𝑌"  is not normally distributed (or more 

generally, does not follow the distribution assumed), the consistent estimates of the parameters 

and variance function are not guaranteed (White, 1982), which affects the asymptotic distribution 

of the score test (Godfrey & Orme, 2001). We recommend that a normal transformation be 

applied prior to doing association analysis if Y is a highly skewed quantitative phenotype.  

For common variant analysis, p-values are calculated using the asymptotic distribution of the 

score test, 𝑇$ = 𝑆$;/𝑣𝑎𝑟(𝑆$), which is distributed as chi-squared with one degree of freedom. For 

joint rare variant association analysis, VikNGS implements linear and quadratic tests (Derkach, 

Lawless, & Sun, 2014), with user-defined weights, 𝑤$.	With 𝑤$=1, the linear test is analogous to 
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CAST and the quadratic test is analogous to SKAT where  𝑤$A/; = 1/i𝑀𝐴𝐹$41 − 𝑀𝐴𝐹$9k
A/;
	 

the (Wu et al., 2011). The score statistics for 𝐽 joint SNPs, 𝑺 = (𝑆A, 𝑆;,… , 𝑆�) are calculated with 

the variance of 𝑺 estimated by combining the separate covariance matrices for each study 

stratified by read depth group. Since the distribution of 𝐸4𝐺"$6𝐷"$9 depends on read depth, 

calculating p-values by permutation is not possible. For binary trait analysis, a bootstrap 

approach, as in (Derkach, Chiang, et al., 2014) is implemented in VikNGS, where a vector of 

centered values 	�𝐸(𝐺"A|𝐷"A) − 𝐸(𝐺�A|𝐷�A)	XXXXXXXXXXXXXX,… , 𝐸4𝐺"�6𝐷"�9 − 𝐸4𝐺��6𝐷��9	XXXXXXXXXXXXXX�  is sampled for each 

read depth group separately with replacement, e.g. with  10� replicates. In the presence of 

covariates, the added covariates are also sampled for each read depth group separately with 

replacement. For quantitative trait analysis, we implement the bootstrap methodology defined in 

(Lin & Tang, 2011) within each read depth group. 

2.2  VikNGS package  

VikNGS is a C++ cross-platform software package that can run on Windows, Mac and Linux 

operating systems designed to perform genetic association testing. The package can either be run 

as a simple command line tool or with a graphical user interface. When run with a user interface, 

VikNGS also includes options for performing power analysis and interactive data visualizations. 

To run association tests in VikNGS, a user must provide a multi-sample VCF file and a tab-

separated file containing individual-level information as input. As for conventional genetic 

associations studies, it is important to match all sequenced samples by epidemiologic factors, e.g. 

ethnicity. Ideally, variants should be called for all samples together to eliminate any systematic 

bias introduced by different variant calling algorithms. The vRVS methodology can adjust for 

sequencing parameters, such as sequencing platform, read depth and coverage but other 

systematic biases in the data can potentially lead to spurious associations. VikNGS enables 

association testing for both rare and common variants. A BED (browser extensible data) file can 

be optionally supplied to enable the collapse of variants within genes, exons or any arbitrary 

interval specified within the file. For computational efficiency, an early stopping procedure is 

available to terminate the iterative p-value calculations using a method described by (Jiang & 

Salzman, 2012) if the calculation suggests the p-value is large.  
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Figure 1. VikNGS workflow for NGS association analysis when sequenced samples from different studies are combined. Expected genotypes are 

computed from a VCF file. Phenotype, group and covariate information is provided in a tab-separated text file. Optionally, a BED file specifying 

genomic intervals can be used to define a variant collapsing strategy. VikNGS will parse this data and perform a series of association tests. 

Figure 2 shows a screenshot of the main interface. The user provides input files, filtering 

parameters and specifies which test statistic to utilize. VikNGS will parse the VCF file, filter 

variants, potentially collapse variants and will perform association testing all in parallel. For each 

test performed, VikNGS will produce a p-value and will output summarized variant information 

and results to a text file. If the graphical user interface is used, an interactive Manhattan-style 

plot will be produced (Figure 3), and variant-level information can be explored using a tabular 

view (see Figure S1 and S2). 
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Figure 2. Screenshot of the main VikNGS user interface. A: Directory to a multi-sample VCF and how to calculate genotypes from the file. B: 
Directory to a tab-separated file that provides phenotype information, group information and potentially covariates. C: Directory to an optional 
BED format file for variant collapsing. D: Collapsing strategy used for rare variant testing. E: Details on which association test to run. F: 
parameters used to filter the variants in the file based on minor allele frequency, percentage of data missing or genomic coordinate.  G: 
performance settings including how many variants to process in a single thread and the number of threads available. H: Output window. 
 

  

Figure 3. Screenshot of the VikNGS data visualization tool (p-values shown here are randomly generated). A: Interactive Manhattan-style plot 
displaying the association p-values for a single chromosome.  B: Manhattan plot displaying the entire genome and selector to allow different 
chromosomes to be explored. C: Information displayed when a variant is selected from the chromosome view. D: Displays all the variant 
information and genotypes in a table view (see Figure S1 and S2). 
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When using the graphical interface, data can be simulated for power and sample size estimation 

(Figure 4). Parameters such as the number of variants, sample size and effect size are initially 

specified by a user. VikNGS will first generate a set of true genotypes for each simulated 

individual, one for each variant. A sequencing experiment is then simulated, producing genotype 

calls and expected genotypes given the true genotypes and the specified sequencing parameters. 

A conventional score test using the true genotypes and genotype calls is conducted and the vRVS 

test is implemented using the expected genotypes. The resulting p-values are visualized. If 

simulated under the null hypothesis, a Q-Q plot is also displayed to allow comparison of the p-

value distribution of the different analytic approaches (Figure 5). A second plot is available to 

show how power changes as a function of sample size (Figure 6).  

 

Figure 4. Screenshot of the VikNGS power simulation interface. A: Total number of variants to simulate, effect size and a range of minor allele 
frequency (sampled uniformly at random within the range for each variant). B: Defines the depth considered to be high read depth, number of 
steps with increasing sample size. C: Test statistic for p-value calculation and number of threads to use. D: Specifies the sequencing simulation 
parameters and sample size for all groups included in the simulation. E: Output window. 
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Figure 5. Screenshot of the VikNGS simulated data visualization tool (under null hypothesis). A: Q-Q plot and histogram displaying the p-value 
distribution. B: Variant-related parameters in simulation. C: Information regarding which groups were generated as part of the simulation. D: 
View calculated Type I error at a given significance level. E: Settings used to interact with the plots (significance level and histogram bin size) F: 
Displays simulated variant information and genotypes in a table view (see Figure S1 and S2), output results to PDF format. 
 

 

Figure 6. Screenshot of the VikNGS simulated data visualization tool (power with increasing sample size). A: Plot displaying the increase of 
power at a given significance level as total sample size increases. B: Variant-related parameters used in simulation. C: Information regarding 
which groups were generated as part of the simulation. D: View exact power value error at a given point on the plot in A (changes as user interact 
with the plot). E: Significance level used to calculate power. F: Displays simulated variant information and genotypes in a table view (see Figure 
S1 and S2), output results to PDF format. 
  

2.3  Simulations 

Using the simulation package in VikNGS, we conducted an extensive simulation study to 

compare the performance of the vRVS to a conventional score test using genotype calls (GC); 

we used a score test with the true genotypes (true geno) as the gold standard. We investigated the 
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impact of altering sample size, read depth, minor allele frequency (MAF), odds ratio (OR) for 

case-control simulations and proportion of variation explained by the genetic effect (𝑅; -

coefficient of determination) for continuous traits. First, true genotypes are generated such that a 

given individual has either 0, 1 or 2 minor alleles provided by a Binomial distribution with 

probability of success defined by the MAF. For a case-control study design, genotype data for 

case and control groups are generated based on the same MAF if under the null hypothesis 

(OR=1). If the simulation is under the alternative hypothesis, the MAF is simulated to be 

different between case and control groups, the degree to which they differ being determined by 

the specified OR. For a quantitative study, once the genotypes are generated the phenotype is 

simulated based on the normal model, 𝑌~𝑁(𝛽> + 𝛽A𝑔", 𝜎;) . 𝑅;  is converted to 𝛽A by the 

equation 𝛽A = √𝑅;𝜎/𝜎< where 𝜎 is the standard deviation of 𝑌 and 𝜎<	is the standard deviation 

of 𝑔.	𝛽> is the average of 𝑌 in the population when there is no genetic or environmental effect. 

Given a set of true genotypes, a sequencing experiment is simulated for every individual. For 

each variant, the read depth is sampled from a Normal distribution with mean and standard 

deviation specified in the VikNGS interface. The base calling error rate can be specified for each 

group of simulated individuals. For simulations examined here the error rate is fixed at 0.01, 

meaning one percent of bases are incorrectly called as one of the three other possible bases. The 

impact of this base calling error is investigated in the supplementary document (Table S6). After 

sequence reads are generated, the genotype calls are obtained using the simple Bayesian 

genotyper (McKenna et al., 2010) which provides the posterior probability of each genotype 

given the sequence data, and the genotype likelihoods that are used in the vRVS .   

The simulation scenarios investigated for case control and quantitative phenotype designs are 

summarized in Table 1 and Table S1 in the supplementary document, respectively.  
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Table 1. Simulation study for case-control designs 

Study 
Design 
(# case: 

# control) 

Groups combined 
# HRD (average rd/sd 

of rd) 
# LRD (average rd/sd 

of rd) 

Genetic effect Statistical analysis Purpose 
(Tables where results are located) 

100:400 40, 60 (35x/5, 50x/5) 
250, 150 (8x/4, 4x/2) Under the null and 

alternative hypotheses; 
OR = 1 and 1.5 

MAF = 0.1 

Common variant association 
analysis using chi-square 

approximation (1) True genotypes 
(2) Genotype calls (3) vRVS 

Compare Type I error and power 
between the three approaches as the 

sample size increases 
 

(Tables S2 and S3) 

200:800 80, 120 (35x/5, 50x/5) 
350, 450 (8x/4, 4x/2) 

500:2000 200, 300 (35x/5, 50x/5) 
800, 1200 (8x/4, 4x/2) 

500:1500 500 (35x/5)  
1500 (4x/2) 

Under the null and 
alternative hypotheses; 

OR = 1 and 1.5 
MAF = 0.1 

Common variant association 
analysis using chi-square 

approximation with (1) True 
genotypes (2) Genotype calls (3) 

vRVS 

Compare Type I error and power 
between the three methods as the 
number of groups combined for a 

fixed sample size increases. 
 

(Tables 2 and S4) 

200, 300 (35x/5, 50x/5) 
1500 (4x/2) 
200, 300 (35x/5, 50x/5) 
600, 900 (8x/4, 4x/2) 
120, 200,180 (35x/5, 
50x/5, 100x/10)  
600, 900 (8x/4, 4x/2) 
120, 200, 180 (35x/5, 
50x/5, 100x/10)  
500, 650, 350 
(8x/4, 4x/2, 3x/1) 

200:1000 80, 120 (35x/5, 50x/5) 
400, 600 (8x/4, 4x/2) Under the alternative 

hypothesis; OR=1.2, 
1.5, 1.8 and 2  

MAF = 0.1 

Common variant association 
analysis using chi-square 

approximation (1) vRVS (2) True 
genotypes 

Compare power between the three 
methods as the effect size increase 

(Table S5) 

100:400 40, 60 (35x/5, 50x/5) 
 250, 150 (8x/4, 4x/2) Under the null and 

alternative hypotheses; 
OR=1 and 1.5 
MAF = 0.01 

Rare variant association analysis 
using (1) True genotypes with 
permutation (2) Genotype calls 

with permutation (3) vRVS with 
bootstrap. 

Compare Type I error and power 
between the three approaches as the 

sample size increases 
(Table S7A (using the asymptotic 

test) and S8) 

200:800 80, 120 (35x/5, 50x/5) 
 350, 450 (8x/4, 4x/2) 

500:2000 200, 300 (35x/5, 50x/5)  
800, 1200 (8x/4, 4x/2) 

500:1500 500 (35x/5) 
1500 (4x/2) 

Under the null and 
alternative hypotheses; 

OR=1 and 1.5 
MAF = 0.01 

Rare variant association analysis 
using (1) True genotypes with 
permutation (2) Genotype calls 

with permutation (3) vRVS with 
bootstrap 

Compare Type I error and power 
between the three methods as the 
group size in the study increases. 

(Tables 3, Table 7B (using the 
asymptotic test) and S9)  

200, 300 (35x/5, 50x/5) 
1500 (4x/2) 
200, 300 (35x/5, 50x/5) 
600, 900 (8x/4, 4x/2) 
120, 200, 180(35x/5, 
50x/5, 100x/10)  
600,900 (8x/4, 4x/2) 
120, 200, 180(35x/5, 
50x/5, 100x/10) 
500, 650, 350 
(8x/4, 4x/2, 3x/1) 

200:1000 80, 120 (35x/5, 50x/5) 
400, 600 (8x/4, 4x/2) Under the alternative 

hypothesis; OR=1.2, 
1.5, 1.8 and 2  

   MAF = 0.01 

Rare variant association analysis 
using (1) True genotypes with 
permutation (2) Genotype calls 

with permutation (3) vRVS with 
bootstrap 

Compare power between the three 
methods as the effect size increase 

(Table S10) 

* MAF: minor allele frequency, OR: odds ratio, rd: read depth, sd: standard deviation. Note that all cases are sequenced at high read 

depth and all controls are sequenced at low read depth. 
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2.3.1  Simulation Results for case-control designs 

The empirical Type I error for vRVS, the conventional method using genotype calls and for 

analysis with the true generating genotypes for common variant analysis are in Table 2 and Table 

S2 in the supplementary document, respectively. Under all scenarios, Type I error is well 

controlled for vRVS and is inflated when genotype calls are used for analysis with the score test. 

With the vRVS the Type I error is controlled regardless of the number of groups combined for a 

fixed number of cases and controls (Table 2).  The empirical Type I error is well controlled for 

vRVS for different sample sizes (Table S2). In the supplementary document, we see that the 

power of vRVS increases with sample size and is not affected by the number of groups combined 

for a fixed sample size (Tables S3 and S4), and that the power of vRVS increases as the effect 

size gets larger (Table S5), as expected. The power of vRVS is comparable to analyses that use 

the true genotypes, under all scenarios. Moreover, the empirical Type I error is well controlled 

with the vRVS when the base calling error is different for cases and controls, while it is inflated 

when genotypes calls are used for analysis (Table S6). 

Simulations for joint rare variant analyses provide similar conclusions. The empirical Type I 

error with the vRVS is controlled and comparable to an analysis that uses the true genotypes, 

with CAST being conservative as the number of sequenced groups is varied for rare variant 

analysis (Table 3). We believe the conservative p-values are due to a low number of possible 

permutations/bootstrap for low minor allele frequency that do not accurately represent a true null 

distribution. Empirically, we see that an asymptotic version of CAST using the chi-square 

approximation results in Type 1 errors that are closer to the nominal value (Tables S7A and 

Table 7B). The Type I error is inflated in all scenarios when genotype calls are used. The 

empirical power of vRVS increases with the sample size (Table S8) and effect size (Table S10), 

is robust to the number of sequenced groups combined (Table S9) and is comparable to an 

analysis that uses the true genotypes in all scenarios investigated. 
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Table 2. Empirical Type I error for common variant analysis with respect to different number of groups combined at the significance level of 0.05 

between the vRVS method, a conventional score test using called genotypes (GC) and true generating genotypes (true geno) with 500 HRD cases 

and 1500 LRD control. 

Number of groups 
combined 

Type of analysis 

True geno GC vRVS 

2 groups 0.5020 0.1486 0.0486 

3 groups 0.0490 0.1536 0.0476 

4 groups 0.0495 0.1065 0.0478 

5 groups 0.0506 0.1099 0.0507 

6 groups 0.0498 0.1423 0.0484 
Note: 2 groups indicates 500 cases with 35x and 1500 controls with 4x. 3 groups indicates 200 cases with 35x, 300 cases with 50x and 1500 

controls with 4x. 4 groups indicates 200 cases with 35x, 300 cases with 50x and 600 controls with 8x and 900 controls with 4x. 5 groups indicates 

120 cases with 35x, 200 cases with 50x, 180 cases with 100x, 600 controls with 8x and 900 controls with 4x. 6 groups indicates 120 cases with 

35x, 200 cases with 50x, 180 cases with 100x, 500 controls with 8x, 650 controls with 4x and 350 controls with 3x. Results are based on 10,000 

replicates for MAF=0.1. Base calling error is set to 0.01 across all groups. HRD: high read depth, LRD: low read depth, MAF: minor allele 

frequency. 

 

Table 3. Empirical Type I error for joint rare variant analysis with respect to different number of groups combined at the significance level of 

0.05 between the vRVS method, a conventional score test using called genotypes (GC) and true genotype (true geno) with 500 HRD cases and 

1500 LRD control. 

Number of groups 
combined 

Type of analysis 

True geno 
(CAST/SKAT) 

GC 
(CAST/SKAT) 

vRVS 
(CAST/SKAT) 

2 groups 0.0485/0.0525 0.2825/0.2030 0.0500/0.0455 

3 groups 0.0390/0.0570 0.2805/0.2175 0.0415/0.0490 

4 groups 0.0420/0.0505 0.1740/0.1385 0.0435/0.0430 

5 groups 0.0395/0.0505 0.1740/0.1330 0.0460/0.0525 

6 groups 0.0420/0.0455 0.2120/0.1620 0.0410/0.0460 

Note: 2 groups indicates 500 cases with 35x and 1500 controls with 4x. 3 groups indicates  200 cases with 35x, 300 cases with 50x and 1500 

controls with 4x. 4 groups indicates  200 cases with 35x, 300 cases with 50x and 600 controls with 8x and 900 controls with 4x. 5 groups 

indicates  120 cases with 35x, 200 cases with 50x, 180 cases with 100x, 600 controls with 8x and 900 controls with 4x. 6 groups indicates  120 

cases with 35x, 200 cases with 50x, 180 cases with 100x, 500 controls with 8x, 650 controls with 4x and 350 controls with 3x. Results are based 

on 10,000 replicates for MAF=0.01. Base calling error is set to 0.01 across all groups. vRVS is performed through bootstrap (1,000 iterations), 

GC and true genotype are performed through permutation (1,000 iterations). Each association test used a collapsed group of 5 variants. HRD: 

high read depth, LRD: low read depth, MAF: minor allele frequency. 
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2.3.2  Simulation results for quantitative phenotypes 

For common and joint rare variant analyses, we choose MAF to be 0.1 (𝜎< = 0.42) and 

0.01(𝜎< = 0.14) respectively. We also let 𝜎=1,  𝛽> = 0	 and 𝑅;	take different values in the 

simulations. Then the phenotype is generated based on the normal model, 𝑌~𝑁(𝛽> + 𝛽A𝑔", 𝜎;).  

We observe that the empirical Type I error for vRVS, the conventional method using genotype 

calls and for analysis with the true generating genotypes provide similar nominal values for both 

common and rare variant analysis; that is, the conventional method using genotype calls does not 

necessarily produce inflated Type I error. As opposed to case control designs, here read depth is 

not a confounding factor since it is not associated with both genotype calls and the phenotype 

(Hu et al., 2016). We provide the empirical Type I error for increasing sample size and with 

different group sizes for common variant association analysis in Tables S11 and S12 and for 

joint rare variant analysis in Tables S13 and S14. We present the empirical power for common 

variant analysis with respect to 𝑅; in Table 4 and for joint rare variant analysis with respect to 

different number of groups combined in Table 5. As expected, the power of vRVS increases with 

increasing 𝑅;, is robust to the number of sequenced groups combined and is comparable to an 

analysis that uses the true genotypes in all scenarios investigated. Moreover, the power of vRVS 

is always equal or larger than that of the conventional tests based on genotype calls.  

Table 4. Empirical power for common variant analysis with respect to explained variability (R2) at the significance level of 0.05 between the 
vRVS method, a conventional score test using called genotypes (GC) and true genotypes (true geno) for quantitative data analysis with a sample 
size of 400.  

Explained variance in 
phenotype (R2)  

Type of analysis 

True geno  GC  vRVS  

1%  0.51061  0.45802  0.46706  

2%  0.80261  0.74256  0.75163  

5%  0.99165  0.98235  0.9839  

Note: 4 groups are comprised of 400 samples. 50 samples with 35x, 70 samples with 50x, 200 samples with 4x and 80 samples with 8x. Results 
are based on 100,000 replicates for MAF=0.1. Base calling error is set to 0.01 across all groups.   
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Table 5. Empirical power for joint rare variant analysis with respect to different number of groups combined at the significance level of 0.05 
between the vRVS method, a conventional score test using called genotypes (GC) and true genotypes (true geno) with HRD and LRD groups for 
quantitative data analysis with sample size of 300. 

Number of groups 
combined 

Type of analysis 

True geno 

CAST/SKAT 

GC 

CAST/SKAT 

vRVS 

CAST/SKAT 

2 groups 0.9655/0.851 0.8995/0.7265 0.9195/0.7420 

3 groups 0.9580/0.8260 0.9035/0.7070 0.9090/0.7075 

4 groups 0.9600/0.8470 0.9190/0.7445 0.9235/0.7555 

5 groups 0.9550/0.8395 0.8990/0.7590 0.9100/0.7585 

6 groups 0.9595/0.84375 0.9045/0.7290 0.9125/0.7335 

Note: 2 groups indicates 100 samples with 35x and 200 samples with 4x. 3 groups indicates 50 samples with 35x, 50 samples with 50x and 200 

samples with 4x. 4 groups indicates 50 samples with 35x, 50 samples with 50x, 120 samples with 4x and 80 samples with 8x. 5 groups indicates 

50 samples with 35x, 30 samples with 50x, 20 samples with 100x, 120 samples with 4x and 80 samples with 8x. 6 groups indicates 50 samples 

with 35x, 30 samples with 50x, 20 samples with 100x, 90 samples with 4x, 80 samples with 8x and 30 samples with 3x. Results are based on 

10,000 replicates for MAF=0.01. Base calling error is set to 0.01 across all groups. vRVS is performed through bootstrap (1,000 iterations), GC 

and true genotype are performed through permutation (1,000 iterations). Each association test used a collapsed group of 5 variants. R2=1%. HRD: 

high read depth, LRD: low read depth. 

2.3.3  Simulations with covariates 

It is important for genetic association analyses to adjust for covariates, e.g. sex, age, ethnicity. 

We extend the functionality of vRVS to enable covariate adjustment, but to do so we break the 

link between the genotype information and the covariates (see supplementary, variance 

calculation section). This is equivalent to assuming that the genotype and covariates are not 

strongly correlated. In this section we investigate through simulation the robustness of vRVS to 

the correlation between genotype and covariates. We first illustrate the empirical Type I error for 

a common variant analysis of a binary trait with increasing covariate correlation. Suppose Z is a 

covariate added to the regression equation, i.e. 𝑝4𝑦"6𝑧", 𝐺"$9 = 𝑒𝑥𝑝(𝛽> + 𝛽A𝑔" + 𝛼𝑧")/41 +

𝑒𝑥𝑝(𝛽> + 𝛽A𝑔" + 𝛼𝑧")9. We investigate the impact of genotype-covariate correlation on Type 1 

Error through simulation of 200 cases sequenced at an average of 35x and 600 controls 

sequenced at an average of 4x with MAF=0.1. Table 6 demonstrates that the Type I error for the 

vRVS is well controlled for low correlation values (0.01-0.05). As correlation increases (>0.1), 

the Type I error for vRVS becomes conservative. Results from investigation of smaller (100 

cases, 200 controls) and larger sample size (500 case, 1500 control) scenarios are provided in 
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Tables S15 and S16 and demonstrate that, regardless of the sample size, Type I error is 

controlled in vRVS for low correlations and becomes deflated as correlation increases (>0.1).  

Table 6. Empirical Type I error for common variant analysis with different correlation values between the genotype, G and the covariate Z at the 

significance level of 0.05: results provided for the vRVS, a conventional score test using called genotypes (GC) and the true generating genotypes 

(true geno) with 200 HRD cases and 600 LRD control. 

Cor(G,Z) 

Type of analysis 

True geno GC vRVS 

0 0.0499 0.0692 0.0496 

0.01 0.0488 0.0687 0.0493 

0.02 0.4865 0.0686 0.0484 

0.05 0.0500 0.0688 0.0491 

0.1 0.0510 0.0706 0.0498 

0.2 0.0502 0.0707 0.0449 

0.5 0.0503 0.0703 0.0243 
Note: 200 cases are composed of 80 cases with 35x and 120 cases with 50x and 600 controls are composed of 200 controls with 4x and 400 

controls with 8x. Results are based on 100,000 replicates for MAF=0.1. Base calling error is set to 0.01 across all groups. HRD: high read depth, 

LRD: low read depth. Similar qualitative results observed for quantitative data analysis (Table S19). Likewise, when the covariate is associated 

with the phenotype Type I error remains controlled with vRVS (Table S20). 

2.3.4  Simulations under alternative study designs 

Scenarios to this point considered when the HRD case group was smaller than the LRD control 

group and showed that Type I error is well controlled with the vRVS methodology. If the control 

group is smaller than the case group, the Type I error has already been shown to be inflated 

(Table S17) (Derkach, Chiang, et al., 2014). For this experimental design, the estimate of the 

variance should be based on the full data set, and this option is implemented and must be 

specified in VikNGS. (Derkach, Chiang, et al., 2014) demonstrated that this approach can cause 

slight overestimates of the variances but that the Type I error remains controlled.  

When both cases and controls are sequenced at high read depth, Type I error (at least for 

common variant analysis) seems to be controlled on average when using genotype calls (Table 

S18).  However, there will of course be individual sites where read depth differs between the 

groups and this can likewise translate into spurious findings and power loss (Skotte et al., 2012). 

For rare variants, even for high read depth sequence, there will be more genotype calling errors 
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and analyses could benefit from methods that use genotype probabilities like the vRVS or the 

method by Skotte et. al.  (Skotte et al., 2012), which will be implemented in VikNGS. 

When both cases and controls are sequenced at low read depth, Type I error does not seem to be 

well controlled for small sample sizes (Table S19). As sample size gets larger (>600), vRVS 

produces well controlled Type I error while the conventional score test with genotype calls 

produces inflated Type I error. We also investigated severely unbalanced case-control designs, 

e.g. the case:control ratio being 50:500 (Table S20). The Type I error rate remains well-

controlled using vRVS while the conventional score test with genotype calls produces 

increasingly inflated Type I error.  The power of vRVS remains comparable to that of using the 

true genotypes (Table S21).  

2.4  Computational Performance 

As an evaluation of the performance capabilities of VikNGS, we used the simulation package to 

measure the time required to complete a set of association tests. Tests were run on a desktop 

Ubuntu 18.04 computer with 16 GB of ram and an 8-core AMD Ryzen 7 processor. The wall 

time used to complete a series of association tests and the number of variants processed per 

second was computed. The amount of time to process 1 million variants was then inferred. Table 

7 shows results for the common variant test. Since the common variant test p-value can be 

evaluated without bootstrapping/permutation, the test is extremely fast and can be performed on 

thousands of variants per second. Runtime is dependent on the number of individuals included in 

the analysis. Modest reductions in runtime can be seen by using multiple threads, with the 

exception of when the sample size was specified at 500. This is likely because the overhead cost 

of maintaining 8 threads exceeds the benefits of parallelism when there are a small number of 

samples. 

Table 7. Performance of common variant analysis in VikNGS using simulated high read depth data (100x). Samples were equally distributed 

between cases and controls. 10,000 variants (MAF between 10-30%) were generated for each replicate, each cell contains the average of 3 

replicates. All variants were generated under the null hypothesis (odds ratio = 1). 

Test Sample Size Variants processed per 
second (1 thread) 

Variants processed per 
second (8 threads) 

1 million variants  
(8 threads) 

Common 500 1.2×105 7.3×104 13 seconds 

Common 2000 4.0×104 5.49×104 18 seconds 

Common 5000 1.7×104 3.8×104 26 seconds 
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Table 8 presents a similar performance analysis for the rare variant tests. Since these tests 

evaluate a collapsed set of variants and use an iterative p-value calculation, they can be 

computationally intensive. To reduce this burden, VikNGS includes a method to halt the p-value 

calculation if enough evidence suggests the test will produce a p-value > 0.05 (Jiang & Salzman, 

2012). In VikNGS, this early stopping rule is only applied after a minimum of 10 iterations have 

completed. The values in Table 8 correspond to running 1,000 iterations which means the 

smallest p-value that can be resolved is 0.001. For smaller p-values, more iterations must be 

computed which has a linear impact on the running time. If early stopping is not applied, every 

set of collapsed variants will take twice as long if the number of iterations is doubled. With early 

stopping, only collapsed sets with high significance will be affected. In real applications, the vast 

majority of loci in the genome are expected to be under the null hypothesis of no association, 

therefore a significant reduction in running time is expected if early stopping is applied.  

Table 8. Performance of rare variant analysis in VikNGS using simulated high read depth data (100x). Samples were equally distributed between 

cases and controls. 500 variants (MAF between 1-5%) were generated for each replicate, each cell contains the average of 3 replicates. Each 

association test used a collapsed group of 5 variants and was run for 1,000 bootstrap/permutation iterations (except early stopping). All variants 

were generated under the null hypothesis (odds ratio = 1) 

Test Sample 
Size 

Variants 

processed per 

second (1 thread) 

Variants 

processed per 

second (8 

threads) 

Variants processed 

per second (8 

threads + early 

stopping) 

1 million 
variants  

(8 threads) 

1 million variants  
(8 threads + early 

stopping) 

Rare SKAT 500 48 110 2419 2.5 hours 6.9 minutes 

Rare SKAT  2000 18 26 849 10.6 hours 20.3 minutes 

Rare SKAT  5000 8 10 326 27.3 hours 50 minutes 

Rare CAST 500 83 100 2557 2.8 hours 6.5 minutes 

Rare CAST 2000 21 25 818 10.9 hours 20.3 minutes 

Rare CAST 5000 8 10 333 27.2 hours 50 minutes 

 

Table 7 and Table 8 only consider the time required to run the association test. On a real dataset, 

data is parsed and processed from a VCF file which requires additional time. Using the same 

Ubuntu 18.04 desktop as above, the 99 GB VCF file (2,407 individuals) described in Section 3.1 

took 12 minutes to parse, filter and run the common variant association test on the 273,241 

variants that passed the filtering step. VikNGS is capable of processing data on the scale of the 

human genome in a reasonable amount of time on a standard desktop computer. Running the 

command line version on a high-performance computing cluster would yield even shorter 

runtimes. 
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3 Application to the Genetics of Cystic Fibrosis (CF) 

3.1 The causal CFTR locus 

We applied VikNGS to an extremely unbalanced case control study which included NGS data 

from three independent studies: 101 individuals with CF of European descent sequenced by 

Complete Genomics at an average read depth of 30x; 1,927 non-CF individuals from the UK10K 

Consortium (sequenced on Illumina HiSeq 2000, mean read depth of 6.5x) and 379 individuals 

of European descent from the 1000 Genomes Project Phase 1 (sequenced on a combination of 

ABI SOLiD and Illumina platforms, mean read depth of 4x). A multi-sample VCF file was 

generated by merging VCFs across the three datasets using BCFtools since we did not have 

access to all the BAM files.  Ideally the multi-sample VCF should be created by calling variants 

directly from the BAM sequence files. The resulting 99 GB VCF file contained all variants on 

chromosome 7. To conduct a common variant analysis, we instructed VikNGS to filter for SNPs 

with MAF > 5% and remove variants missing more than 10% of data from either cases or 

controls (these parameters are user defined). 273,241 variants remained after filtering and were 

tested using the vRVS test statistic with p-values calculated using the asymptotic distribution. 

The p-values spanning chromosome 7 (Figure 7) demonstrate a strong association at the CFTR 

locus (chr7:117,105,838 - 117,356,025), as expected.  

 

Figure 7. Association test results from an extremely unbalanced design with 101 individuals with cystic fibrosis and 2,306 healthy controls 
performed by VikNGS. The red dotted lines indicate the p=0.05 and p=5×10−8 (conventional genome-wide association significance) levels. The 
region around CFTR (chr7:117,105,838 - 117,356,025) contains multiple genome-wide significant P-values, with the minimum value VikNGS 
currently calculates being 1×10−14. No other variant across the chromosome exceeded the genome-wide significance threshold. 

 

Although the major CF-causing CF-haplotype displays significant long-range LD, we 

investigated the distribution of p-values obtained from the p arm of chromosome 7, which should 
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be distributed as approximately uniform [0,1] under the null hypothesis although long-range LD 

with CFTR will impact this slightly.  This analysis included 119,955 common SNPs from the 

start of chromosome 7 to position 58,000,000. We pruned the SNPs using PLINK 1.9 ( 

http://pngu.mgh.harvard.edu/purcell/plink (Purcell et al., 2007), --indep-pairwise 1500 100 0.2) 

to limit the effect of linkage disequilibrium.  3,845 variants were left after pruning and p-values 

were computed using vRVS with expected genotypes and with genotype calls for comparison. 

The distribution of p-values (Figure 8) from the analysis with genotype calls show greater 

evidence of inflation (λ=1.14) than the vRVS (λ=1.06), consistent with our simulation results and 

the assumption that the variants on the p arm are not associated with CF.  

 

Figure 8. A Q-Q plot was generated from the resulting pruned p-values produced by VikNGS. Orange triangles represent p-values from genotype 
calls, blue circles correspond to vRVS p-values. P-values derived under the null hypothesis are expected to fall along the dotted diagonal line. A 
p-value histogram is shown for both distributions and genomic inflation factor λ is provided. 

3.2 Assessing the contribution of CF modifier gene SLC26A9 to lung function in the non-CF 

UK10K population. 

VikNGS can also implement conventional association testing for NGS data from a single study 

sequenced using one experimental design. Here we investigate the association evidence between 

a continuous lung function measurement and variants in a small region of chromosome 1 

(chr1:205,860,000 - 205,940,000) near SLC26A9 that were previously identified to contribute to 

lung function in older CF (Strug et al., 2016) and non-CF populations (Strug, Stephenson, 

Panjwani, & Harris, 2018), and hypothesized to influence lung function by improving CFTR 
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function.  The association at this locus in non-CF populations is yet to be independently 

replicated.   

In the UK10K data, the common spirometry measures of forced vital capacity (FVC; the total 

volume of air that can be exhaled from the lungs during a forced expiration) and forced 

expiratory volume in 1 second (FEV1; the volume exhaled in the first second after maximal 

inhalation) are available, measured in young participants at the age of 8. A ratio of these two 

values is a typical measure of lung disease, although the variation in this measure in younger 

individuals is less pronounced. Quantitative trait association analysis of the FEV1 / FVC ratio at 

the top CF-associated variant of the SLC26A9 locus, rs4077468 ((Sun et al., 2012); (Blackman et 

al., 2013)) in 1,927 non-CF individuals from the UK10K cohort also demonstrated evidence of 

association using the VikNGS score tests that uses genotype likelihoods (p=0.0392) and 

genotype calls (p=0.0375).  

The association results calculated by VikNGS replicated the other published study in a non-CF 

population. Publicly available analyses from the UK Biobank (n=307,638) show association with 

peak expiratory flow and rs4077468 (p=4.35×10−25) (McInnes et al., 2018; Strug et al., 2018).  

The p-values from the VikNGS analysis of the UK10K data reported here are not as small as 

those previously reported, likely due to the difference in sample size and the limited range of 

FEV1/FVC in 8 year-olds. However, even with these limitations, this analysis offers further 

support for variants at this locus contributing to lung function in individuals without CF.  

1. Discussion 

Here we introduce VikNGS, a software application that enables a robust approach for genetic 

association analysis of common and rare variants from NGS data. Due to sequencing cost 

considerations, investigators must often limit the sample size of their study population at the cost 

of power; collaboration across study groups or integration with publicly available data is a 

pragmatic solution. Integrating data from different sources may introduce systematic biases due 

to sequencing parameters (error rate, read depth, etc.) which can lead to spurious association 

findings. Traditional association testing uses called genotypes, the accuracy of which is highly 

dependent on read depth. Confounding read depth with case-control status will result in an 

inconsistent distribution of errors in genotype calls. For rare variants, the majority of errors will 
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be mistaken heterozygous calls, resulting in what appears to be an enrichment of minor alleles in 

one group over another, leading to inflated significance.  

VikNGS provides an implementation of the RVS framework (vRVS), built on the concept of the 

RVS statistic (Derkach, Chiang, et al., 2014) for controlling spurious association due to 

differences in sequencing parameters. RVS uses expected genotypes instead of genotype calls to 

enable robust association analysis when combining cases and controls from different 

experimental designs. We expanded this methodology in VikNGS to enable association analysis 

on an arbitrary number of datasets for both binary and quantitative trait analysis and allowing for 

covariate adjustment. We demonstrated through simulation that the vRVS methodology controls 

Type I error and provides comparable power to analyses if the true genotypes were known, even 

for severely unbalanced case-control designs. The simulation tool used for evaluating vRVS is 

included in VikNGS and can be used for power and sample size estimation for study planning. 

We initially considered several existing simulation software tools to generate sequencing data, 

e.g. SEQPower (G. T. Wang, Li, Santoz-Cortez, Peng, & Leal, 2014), SimRare (Li, Wang, & 

Leal, 2010), SeqSIMLA2 (Chung, Tsai, Hsieh, Hung, & Hauser, 2015), but these packages do 

not offer a simple way to generate and combine data simulated under different sequencing 

settings. 

Genetic association studies that use WGS enable analysis of rare variants which can be analyzed 

individually or using region-based collapsing association tests, the latter requiring unique 

statistical methods (Lee, Abecasis, Boehnke, & Lin, 2014). Computational tools have been 

developed to provide implementations of these methods, eg.  EPACTS 

(http://genome.sph.umich.edu/wiki/EPACTS), PLINK-SEQ 

(http://atgu.mgh.harvard.edu/plinkseq/), Variant Association Tools (G.T. Wang, Peng, & Leal, 

2014), RVTESTS (Zhan, Hu, Li, Abecasis, & Liu, 2016), SCORE-Seq (Lin & Tang, 2011) 

However, these packages are not designed to analyze data from different sources with varying 

experimental designs, and they are primarily command line tools rather than implemented 

through a graphical interface as in VikNGS.  To increase the utility of VikNGS, in addition to 

vRVS we implemented  several common and rare variant association analysis approaches using 

genotype calls.  
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We have demonstrated the functionality of VikNGS in case-control and quantitative trait 

settings, using the vRVS framework to combine multiple datasets and for conventional analysis 

in a single study, respectively. Given 101 individuals with CF and 2,306 non-CF controls, 

VikNGS detected the CFTR locus as associated with CF as expected and was shown to control 

Type I error better than genotype calls in regions of the chromosome presumed to be 

approximately under the null hypothesis. Conventional score testing approaches are also 

implemented in VikNGS for rare and common variant analysis. We implemented this 

functionality for quantitative trait analysis and replicated an association between lung function 

and a CF modifier variant in a non-CF population, a gene that has been shown to interact with 

CFTR to improve its function.  

The advantage of using sequencing designs over microarray SNP chips in genome-wide 

association studies is the ability to capture the full allele frequency spectrum enabling rare and 

common variant analysis. Large sample sizes are required, however, to detect associated rare 

variants in the data. The vRVS methodology implemented in VikNGS will enable mega-analysis 

from large consortia despite differences in sequencing design. A current limitation of VikNGS is 

that the input must be in the format of a multi-sample VCF. This requires a variant calling step to 

identify polymorphic loci along the genome. As pointed out by (Hu et al., 2016), rare variants 

can be indistinguishable from base calling errors in low read depth datasets which can lead to 

truly monomorphic sites being called as rare variants. Including these monomorphic sites in a 

burden test has been shown to cause inflation in Type I error, even when using vRVS. As this is 

an issue with variant calling, it is currently outside the scope of VikNGS. However, one can filter 

out potentially monomorphic sites prior to running a rare variant analysis in VikNGS and using 

variant calling approaches such as PhredEM (Liao, Satten, & Hu, 2014) which has been shown 

to significantly reduce the number of monomorphic sites called as polymorphic. 

Future developments in VikNGS will allow for more flexibility in input, including the ability to 

use compressed and indexed VCF files to enable faster parsing and filtering in addition to 

smaller disk space requirements. Another possible improvement is to allow a set of BAM 

sequencing files as input to allow greater control over which variants are called and to improve 

estimates of expected genotypes. Currently, the vRVS framework assumes that specified 

covariates are uncorrelated with the genotype, 𝐺"$ . Though weak correlation between the 
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genotype and the covariates has minimal impact, the user should be cognizant of this limitation 

when specifying covariates. In the current version, vRVS does not accommodate a design where 

external data is combined with cases and controls who have been sequenced together, although 

this extension is possible. Lastly the vRVS framework assumes all groups are comparable based 

on epidemiologic factors, which may be challenging and requires careful consideration. 

Recently,  (Liao, Satten, & Hu, 2018) developed methodology for population structure inference 

when NGS data is combined across study groups with different experimental designs. Their 

principal component analysis (PCA) method captures population stratification only, rather than 

the differences in sequencing properties that would influence traditional PCA approaches. Using 

covariate adjustment in VikNGS enables inclusion of these PCs for population structure 

adjustment.   

VikNGS is a user-friendly software with a graphical interface that provides a general framework 

for simulation and genetic association using NGS combined across different study cohorts. The 

software is fast and user friendly, offering efficient parallel computations that can be run from 

the command line or using a visual interface on Windows, Linux or Mac operating systems. 

VikNGS is freely available at http://www.tcag.ca/tools/index.html. Detailed documentation is 

available at https://VikNGSdocs.readthedocs.io/en/latest/ . 
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