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Abstract 
Cognitive processes are mediated by communication among multiple brain areas that 
individually exhibit oscillatory neuro-electromagnetic signals emerging from a cascade of 
complex physiological processes. Several studies have reported that aging changes the 
intrinsic properties of neural oscillations, both in resting state and in the context of 
cognitive tasks. For example, the amplitude of resting and motor-related beta band 
oscillations (16-25 Hz) is typically found to be higher in the older population compared to 
the younger population. Similarly, a substantial number of reports have highlighted that 
peak alpha frequency (8-12 Hz) is lowered in neurodegenerative disorders and in healthy 
aging. How such observations emerge from underlying neuronal signal processing 
mechanisms remains elusive. Furthermore, how do the spatiotemporal organization of 
these rhythms support the current neurobiological theories of aging is poorly understood. 
Here we addressed these issues using the resting state magnetoencephalogram (MEG) 
data from a large cross-sectional cohort consisting of 650 human participants with age 
range 18-90 covering the entire adult lifespan. Concurring with previous research in 
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smaller cohorts, we found a consistent increase in the power of beta oscillations and a 
decrease in the peak alpha frequency as a function of age. Subsequently, we found 
significant posterior to anterior shifts in the spectral topographies of both alpha and beta 
bands. To reconcile these observations with a comprehensive theory at the level of 
network level signal processing, we computed the whole-brain global coherence that 
captures the degree of communication among nodes of a large-scale network as a 
function of aging. The global coherence among MEG signals increased with age in slower 
time-scales i.e. delta (1-3 Hz) and theta (3-7 Hz) frequencies. Simultaneously, global 
coherence decreased for faster timescales i.e. alpha (8-12 Hz) and beta (16-25 Hz) 
frequencies. Further, using the measure of metastability that quantifies the divergence of 
a network from a stable synchronous state, we characterized the dispersion of information 
processing in different frequency bands. Putting together, our study reveals how 
neurobiological theories of aging such as posterior to anterior shifts of sensory and 
cognitive processing, dynamic workspace hypothesis can all be reconciled using resting-
state MEG data. We could highlight how the temporal structure of MEG signals is 
representative of a more comprehensive understanding of large-scale network 
mechanisms that govern lifespan dynamics. 

Introduction 
Healthy Ageing and Temporal Structure 
 
A comprehensive understanding and characterization of the process of healthy aging are 
essential to treat age-associated neurological impairments such as Alzheimer’s and 
Parkinson’s disease. Till date, there is no comprehensive theory of healthy aging that 
explains the role of neuronal mechanisms at various temporal and spatial scales. 
Neuronal oscillations observed in EEG/ MEG data are essential markers of cognition 
(Buzsaki 2011), and researchers overwhelmingly agree on the use of field potential to tap 
neuro-cognitive processes associated with human brain function (Pesaran et al., 2018) 
and in particular aging (Ishii et al., 2017). The frequency domain representations can 
capture the presence of state space in the information processing sense, and 
subsequently the modes of communication or interactions among constituent functional 
units. Using the language of physics, a large-scale complex system such as a brain, 
transitions among various states of organization (order), sometimes defined by the 
temporal relationships (such as coherence) among spatially segregated regions (Hipp et 
al., 2012). On the other hand, the propensity of the brain states to move away from states 
of order can be captured by “metastability”, a quantitative marker to define how far any 
physical system is away from “order” and how strong the tendency is there to come back 
to an ordered state (Naik et al. 2017). The fundamental objective of this article is to 
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illustrate that these processes can be interpreted from neurophysiological data (MEG) 
obtained from a large cohort of a healthy aging population (Taylor et al., 2017). 
 
A large portion of research seeking to map healthy aging-related behavior on to 
modulation of neural oscillations has taken the factor of age as a binary variable, i.e. 
comparing young versus old (e.g., Strunk et al., 2017). While it is essential to know what 
changed between younger and older populations when these network dynamic alterations 
begin to manifest in the lifespan trajectory remains elusive. Critical stages may exist 
during development when significant changes occur to brain dynamics (Koenig et al., 
2002). The steps mentioned above might also hold for the process of healthy aging, hence 
tracking down the lifespan changes to the temporal structure of brain signals holds a lot 
of promise. 
 
Why are frequency specific changes relevant parameters to study aging? 
 
Quantification of coordinated synchrony among neural populations via spectral measures 
has been shown to be pertinent to cognition and their decline in neurodegenerative and 
developmental disorders (Alderson et al., 2018; Uhlhaas and Singer, 2006; Fries, 2005; 
Bressler, 2001).  
 
In aging literature a widely reported marker is the slowing down of alpha rhythms in mild 
cognitive impaired and Alzheimer’s affected population (Babiloni et al., 2006; Garces et 
al., 2013). Nonetheless, the large-scale network mechanisms behind the slowing of alpha 
and its decreasing power with aging are as an open question (see Ishii et al., 2017 for an 
excellent review). For example, what is the relevance of slowing brain rhythms to the 
dynamic repertoire of the developing brain and essential brain functions? Such questions 
require using various measures of signal and physiological complexity from neuroimaging 
data obtained from MEG, EEG & fMRI. 
 
 
 
Current Mechanistic Insight and our Approach 
 
Aging is known to be accompanied by a decline in the structural connectivity among brain 
regions (Raz et al., 2005; Pfefferbaum et al. 2000; Davis et al., 2009 ). Recent research 
has suggested that a compensatory mechanism emerges with aging, that try to 
counteract the deleterious effects of the losses as mentioned above (Davis et al., 2008; 
Reuter-Lorenz et al., 2000).  All the change mentioned earlier are related to a 
reorganization of brain networks with increasing age in the lifespan trajectories (Deco et 
al., 2017; Naik et al., 2017). This reorganization of brain networks can be expected to 
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play a pivotal role in changing the spatiotemporal properties of neuronal oscillation and 
the variability of the global communication states (empirically characterized by coherence 
and metastability) along lifespan trajectories. 
 
Resting-state magnetoencephalogram (MEG) recordings from the Cambridge-Ageing 
Neuroscience (Cam-CAN) group offers us a unique opportunity to capture the 
organizational features empirically and tying it up to a broader theoretical framework 
(Taylor et al., 2017) 
 
Here we provide empirical evidence of reorganization of the brain on the sensor level 
along with changes in characteristic properties of slow (integrative) and fast (segregative) 
neural oscillations with aging. Since this analysis has been carried out on a large cohort 
of an aging population(cross-sectional) to understand lifespan trajectories, the findings 
can be considered to be highly robust and reliable. Besides, they help in providing insights 
into lifespan related critical stages of healthy aging as well. 
 
 
 

Results 
 
For majority of analysis carried out in this work, we have considered age to be a 
continuous variable. However, for certain analysis we have divided the age values of total 
N=650 subjects into four age groups (Young Adults (YA), Middle Elderly (ME), Middle 
Late (ML), Older Adults (OA)), for which the demographic information has been provided 
in table 1. 
 
Spectral properties of neural oscillations with aging 
 
We started with spectral estimation of the resting state data to investigate the effect of 
healthy ageing on the fundamental properties of the endogenous band-limited neural 
oscillations such as amplitude and center frequency. Since the Head Position Indicator 
(HPI) coil related noise can be unreliable at higher frequencies we concentrated our 
analysis between 0-40Hz which fully contains the neural oscillations in the Delta(<4Hz), 
Theta(4-8Hz), Alpha(8-12Hz), and Beta(16-25Hz) frequency bands.  
 
Figure 1A shows the average global spectrum of four different age groups. Qualitative 
changes can be seen in the spectrum among age groups in both Alpha and Beta 
oscillations. A gradual increase in Beta band power was seen with increase in age and a 
shift in the peak Alpha frequency (PAF) was observed between the youngest and oldest 
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age group. Motivated by these qualitative results we further sought to quantify the 
statistical significance of ageing related difference and possible neural implications of 
these changes in the spectrum of Alpha and Beta band oscillations. 
 
Alpha band power was estimated by averaging the estimated spectral values within 8-12 
Hz. Estimated Alpha band powers were grouped according to the four age groups. Since 
the number of subjects within each age group were not uniform, for further statistical 
comparison between two groups we always chose the minimum number of subjects 
among the age groups i.e. 126 for the YA group. We randomly sampled 126 values from 
each group and performed unpaired t-test. The sampling was iterated over 5000 times. 
Correction was made for multiple comparison using False Discovery Rate procedure 
(Benjamini and Hochberg, 1995). Using Kruskal-Wallis test, we did not find any significant 
difference in alpha power among age groups (p = 0.991). Performing t-test among any 
two groups for alpha power didn’t show any significance either. 
 
Beta band power was estimated by averaging the estimated spectral values within 16-25 
Hz. Beta powers were grouped into four age groups and similar statistics were performed 
as explained in the previous subsection. Figure 1B shows variation in beta power among 
four age groups. We found significant effect of age on beta band activity (𝑅" = 0.04, 𝑃 <
0.001, 𝑁 = 650). Significant difference were seen between age groups YA, 18-35 years 
and ME, 36-50 years (t(250) = -3.55, p = 0.001), groups YA and ML, 51-65 years (t(250) 
= -4.51, p < 0.001), groups YA and OA, 66-88 years (t(250) = -5.60, p < 0.001) and a 
marginally significant difference was observed between groups ME and OA (t(250) = -
2.05, p = 0.070). Spearman’s rank correlation between age of the individual and beta 
power was found to be 0.216, p < 0.001, which suggests beta activity increases with 
aging. 
 

Peak Frequency shift for alpha band: Spatiotemporal Organization 
 
Frequency value at which there was maximum activity in the alpha band i.e. 8-12 Hz for 
a subject, was taken to be the peak alpha frequency of that subject. Figure 1C is an age-
spectrogram which shows variation in the power spectral density in the alpha band with 
age. Age values were grouped into bins of 5 years starting from 18 years. The bins were 
non-overlapping and the center of each bin was considered as the representative age 
value of the bin. We found significant effect of age on center alpha frequency (𝑅" =
0.14, 𝑃 < 0.001, 𝑁 = 650). Spearman’s rank correlation between age and center 
frequency in the alpha band was found to be -0.384 (p < 0.001). 
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Further we investigated the variation of peak alpha frequency with aging at individual 
sensor level. Figure 1D shows the topographical map of Spearman’s rank correlation 
between peak alpha frequency and age. Overall, peak alpha frequency decreased with 
age in many sensors and had a statistically significant negative correlation with age. 
Surprisingly, a set of sensors in the prefrontal cortex did not show a robust decrease in 
peak alpha frequency with age. In these sensors, either the correlation was low or 
nonsignificant (Spearman’s rank correlation, -0.0248, p=0.5284). 
 
Whole brain measures of neuronal communication states during 
ageing 
 
Presence of large-scale functional brain networks was investigated using global 
coherence across all MEG sensors at different frequencies for each subject (Cimenser et 
al., 2011; Kumar et al., 2016). Figure 2 shows the average of the global coherence 
spectrum for the four age groups. Qualitative differences were observed across frequency 
range 0-25 Hz, which were quantified and tested for statistical significance. 
  
Global coherence at all the frequency values within a frequency band were averaged to 
generate a representative value for the corresponding frequency band in four age groups, 
YA, ME, ML, OA (Fig 1A). In order to track lifespan trajectories, subjects were grouped 
into finer non-overlapping age bins of 5 years between 18-88 years. Representative 
global coherence in age bin was averaged and standard error was computed for each 
age bin (Fig 2B). 
 
We observed that the global coherence in Delta band, 1-3 Hz (𝑦 = 0.0006𝑥 +
0.2863, 𝑅" = 0.077, 𝑝 < 0.001, 𝑁 = 650), in Theta band, 3-7 Hz (𝑦 = 0.0004𝑥 +
0.2583, 𝑅" = 0.063, 𝑝 < 0.001, 𝑁 = 650), and Alpha band, 8-12 Hz (𝑦 = 0.0013𝑥 +
0.4168, 𝑅" = 0.076, 𝑝 < 0.001, 𝑁 = 650) was correlated with age. Correlation of age with 
global coherence in Beta band (16-25 Hz) was small (𝑦 = −0.0002𝑥 + 0.2584,𝑅" =
0.021, 𝑝 < 0.001,𝑁 = 650). Thus, we suspected that age had a differential effect vis-a-vis 
global coherence depending on the time scale of the oscillations. To test our hypothesis 
that age-related reorganization results in differential processing in slower and faster time 
scales we have further divided the oscillations into two major groups i.e. of slow time scale 
(1-5 Hz) and of fast timescale (10-20 Hz). As expected from the previous set of results 
we found significant increase in global coherence with increase in age for slow oscillations 
(Spearman’s rank correlation 𝑐 = 0.248, 𝑝 < 0.001) and a significant decrease with aging 
in fast oscillations (Spearman’s rank correlation 𝑐 = −0.356, 𝑝 < 0.001).  2-way ANOVA 
test revealed an age effect F(1,3) = 4.74, p = 0.0027, a frequency effect of F(1,3) = 174.79, 
p < 0.001 and an interaction effect of F(1,9) = 9.23, p <0.001. 
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Topographical segregation of neural oscillations at different time-
scales with aging 
 
Next, we investigated the spatial boundaries of whole brain networks corresponding to 
age-related difference along slow and fast time scales of neuronal signal using subspace 
analysis borrowed from linear algebra. The key findings confirm our hypothesis that the 
topographical changes of the spectral power with aging i.e. the changes on the scalp level 
representation of Alpha and Beta band activity increases with age. Here, for simplicity, 
we considered only the two extreme age groups i.e. YA (18-35) and OA (66-88). Figure 
3A shows the average topographical map of alpha activity at the center alpha frequency 
and average beta activity in 16-25 Hz for the youngest and oldest age groups. Performing 
cluster-based permutation statistics revealed statistically significant patterns of difference 
in alpha and beta band activity between the two age groups. 
 
Although, we observed similar patterns of difference between the oldest and youngest 
age groups for global alpha band power and beta band power, there seemed to be a 
qualitative difference in the overlap of sensors representing alpha activity and beta band 
activity. We quantified the overlap between these two sensor topographies by the angle 
between their respective vector representations. Larger angles indicated more separation 
and less topological overlap between sensor groups. 
 
We found significant effect of age on the angle between Alpha and Beta band activities’ 
sensor wise representation (𝑅" = 0.056, 𝑝	 < 	0.001, 𝑁 = 650). Fig 3C shows how 
angular separation of subspaces between scalp topographies from underlying alpha and 
beta frequencies increase as a function of age. Significant difference was found between 
age groups 18-34 and 51-65 (t(228) = -2.89, p = 0.011), age groups 18-34 and 66-88 
(t(228) = -4.64, p < 0.001) and age groups 35-50 and 66-88 (t(228) = -3.42, p = 0.003). 
 
 Metastability and aging 
 
We estimated the variability of neuronal communication states using metastability as a 
function of age and frequency. We observed a dichotomous pattern in metastability as a 
function of frequencies in all age groups, a sharp decrease with increasing frequencies 
till 12 Hz and a gradual increase in the metastability indices across frequencies between 
12-40Hz (Fig 4). This was further confirmed by treating age as a continuous parameter 
and also by chunking participants in 4 age-groups as highlighted in previous subsections.  
 
To identify the statistical trends, we grouped the participants in 4 age groups and 
performed t-test across the age-groups. Statistics similar to the power analysis was 
performed to confirm the correlation of age and metastability. Subjects were divided in 
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four age groups and unpaired t-tests were performed by drawing 5000 samples from each 
age group. Every random draw consisted of subjects equal to the smallest age group 
(126, Young). Resulting p-values were corrected for multiple comparisons by using the 
procedure described in (Benjamini-Hochberg,1995) and implemented using MATLAB 
functions. The following p-values and t-statistics were obtained for metastability in alpha 
band- YA vs ME (p=0.07, t = -1.97), YA vs ML(p<0.001, t= -4.52), YA vs E(p<0.001,t=-
4.332), ME vs ML(p= 0.0220, t= -2.5646), ME vs E(p=0.0284,t=-2.445), ML vs 
E(p=0.7542, t= -0.1703).  A 2-way ANOVA test revealed a age effect F(1,3) = 64.41,p ~ 
0, a frequency effect of F(1,7) = 35.61, p ~ 0 and a interaction effect of F(1,21) = 2.08, p 
= 0.0027. 
 

Differential profiles of slow vs. fast scales of metastability in aging 
      
Our findings suggest a characteristic U-shaped profile of metastability as a function of 
various frequency bands. Interestingly, the minimum metastability was observed in the 
alpha frequency band, consistent across age groups (see Fig. 4). The comparison of 
metastability in slow and fast time scales across age-groups revealed an interesting 
inverse trend. The metastability associated with slower time scales (Delta and Theta) was 
found to be lower than the corresponding values for the faster time scales (Beta 4,5) in 
the young cohort (p<0.001) whereas the opposite trend was observed in the elderly group 
(p=0.0075)). This was further confirmed by pooling the metastability values of the slower 
and faster time scales together and performing non-parametric statistical tests (two 
sample Kolmogorov-Smirnov test (KS-test)). 
 

Region Wise analysis of metastability reveals differential trends 
 
In order to track changes in metastability in specific brain areas we segmented the 
sensors in 5 groups - Frontal, Centro-Parietal, Occipital, Left Temporal and Right 
Temporal regions. The region-wise analysis consisted of 14 randomly sampled sensors 
in each brain region. Next, we calculated region-wise metastability and tracked its change 
with aging. Spearman rank correlation was performed to characterize trends in band and 
region specific metastability. 
 
This suggests that whereas Alpha band displays an increasing trend with age for all brain 
regions, Delta and Theta oscillations either stayed invariant or reduced as a function of 
age in the occipital, left temporal and right temporal regions. Beta band metastability 
showed the highest age correlation (using Spearman rank test) in the centro-parietal 
sensors while staying invariant in the occipital and temporal sensors.  
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The following Spearman rank coefficients were obtained for delta band - frontal 
(c=0.2499, p<0.001), centro-parietal (c=0.1629, p<0.001), occipital (c=-0.0686, 
p=0.0805), left temporal (c~0, p=0.92), right temporal (c=-0.1428, p<0.001). The 
corresponding values for alpha band were frontal (c=0.2161, p<0.001), centro-parietal 
(c=0.1808, p<0.001), occipital (c=0.1348, p<0.001), left temporal (c=0.2030, pval<0.001), 
right temporal (c=0.2070, p<0.001).  For theta band- frontal (c=0.1725, p<0.001), centro-
parietal (c=0.2049, pval<0.001), occipital (c=-0.1141, pval=0.0036), left-temporal (c=-
0.04, p=0.2396), right-temporal (c=-0.0457, p=0.2443) were obtained. We tracked 
metastability in the beta band for three frequency bands (𝛽<, 𝛽=, 𝛽>) using similar statistical 
methodology. Centro-parietal sensors showed the highest age-related positive 
correlations (c=0.2046, 0.2542, c=0.1734, p<0.001 for the three bands respectively). 
 

Discussion 
Our results indicate distinct changes in spectro-temporal features of resting state MEG 
with aging. In this section, we relate our findings to existing literature and discuss their 
possible implications for the understanding of the process of normal and abnormal aging.     
 
We report a significant age-related decline in peak alpha frequency. The decrease in peak 
frequency of alpha band has been reported to be a biomarker of normal and pathological 
aging process, especially for dementia, mild cognitive impairment, and Alzheimer’s 
disease (Scally et al., 2018; Dickinson et al., 2018; Osipova et al., 2005; Jeong, 2004). 
Patients with Alzheimer’s disease show a significant decrease in peak alpha frequency 
(PAF) compared to age-matched control group (Osipova et al., 2005; Jeong, 2004). 
Parkinson’s patients with dementia have a lower PAF compared to age-matched controls 
(Soikkeli et al., 1991). While earlier studies suggest that PAF can be considered to be a 
robust biomarker of pathology, we observe very similar results in healthy aging as well. 
Neurodegenerative pathologies like AD and Parkinson’s share many similarities with 
healthy aging, due to which many have speculated whether neurodegeneration is an 
accelerated aging process (Ciryam et al., 2016). The relationship between specific 
symptoms of pathologies such as Alzheimer’s, Dementia and Parkinson’s are hinted by 
some recent literature. Samaha et al. (Samaha et al., 2015) have demonstrated that 
individuals with higher PAF during eyes-closed resting state also showed a significantly 
finer temporal resolution in visual perception task and enhanced task performance. Taken 
together our finding of a shift of PAF with aging could serve as a possible predictor for 
age-related decline in perceptual acuity in a number of tasks. Interestingly, the same 
study also reports a weak but non-significant correlation between eyes-closed resting 
state PAF and age, further corroborating our findings of an age dependent shift in PAF. 
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Similarly, previous studies (Clark et al. 2004) have reported a significant reduction in 
working memory performance in digit span task with aging, while also reporting a positive 
relationship between PAF and working memory.  
 
An analysis of topographical differences in PAF distributions between pathological and 
age-matched non-pathological populations can shed light on the differences between 
neurodegenerative processes and healthy aging. Our observation that a subset of frontal 
sensors doesn’t show a significant decline in PAF forms the basis of this belief. We 
interpret these results in light of recent literature that reports an age-related reduction of 
inhibition in the prefrontal cortex of humans and rhesus macaques which leads to 
increased neural activity. This compensatory mechanism could underlie our observation 
of preservation of peak alpha frequency in frontal sensors and as such, could be an index 
of neuro- compensation (Bishop et al., 2010; Loerch et al., 2008). We also observe a 
distinct posterior to anterior shift in the spatial topography of the central power of 
spontaneous alpha activity with age.  This assumes critical importance in light of recent 
literature that suggests that the topographical distribution of alpha band power can track 
spatial working memory (Foster et al.,2015). Additionally, the scalp topography underlying 
alpha band power has also been shown to predict the focus of covert spatial attention 
(Samaha et al., 2016). To our knowledge, ours is the first study that reveals age-related 
changes in spatial topographies underlying PAF power. 
 
Beta oscillations are present in primary motor cortex at rest and get suppressed during 
movement (Pfurtscheller and Lopes de Silva, 1999). Beta oscillations in motor cortex are 
thought to be an index of motor inhibition and volitional movement (Heinrichs-Graham 
and Wilson, 2016). Research also suggests that an increase in intra-cortical GABAergic 
inhibition gives rise to an increase in resting state beta activity (Hall et al., 2011; 
Muthukumaraswamy et al., 2013).  From this perspective, an increase in beta oscillations 
in the older population compared to the younger population can be reflective of increased 
motor inhibition (Heinrichs-Graham et al., 2018). Increase in the band-limited beta power 
in older population compared to younger population has been reported both in the context 
of resting state and sensory-motor task (Rossiter et al., 2014; Heinrichs-Graham and 
Wilson, 2016) and empirically demonstrates a mechanism by which healthy brain 
compensates for age-related increases in spontaneous beta activity by increasing the 
strength of beta oscillations within the motor cortices which, when successful, enables 
normal motor performance into later life (Heinrichs-Graham et al., 2018). We also 
observed the increase of beta band power with aging (Fig 1. B). As with alpha band, we 
observe a posterior to anterior shift in the topography of beta power with aging. Further, 
it has been reported that resting state band limited activity in slow frequency oscillations, 
i.e. delta and theta band is typically higher in younger population compared to older 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/504589doi: bioRxiv preprint 

https://doi.org/10.1101/504589


population (Volf and Gluhih, 2011). However, we did not observe this on a global level in 
the present study.  
 
According to a dominant view in neuroscience, coherent activity across neuronal 
assemblies is a hallmark of neuronal communication. This view holds that interareal 
coherence presents windows of excitability where communication channels between 
brain regions are maximally utilized (Fries, 2005). Resting state brain activity is said to 
reflect the brain’s tendency to engage and disengage these channels of communication 
spontaneously (Deco et. al, 2011). 
 
From a dynamical perspective, spontaneous brain activity must exhibit metastable 
dynamics, whereby the global brain dynamics stay clear of the two extremes of constant 
synchronization and desynchronization and instead, periodically shuttles back and forth 
between coherent and incoherent regimes.  More formally, global coherence indexes the 
average phase and amplitude correlation across sensors whereas metastability 
measures the variability in phase relationships of sensors across time. The 
complimentary, yet related nature of global coherence and metastability offers unique 
insights into the mechanistic underpinnings of global brain dynamics. An example of this 
is a recent computational study by Vasa et al. which describes how local lesioning in 
nodes with high eigenvector centrality leads to a simultaneous decrease in global 
synchrony along with an increase in metastability. (Vasa et al., 2015). For a review of the 
complementary nature of global coherence and metastability, see (Deco et al. 2017, 
Hellyer et al. 2015, Vasa et al. 2015).  It is evident how spontaneous metastable brain 
dynamics would contribute to cognitive flexibility. Since healthy aging exhibits complex 
changes in cognitive flexibility, we postulated changes in the brain’s metastable dynamics 
as it ages.  
 
We observe that alpha band exhibits the lowest metastability of all bands studied across 
all age groups. Interestingly, the alpha band also demonstrates the highest global 
coherence in any given age group, but whereas alpha metastability increases with age, 
alpha global coherence reduces with age. Taken together, this would strongly suggest 
the presence of a primary generator of alpha activity that aids in the maintenance of a 
brain-wide correlated network. The thalamocortical circuitry has long been regarded as 
the primary generator of activity that falls in the alpha band. Interestingly, a somewhat 
different trend is seen in the delta and theta band, where we notice an age-related 
increase in global coherence and metastability. Interestingly, we also notice inflection 
points in the life span profiles of global coherence around the age of 20-30 and 70-80 in 
both the slower and faster bands. 
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We observe an age-related increase in global metastability across all frequency bands 
under study here. Moreover, our results reveal a differential profile of relative metastability 
in the slower and faster frequencies as a consequence of aging. We want to discuss these 
results in the light of two opposing theories of healthy aging. The method of neuro-
compensation argues that age-related changes in brain dynamics suggest a 
compensatory mechanism by which function gets restored in response to structural 
decline (Naik et al. 2017). In this regard, it is interesting to note that Alzheimer’s disease 
and Traumatic brain injuries are associated with a reduction in global metastability 
(Córdova-Palomera et al., 2017; Hellyer et al., 2015). Since metastability is a direct 
measure of the functional capacity of the brain and has been shown to confer cognitive 
flexibility in task-switching, information-processing and logical memory (Hellyer et al. 
2015), this would argue in favor of a compensatory explanation of the global increase in 
metastability with aging. In a similar vein, the differential profiles of metastability in the 
younger and older group would signify an age-related reorganization of brain networks, 
leading to a separation of temporal scales in cognitive processing. However, the neural 
noise hypothesis of aging would suggest a different interpretation. This theory argues that 
age-related cognitive decline is best explained as a consequence of an increase in the 
noisy baseline activity of the brain (Voytek et al., 2015; Dave et al., 2018). According to 
this framework, global phase inconsistencies would arise as a result of an age-related 
increase in neural noise. Within this framework, changes in global metastability and 
coherence reflect an epiphenomenon that occurs due to an increase in neural noise. 
Future efforts should focus on resolving this debate. One possible direction would be to 
study brain signals through measures of signal complexity using source reconstructed 
EEG/MEG, to elucidate the role of specific brain regions in bringing about metastable 
patterns of activity. Another promising avenue would be to invoke whole brain 
computational models which incorporate neural plasticity mechanisms that operate at 
time scales that are relevant to aging (Abeysuriya et al., 2018). 

Methods 
Subject details 
Cam-CAN is a multi-modal, cross-sectional adult life-span population-based study. The 
study was approved by the Cambridgeshire 2 Research Ethics Committee, and all 
participants have given written informed consent. The data presented here belonged to 
Stage 2 of the study. In Stage-1, 2681 participants had been home-interviewed and had 
gone through neuropsychological assessments and been tested for vision, balance, 
hearing and speeded response. Participants with poor vision (< 20/50 on Snellen test), 
poor hearing (threshold greater than 35 dB at 1000 Hz in both ears), past history of drug 
abuse, with any psychiatric illness such as bipolar disorder, schizophrenia, with 
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neurological disease e.g. epilepsy, stroke, traumatic brain injury, or a score less than 25 
in Mini-Mental State Examination were excluded from further behavioral and 
neuroimaging experiments. 700 participants had been screened from Stage 1 to Stage 2, 
of which Magnetoencephalogram (MEG) data from 650 subjects were available. 
 
 
Data acquisition 
 
Data used in the preparation of this work were obtained from the CamCAN repository 
(available at http://www.mrc-cbu.cam.ac.uk/datasets/camcan/) (Taylor et al., 2016, 
Shafto et al., 2015). For all the subjects, MEG data were collected using a 306-sensor 
(102 magnetometers and 204 orthogonal planar magnetometers) VectorView MEG 
System by Elekta Neuromag, Helsinki, located at MRC-CBSU. Data were digitized at 1 
kHz with a high pass filter of cutoff 0.03 Hz. Head position was monitored continuously 
using four Head Position Indicator coils. Horizontal and vertical electrooculogram were 
recorded using two pairs of bipolar electrodes. One pair of bipolar electrodes were used 
to record electrocardiogram for pulse-related artifact removal during offline analysis. 
 
The data presented here consisted only of resting state, where the subject sat still with 
their eyes closed for a minimum duration of 8 minutes and 40 seconds.    
 
Data preprocessing 
 
Preprocessed data was provided by Cam-CAN research consortium, where for each run 
temporal signal space separation was applied to remove noise from the environment, 
from Head Position Indicator coils, line noise and for the detection and reconstruction of 
the signal from noisy sensors. All the data had been transformed into a common head-
position. More details about data acquisition and preprocessing have been presented 
elsewhere (Taylor et al., 2017; Shafto et al., 2014).  
 

Data analysis 

Welch spectrum 
Fieldtrip toolbox (Oostenveld et al.,2011) was used to read the data provided in ‘.fif’ 
format. For each individual, data was down sampled from 1 kHz to 250 Hz. First, we 
sought to investigate age specific changes in the spectral densities of the raw MEG 
signals.  
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Time series corresponding to the 102 magnetometers, resulted in a matrix 𝑋 of size  
102 × 𝑇, where 𝑇corresponds to number of time points. Power spectral density for each 
sensor 𝑐’s time series 𝑥B(𝑡) was estimated using Welch’s periodogram method. Each time 
series was divided into segments of 20 seconds without any overlap between segments. 
Spectrum was estimated for each segment after multiplying it with a Hanning window. 
Spectrums of all the segments were finally averaged. 
 
We estimated a global spectrum, representative of each subject i.e. 𝑆E(𝑓) by taking a 
grand average across the spectrums belonging to all magnetometers.  
 

𝑆E(𝑓) 	= ∑ 𝑆EB (𝑐, 𝑓)	                           (1) 
 

Quantification of spatial overlap between sources of alpha and beta activity in the sensor 
space 
 
For each subject, the sensor map of alpha and beta activity was normalized separately. 
 

𝛼IE(𝑐) =
JK(B)LMJKN

OP(K)
                      (2) 

𝛽QE(𝑐) =
RK(B)LMRKN

OS(K)
                      (3) 

Separation between the normalized sensor level representation 𝛼IEand 𝛽IEwas indexed 
by the cosine angle between the two multidimensional vector spaces. 
 

𝜃U𝛼,𝛽V = 𝑐𝑜𝑠−1 Y 𝛼Z𝐼.𝛽
Z
𝐼

\𝛼Z𝐼\]𝛽Z 𝐼]
^.               (4) 

 
The angular separations across age were statistically analyzed using Spearman rank 
correlations and t-tests. 
 

Global coherence 
 
To measure the covariation of neural oscillations on a global level, we employed a 
technique known as global coherence (Cimenser et al., 2008; Kumar et al.,2016). Global 
coherence among sensors at any frequency 𝑓 is measured as the percentage of variance 
explained by the first eigenvector of the cross spectral density matrix at 𝑓.  
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In an individual subject’s data, for each sensor, the time series 𝑥(𝑡)was divided into 𝑁non-
overlapping windows of 5seconds duration each i.e. 𝑦(𝑡). This has resulted in an average 
of 112 (median, Interquartile range 1, range 70-220) windows for each subject. We 
considered 3 orthogonal discrete prolate spheroidal sequences, also known as Slepian 
tapers, to avoid leakage in spectral estimates into nearby frequency bands. The time-
bandwidth product was taken to be 2, which resulted in a bandwidth of 0.4Hz.  
Before computing FFT, each data segment was detrended i.e. from each data segment 
𝑦(𝑡) the best straight-line fit was regressed out.  
 
 

𝑦I(𝑡) = 𝑦(𝑡) − 𝑦_(t)                               (5) 

 
where 𝑦(𝑡)is the straight line fit of 𝑦(𝑡). Each segment was multiplied with a set of 3 
orthogonal Slepian tapers and fast fourier transform was applied to the tapered segments. 
The resulting FFT values for the 3 tapered segments corresponding to the original 
detrended data segment 𝑦I(𝑡) were averaged.  
Computing the complex FFT at frequency 𝑓 for each segment 𝑛of sensor 𝑐 resulted in a 
complex matrix 𝑌of dimension 𝐹 × 𝐶 × 𝑁.  
 
Cross spectral density between two sensors was estimated from 𝑌d	by using the formula 
 

𝑆e(𝑖, 𝑗) =
<
h
∑ 𝑐𝑜𝑛𝑗(𝑌d(𝑓, 𝑖, 𝑛)) × 𝑌d(𝑓, 𝑗, 𝑛)                             (6) 

 
where 𝑖and 𝑗are the channel indices, 𝑓 is the frequency index and 𝑛	is the segment index. 
 
Singular value decomposition was applied to the cross spectral density matrix 𝑆efor each 
frequency value 𝑓.  
 
 

𝑆e = 𝑈𝑆𝑈j                                                                       (7) 
 

Diagonals of 𝑆would be proportional to the explained variance by the orthogonal set of 
eigenvectors 𝑈. The values of 𝑆	were normalized so that each entry denote the 
percentage of the net variance explained in 𝑆e. 
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𝑆Q = k
∑ kll

                                                                       (8) 

 
The first entry of 𝑆	Z is defined as the global coherence. Global coherence was computed 
for each frequency value 𝑓, resulting an array 𝐺 of length 𝐹. 

Metastability 
 
We calculated the metastability measure for all participants across all magnetometer 
sensors. Metastability is defined as variability of the Kuramoto Order parameter,𝑅(𝑡), 
which is given as, 
 

𝑅(𝑡)𝑒op(q) = <
h
|∑ 𝑒ost(q)h |                                        (9) 

 
 
 
Where 𝜑vis the phase of the nqx oscillator and 𝜓	is the mean phase of the system of 
oscillators. In this analysis, every MEG sensor is conceptualized as a coupled oscillator, 
summarized by its instantaneous phase 𝜙(𝑡). At any given point of time, the phase of 
each oscillator is extracted and projected onto a polar coordinate system, as a unit vector 
(𝑒ost). The length of the resultant vector, obtained from summing all the unit vectors is 
interpreted as the Kuramoto Order parameter,𝑅(𝑡). The temporal variability of 𝑅, as 
measured by the standard deviation, is taken to be the metastability (Deco et.al., 2017).  
 
As a first step, the pre-processed resting state time series was band-pass filtered so as 
to obtain filtered time series. Instantaneous phase of each filtered band was estimated 
from the filtered data for metastability calculation. The pass band for the band-pass 
filtering step was kept narrow so that the resulting phase is readily interpretable.  
 
For this analysis, each time series was filtered in the following 8 bands- 2-4 Hz, 3-7 Hz, 
8-12 Hz, 12-16 Hz, 16-20 Hz, 20-24 Hz, 24-28 Hz and 28-32 Hz.  As mentioned earlier, 
the choice of frequency bands was dictated by phase considerations. An additional 
criterion was to chunk the frequency bands so that they map onto well-known frequency 
bands such as delta, theta, alpha and beta. The beta band was further split into 5 smaller, 
non-overlapping bands. As mentioned earlier, we restricted our analysis to below 40 Hz 
due to presence of HPI noise. 
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FieldTrip toolbox (ft_preproc_bandpassfilter.m) was used to band-pass filter each signal 
in the appropriate frequency bands. This routine was used to implement a finite impulse 
response (FIR), two-pass filter that preserves phase information of the time series.  
 
Subsequently, instantaneous phase was estimated by using built-in MATLAB 
implementation of the Hilbert transform (hilbert.m). The resulting phase time series for 
each channel and participant was used to calculate band and subject specific 
metastability. 
 
Similar to the preceding analysis, metastability analysis was performed by a) treating age 
as a continuous variable, b) binning participants in the following age brackets - 18-35 
years (Young Adults), 36-50 years (Middle Age), 51-65 years (Middle Elderly) and 66 -88 
years (Elderly). 
 
For the region-wise analysis, the brain was segmented into 5 non-overlapping regions 
(frontal, centro-parietal, occipital, left and right temporal). Metastability index was 
calculated individually for all regions separately by randomly sampling 14 sensors from 
each region. Metastability was tracked as a function of age by calculating the Spearman 
rank correlations. 

Conclusions 
In summary, our analysis maps out the spatiotemporal relationship of resting state 
spectral signals with healthy aging, specifically the importance of several frequencies in 
processing of brain signals. We demonstrate the age-related changes in global patterns 
of activity measured through global coherence and metastability, when interpreted 
concurrently reveals a comprehensive account of the neurophysiological changes with 
ageing. The most revealing aspect of this change is that no chosen frequency band is 
representative of the global brain dynamics, rather one needs carefully understand the 
relationships between different frequency bands. Mapping out such aspects of brain 
coordination dynamics should be the subject of future research, outcome of which can 
improve the accuracies of classifiers that aim to segregate healthy aging from 
neurodegenerative disorders, such as AD and Parkinson’s disease.  
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Tables and Figures  
 

Age group N % Female 

YA (18-35) 126 55 

ME (36-50) 159 49 

ML (51-65) 149 50 

OA (66-88) 216 46 
 

Table1. Sample size and gender in each representative age group  
 
 
A. Global spectrum of different age groups            B. Variation in beta power with age 
                                                                                      

 
                     C. Spectrogram                                            D. Correlation Topoplot 
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Figure 1. Relation between global spectral activity and age. A. Plots of mean power spectral 
density for 4 non-overlapping age groups i.e. 18-35, 36-50, 51-65 and 66-88. Shaded region 
denotes standard error of mean. B. Boxplot of distribution of band limited power in the beta band 
(16-25 Hz). Blue line indicates the median of each distribution. Notch denotes 95% confidence 
interval of the median. C. Variation of alpha activity with aging has been plotted as an age-
spectrogram. Center frequency in the alpha band for each age bin has been plotted as solid 
circles and solid black line is the linear fit of these points D. Sensor topography of correlation 
between peak alpha frequency and age. Colorbar represents Spearman’s rank correlation value. 
 
 
 
 
 
A. Global coherence of different age groups B. Global coherence of oscillations at  
            slow and fast time scales 
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C. Global coherence in different frequency bands  
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Differential changes in global coherence with aging. A. Plots of mean global 
coherency for the four age groups. Shaded region denotes s.e.m. B.  Differential variation of 
global coherency for slow (1-5 Hz) and fast oscillations (10-20 Hz). C. Variation of global 
coherence with aging. Solid circle denotes the average global coherence value for a) Delta 
oscillations (1-3 Hz) b) Theta oscillations (3-7 Hz) c) Alpha oscillations (8-12 Hz) d) Beta 
oscillations (16-25 Hz) in each age bin of 5 years. Errorbar denotes s.e.m. 
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A. Topographical representation of alpha           B. Cluster of sensors showing 
     and beta power for OA and YA                           differences between OA and YA  
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C. Variation in segregation of alpha and beta sensor map with aging 

 
 
 
Figure 3. Segregation of sensor level topographies with aging. A. Sensor topographies of alpha 
power at center frequency and average beta power for the two extreme age groups. B. Clusters 
of sensors with significant differences in power between the oldest and youngest age group for 
alpha band (8-12 Hz) and beta band (16-25 Hz). White dots represent sensors with a negative 
difference and black dots represent sensors with a positive difference. C. Boxplot for the 
distribution of angles between the sensor topographies of center alpha power and average beta 
power for the four age groups. Blue line denotes the median of the distribution and the notch 
indicates 95% confidence interval of the median. 
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A. Metastability with Aging

 

 
B. Band Specific Metastability 
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C. Metastability in smaller age groups 

 
D. Slow vs fast time scales in metastability 

 
 
Figure 4:  Metastability across age groups. A. Metastability of four age groups. B. Metastability 
of the four age groups in the delta, theta and alpha bands. Stars between bars indicate statistical 
significance. C. Metastability across age groups divided into age bands of 5 years. D. Differential 
profiles of metastability in young vs old cohort. Statistical significance (indicated by stars) between 
slow frequencies (delta and theta) and fast frequencies- beta 4(24-28 Hz) and beta 5(28-32Hz) 
for single two-sample KS test. 
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A.                                                                                           B. 

 
 
 
Figure 5: Region-wise increase and decrease in global metastability. A. Shows the results 
for the region-wise metastability analysis. Colors indicate the direction of the age-related trend as 
measured by the spearman rank correlation coefficients. 14 sensors were chosen at random from 
each of the 5 anatomical areas- frontal, centro-parietal, occipital, left and right temporal. B. Vector 
View magnetometer layout. 
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