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Abstract 

Transforming the barrage of sensory signals into a coherent multisensory percept relies on 

solving the binding problem – deciding whether signals come from a common cause and should 

be integrated, or instead be segregated. Human observers typically arbitrate between integration 

and segregation consistent with Bayesian Causal Inference, but the neural mechanisms remain 

poorly understood. We presented observers with audiovisual sequences that varied in the 

number of flashes and beeps. Combining Bayesian modelling and EEG representational 

similarity analyses, we show that the brain initially represents the number of flashes and beeps 

and their numeric disparity mainly independently. Later, it computes them by averaging the 

forced-fusion and segregation estimates weighted by the probabilities of common and 

independent cause models (i.e. model averaging). Crucially, prestimulus oscillatory alpha 

power and phase correlate with observers’ prior beliefs about the world’s causal structure that 

guide their arbitration between sensory integration and segregation. 
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In everyday life, the brain is constantly confronted with a myriad of sensory signals. Imagine 

you are skipping stones on a lake. Each time the stone bounces off the water's surface, you see 

the impact and hear a brief splash. Should you integrate or segregate signals from vision and 

audition to estimate how many times the stone hits the water’s surface? Hierarchical Bayesian 

Causal Inference provides a rational strategy to arbitrate between information integration and 

segregation by explicitly modelling the underlying potential causal structures, i.e. whether 

visual impacts and splash sounds are caused by common or independent events1,2. Under the 

assumption of a common cause, signals are integrated weighted by their relative precisions (or 

reliabilities, i.e. the reciprocal of variance) into one single ‘forced-fusion’ numeric estimate3,4. 

If, however, some splash sounds are caused by a stone hitting the water surface out of the 

observer’s sight (e.g. another person throwing a stone), audition and vision will provide 

conflicting information. In this segregation case, the brain needs to estimate the number of 

events independently for vision and audition. Importantly, the brain cannot directly access the 

world’s causal structure, but needs to infer it from the signals’ noisy sensory representations 

based on correspondence cues such as temporal synchrony or spatial co-location. To account 

for observers’ causal uncertainty, a final Bayesian Causal Inference estimate is computed by 

combining the ‘forced-fusion’ and the task-relevant unisensory segregation estimates weighted 

by the posterior probability of common or independent causes1. Perception thus relies crucially 

on inferring the hidden causal structure that generated the sensory signals.   

Accumulating evidence suggests that human and animal observers arbitrate between 

sensory integration and segregation approximately in line with Bayesian Causal Inference1,5-8. 

For small intersensory conflicts, when it is likely that signals come from a common cause, 

observers integrate sensory signals approximately weighted by their relative precisions3,4,9, 

which leads to intersensory biases and perceptual illusions. Most prominently, in the sound-

induced flash illusion, observers tend to perceive two flashes when a single flash appears 

together with two sounds10. For large intersensory conflicts such as temporal asynchrony, 
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spatial disparity or numeric disparity, multisensory integration breaks down and crossmodal 

biases are attenuated5,11. 

At the neural level, a recent fMRI study has demonstrated that the human brain performs 

multisensory Bayesian Causal Inference for spatial localization by encoding multiple spatial 

estimates across the cortical hierarchy12,13. While low-level sensory areas represented spatial 

estimates mainly under the assumption of separate causes, posterior parietal areas integrated 

sensory signals under the assumption of a common cause. Only at the top of the cortical 

hierarchy, in anterior parietal areas, the brain formed a Bayesian Causal Inference estimate that 

takes into account the observers’ uncertainty about the signals’ causal structure.  

In summary, the brain should entertain two models of the sensory inputs, namely that 

the inputs are generated by common (i.e. forced-fusion model) or independent sources (i.e. 

segregation model). Using a decisional strategy called model averaging, hierarchical Bayesian 

Causal Inference accounts for the brain’s uncertainty about the world’s causal structure by 

averaging the forced-fusion and the task-relevant unisensory segregation estimates weighted by 

the posterior probabilities of their respective causal structures. Hence, hierarchical Bayesian 

Causal Inference goes beyond estimating an environmental property (e.g. numerosity, location) 

and involves inferring a causal model of the world (i.e. structure inference). 

The hierarchical nature of Bayesian Causal Inference raises the intriguing question of 

how these computations evolve dynamically over time in the human brain. To assess this, we 

fitted the Bayesian Causal Inference model to observers’ behavioral responses and then 

investigated how observers’ forced-fusion, the full-segregation auditory and visual estimates 

and the final Bayesian Causal Inference (i.e. model averaging) estimates are dynamically 

encoded in neural responses measured with EEG. While the brain is likely to update all 

estimates continuously in recurrent loops across the cortical hierarchy14,15, the neural 

representations of unisensory segregation and forced-fusion estimates may be more pronounced 

at earlier latencies than the final Bayesian Causal Inference estimate whose computation 
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requires the posterior probabilities of the potential causal structures (i.e. common vs. 

independent causes). Moreover, neural activity (i.e. alpha-, beta- and gamma-oscillations16,17) 

prior to stimulus onset may modulate the causal prior or precision of sensory representations 

(e.g. visual variance) in early visual cortices and thereby in turn influence the outcome of 

Bayesian Causal Inference. We combined psychophysics, computational modelling and EEG 

representational similarity analyses to characterize the neural dynamics of Bayesian Causal 

Inference in perception of audiovisual stimulus sequences.  
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Results 

During the EEG recording, we presented 23 human observers with sequences of auditory beeps 

and visual flashes in a four (1 to 4 flashes) × four (1 to 4 beeps) factorial design (Fig. 1). 

Participants estimated and reported either the number of flashes or the number of beeps. We 

combined a GLM-based and a Bayesian modelling analysis to characterize the computations 

and neural mechanisms of how the brain combines information from vision and audition to 

estimate the number of auditory and visual stimuli. 

 

– Figure 1 to appear about here – 

 

Behavior – Audiovisual weight index and Bayesian modelling 

Using a general linear model (i.e. GLM, regression) approach, we computed a relative 

audiovisual weight index wAV that quantifies the relative influence of the true number of beeps 

and flashes on participants’ numeric reports. The audiovisual weight index wAV was analyzed 

as a function of numeric disparity between beeps and flashes (i.e. small ≤ 1 vs. large ≥ 2) x task-

relevance (visual vs. auditory report). This audiovisual weight index ranges from pure visual 

(90°) to pure auditory (0°) influence. As shown in figure 1C and figure 2A, observers’ reported 

number of beeps was mainly influenced by the true number of beeps and only slightly – but 

significantly – biased by the true number of flashes (circular mean wAV = 3.871, p < 0.001, one-

sided randomization test on wAV > 0°; i.e. a visual bias on auditory perception18,19). Conversely, 

the reported number of flashes was biased by the true number of beeps (circular mean wAV = 

65.483, p < 0.001, one-sided randomization test on wAV < 90°), which is consistent with the 

well-known ‘sound induced flash illusion10,19. Yet, despite these significant biases operating 

from vision to audition and vice versa, observers did not fuse stimuli into one unified percept. 

Instead, the visual influence was stronger when the number of flashes was reported and the 

auditory influence was stronger when number of beeps was reported (effect of task on wAV, 
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LRTS = 85.620, p < 0.001, randomization test of a likelihood ratio test statistic (LRTS); Table 

1). As a result, observers reported different perceived numbers of flashes and beeps for 

audiovisual stimuli with a numeric disparity. Thus, participants flexibly adjusted the weights 

according to the task-relevant sensory modality. Crucially, this difference between auditory and 

visual report increased significantly for large relative to small numeric disparities. In other 

words, audiovisual integration broke down for large numeric disparities, when auditory and 

visual stimuli were more likely to be caused by independent sources (i.e. a significant 

interaction between task-relevance and numeric disparity, LRTS = 1.761, p < 0.001; for analysis 

of response times, see supplementary results and figure S1).  

Indeed, the model predictions in figure 1C show that this interaction between task-

relevance and numeric disparity is a key feature of Bayesian Causal Inference. As this 

behavioral profile can be accounted for neither by the classical forced-fusion model that 

assumes audiovisual stimuli are fused into one single estimate (i.e. common source model) nor 

by the full-segregation model (i.e. independent source model), the Bayesian Causal Inference 

model was the winning model for explaining the behavioral data based on formal Bayesian 

model comparison (Table 2). Further, the decisional function ‘model averaging’ outperformed 

‘model selection’ and ‘probability matching’ at the group level (see supplementary Table S1, 

consistent with5, but see 20).  In the following, we will therefore focus selectively on Bayesian 

causal inference with model averaging. 

 

– Figure 2 to appear about here – 

 

EEG – conventional univariate ERP analysis  

Event-related potentials (ERPs) revealed the typical sequence of ERP components in response 

to audiovisual flashes and beeps (Fig. 1D), i.e. P1 (~ 50ms), N1 (100ms), P2 (200ms), N2 (280 
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ms) and P3 (> 300 ms)21. In line with previous studies21-23, we observed early multisensory 

interactions in the classical ’sound-induced flash illusion’ comparison (i.e. A1V1A2 vs. A1A2 + 

V1; Fig. 1E) over occipital electrodes starting at about ~70 ms (i.e. measured from the onset of 

the first flash-beep slot). Further, we observed a negative audiovisual interaction component at 

335-730 ms after stimulus onset. However, the current study did not focus on early multisensory 

interactions as evidenced in ERPs, but on the neural dynamics underlying Bayesian Causal 

Inference in perceptual decision-making. 

 

– Figure 3 to appear about here – 

 

EEG – multivariate decoding and audiovisual weight index  

To compute a neural audiovisual weight index wAV, we applied multivariate pattern analysis to 

single trial EEG activity patterns (i.e. 64 electrodes) of 20 ms time intervals. We trained a 

support-vector regression model on EEG activity patterns independently at each time point of 

the audiovisual congruent conditions to establish a mapping between EEG activity pattern and 

number of audiovisual stimuli. We then generalized to the congruent and incongruent 

conditions (i.e. leave-one-run out cross-validation). First, we ensured that we could decode the 

stimulus number for congruent trials significantly better than chance. Indeed, the decoder was 

able to discriminate between for instance three and four flash-beeps nearly immediately after 

the presentation of the fourth flash-beep (Fig. 3A) and thus before the ERP traces, when 

averaged over parietal electrodes, started to diverge (Fig. 1D). Pooling over all four congruent 

conditions, we observed better than chance decoding accuracy from around 100 ms to 740 ms 

measured from the onset of the first flash-beep slot (Fig. 3B).  

We applied the same analysis approach as for behavioral responses to the audiovisual 

decoded numeric estimates and computed the neural audiovisual weight index wAV which 

quantified the relative auditory and visual influences on the decoded number of flashes and 
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beeps across poststimulus time (i.e. from 100 ms  to 740 ms). We assessed how the neural 

audiovisual weight index was affected by numeric disparity between beeps and flashes (i.e. 

small ≤ 1 vs. large ≥ 2) and task-relevance (visual vs. auditory report) in a 2 x 2 repeated 

measures analysis (Fig. 3C and Table 1). We observed that the auditory influence was stronger 

for small relative to large numeric disparities from 400-480 ms poststimulus (i.e. effect of 

numeric disparity: 200-280 ms after the final flash-beep slot). Only when the numeric disparity 

was small and hence the two stimuli were likely to come from a common cause, did auditory 

stimuli impact the neural estimation of the number of flashes, which dominated the EEG 

activity patterns. Shortly later, i.e. 420-540 ms poststimulus, the influence of the auditory and 

visual stimuli on the decoded numeric estimate also depended on the sensory modality that 

needed to be reported (effect of task-relevance; for additional effects see Table 1). The number 

of flashes influenced the decoded numeric estimates more strongly for visual report, whereas 

the number of beeps influenced the decoded numeric estimates for auditory report. Crucially, 

at 560 ms and from 680 to720 ms poststimulus, we observed a significant interaction between 

task-relevance and numeric disparity, which is the key profile of Bayesian Causal Inference. 

As predicted by Bayesian Causal Inference (cf. Fig 1C), the audiovisual weight index for 

auditory and visual report were similar (i.e. integration) for small numeric disparity, but 

diverged (i.e. segregation) for large numeric disparities when it is unlikely that the flash and the 

beep sequences were generated by a common cause.  

 

– Figure 4 to appear about here – 

 

Representational geometry of the numeric estimates of the Bayesian Causal Inference model 

and EEG activity pattern 

Using representational dissimilarity analysis, we compared the representational geometry of the 

full-segregation auditory or visual, forced-fusion and the final Bayesian Causal Inference (BCI) 
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estimates24 with the representational geometry of observers’ numeric reports (Fig. 2) and EEG 

activity patterns across poststimulus time (Fig. 4). First, we estimated the representational 

dissimilarity matrices (RDMs) by computing the pairwise absolute distance between the BCI 

model’s four numeric estimates, i.e. (i) the forced-fusion, the full-segregation (ii) auditory and 

(iii) visual and (iv) the final BCI estimates as well as the posterior causal probability across all 

32 conditions. As shown in figure 2 C, the RDM for the forced-fusion estimate (N̂AV,C=1) was a 

weighted average of the RDMs of full-segregation auditory (N̂A,C=2) and visual (N̂V,C=2) 

estimates. Further, because the auditory modality provides more precise temporal information 

(cf. Table 2) which is crucial for estimating the number of stimuli, the forced-fusion RDM is 

more similar to the auditory than the visual RDM. Finally, the RDM for the BCI estimate (i.e. 

N̂A or N̂V, depending on the sensory modality that needs to be reported) combines the forced-

fusion estimate (N̂AV,C=1) with the task-relevant unisensory visual (N̂V,C=2) or auditory (N̂A,C=2) 

estimates (depending on report), weighted by the posterior probability of a common or separate 

causes, respectively (i.e. p(C = 1| xA, xV) or p(C = 2| xA, xV)). The probability of a common cause 

increased with smaller numeric disparity such that the influence of the forced-fusion estimate 

was greater for small numeric disparities. Figure 2B illustrates that the RDM computed from 

observers’ behavioral numeric reports was nearly identical to the BCI RDM. This match was 

confirmed statistically by a high correlation between the BCI (i.e. N̂A or N̂V) RDM and 

participants’ behavioral RDM (r = 0.878 ± 0.059, mean ± SEM, p < 0.001). Of course, this 

match between behavioral and BCI RDM was expected because the BCI RDM was computed 

from the predictions of the BCI model that well fit participants’ numeric reports (i.e. circular 

dependency; cf. Table 2). 

Next, we characterized the neural dynamics of Bayesian Causal Inference by comparing 

the representational geometry obtained from EEG activity patterns across time with the 

representational geometries of (i) the forced-fusion, the full-segregation (ii) auditory and (iii) 
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visual and (iv) the final BCI estimates. As shown in figure 4A, the RDMs obtained from EEG 

activity patterns significantly correlated  with the unisensory auditory RDM (N̂A,C=2; significant 

cluster 60-740 ms, p < 0.001, one-sided cluster-based corrected randomization t22 test), the 

unisensory visual RDM (N̂V,C=2; cluster 100-720 ms, p < 0.001), the forced-fusion RDM (N̂AV,C=1; 

cluster 80-740 ms, p < 0.001) and the BCI RDM (N̂A or N̂V; significant cluster 80-740 ms, p < 

0.001). In short, the RDMs of EEG activity patterns correlated with multiple numeric estimates 

simultaneously. For the posterior probability of a common cause (p(C = 1|xA, xV), the 

correlation was weaker but significant in a later cluster (260-640 ms after stimulus onset, p < 

0.001). The strong and sustained correlations of EEG RDMs and the RDMs of the four numeric 

estimates from the BCI model were expected because the four numeric estimates were highly 

correlated with one another. Hence, to account for these inherent correlations between these 

numeric estimates, we next computed the exceedance probability (i.e. the probability that the 

correlation with one numeric RDM was greater than that of any other RDMs) to determine 

which of the four numeric estimates was most strongly represented in the EEG activity patterns 

at a given time point (Fig. 4B). The exceedance probabilities showed that the EEG activity 

patterns predominantly encoded the unisensory visual estimate from 120 ms up to around 500 

ms (i.e. 300 ms after the final flash-beep slot). This visual over auditory influence on EEG 

activity patterns at the scalp may be surprising, because the auditory sense exerts a stronger 

influence on observers’ reported numeric estimates (Fig. 1C) and provides more precise 

temporal information when estimated from observers’ numeric reports (cf. σA vs. σV in Table 

2). Potentially, the visual neural sources elicit EEG activity patterns in sensor space that are 

more informative about the number of events (see methods section for caveats and critical 

discussion of the decoding analysis). Indeed, additional multivariate decoding analyses of the 

unisensory auditory and visual conditions showed that the number of visual stimuli could be 

more accurately decoded from visual EEG activity patterns than the number of auditory stimuli 

from auditory EEG activity patterns (Supplementary Fig. S2). Potentially, this advantage for 
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visual decoding under unisensory stimulation may further increase in audiovisual context when 

the visual signal is task-relevant because of additional attentional amplification. 

Crucially, from 450 ms poststimulus (i.e. 250 ms after the presentation of the final flash-

beep; Fig. 4B), the EEG representational geometries progressively reflected the BCI estimate. 

Collectively, the model-based representational dissimilarity analysis suggests that Bayesian 

Causal Inference evolves by dynamic encoding of multiple sensory estimates. First, the EEG 

activity is dominated by the numeric unisensory and forced-fusion estimates (i.e. N̂V,C=2, N̂A,C=2, 

and N̂AV,C=1) and later by the BCI estimate (i.e. N̂A or N̂V) that takes into account the observers’ 

uncertainty about the world’s causal structure. 

 

– Figure 5 to appear about here – 

 

EEG: Effect of prestimulus oscillations on the causal prior probability 

Previous research demonstrated that observers perceived a sound-induced flash illusion more 

often for low prestimulus alpha power and/or high gamma and beta power over occipital (i.e. 

visual) cortices16,17. Within the framework of Bayesian Causal Inference, the occurrence of a 

sound-induced flash illusion may increase when visual precision is reduced or the causal prior 

(i.e. the probability of a common versus independent causes, also known as binding tendency25) 

is enhanced. We therefore investigated whether prestimulus oscillatory power (over occipital 

electrodes) alters participants’ multisensory perception as parameterized by the causal prior 

(pcommon) or the precision of visual representations (i.e. the reciprocal of σV). For this, we sorted 

the trials into 10 deciles according to oscillatory power for each time and frequency point and 

re-fitted the causal prior or the precision of visual representations in the BCI model separately 

for each bin. Next, we computed the correlation of the causal prior or the visual precision with 

oscillatory power over deciles. This analysis showed that the causal prior correlated positively 

with gamma power (p = 0.036, two-sided cluster-based corrected randomization t22 test, starting 
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at -220 ms prestimulus to stimulus onset) and negatively with alpha power (p = 0.042, from -

320 ms to -100 ms prestimulus, Fig. 5A, B). Fig. 5C shows the weight index wAV computed 

from participants’ behavior for each decile and the corresponding model predictions. Both 

human and model behavior showed more audiovisual influences (i.e,. wAV indices shifted 

towards 0.5) for high gamma power and low alpha power. Crucially, these audiovisual biases 

operated from vision to audition and vice versa (i.e. a bidirectional bias which cannot be 

modelled by changes in visual precision). Hence, prestimulus gamma and alpha oscillations 

tune how the brain arbitrates between sensory integration and segregation. High gamma and 

low alpha power prior to stimulus presentation increase the brain’s tendency to bind stimuli 

across the senses. For completeness, we did not observe any significant effect of oscillatory 

power on the visual precision (Supplementary Fig. S3A).  

 

– Figure 6 to appear about here – 

 

Given the prominent role of alpha oscillations in temporal binding26,27 in visual and 

multisensory perception, we next investigated whether the prestimulus alpha phase influenced 

the causal prior or visual precision. Using a similar sort-and-binning approach as for 

prestimulus power, we computed a circular-linear correlation between alpha phase and causal 

prior (or visual precision) over deciles as a function of prestimulus time. While there was again 

no significant effect of alpha phase on visual precision (Supplementary Fig. S3B), we observed 

a significant cluster from -160 ms to -80 ms prestimulus (p = 0.015, one-sided cluster-based 

corrected randomization t22 test), where alpha phase correlated significantly with participants’ 

causal prior (Fig. 6A): trials with a specific alpha phase led to a higher causal prior than trials 

with an opposing alpha phase. Importantly, the relation between alpha phase and causal prior 

progressed consistently over time at alpha frequency (i.e. 10 Hz; Fig. 6C). In support of this, a 

sinusoidal model in which the phase of an alpha oscillation modulated the causal prior 
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outperformed a model that did not include a sinusoidal modulation from -280 ms to -80 ms 

prestimulus in 20 out of 23 participants (individual F2,107 tests, p < 0.05; see Supplementary 

Fig. S4 for individual data from four representative participants). However, the relation of alpha 

phase and causal prior was not consistent across participants (z22 = 2.486, p = 0.082, Raleigh 

test, Fig. 6B). These differences between participants are expected and may arise from 

differences in cortical folding and hence orientations of the underlying neural sources. To 

account for these differences across participants, we therefore aligned the alpha phase 

individually for each participant, such that the phase at the peak group effect at -160 ms 

prestimulus was consistent across participants (cf. Supplementary Fig. S5 for data without 

phase-alignment). Figure 6C and D show that the alpha phase modulates the causal prior across 

nearly three cycles which is consistent across participants. Collectively, these results 

demonstrate that the power and phase of prestimulus alpha oscillations influence observers’ 

causal prior, which formally quantifies their apriori tendency to bind signals from audition and 

vision into a coherent percept.  

 

-Figure 7 to appear about here - 

 

EEG: The relationship of prior stimulus history, prestimulus alpha power and the causal prior 

probability 

Previous research has shown that prior stimulus history influences observers’ binding 

tendency28-30. For instance, prior congruent audiovisual speech stimuli increased observers’ 

tendency to bind incongruent audiovisual signals into illusionary McGurk percepts28. Hence, 

we investigated whether the numeric disparity of previous flash-beep stimuli (going back in 

history to five trials prior to stimulus onset) influenced observers’ causal prior on the current 

trial. Indeed, as shown in figure 7A, a 2 (numeric disparity: small vs. large) x 5 (stimulus order: 

1, 2, 3, 4, 5 trials back) repeated measures ANOVA revealed a significant main effect of 
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numeric disparity (F1,21 = 6.260, p = 0.021, partial η2 = 0.230) and a significant interaction 

between numeric disparity and stimulus order (F2.6,54.9 = 4.060, p = 0.015, partial η2 = 0.162). 

Post-hoc tests for the effect of numeric disparity separately for specific stimulus order showed 

that the effect of numeric disparity was most pronounced for the first- and second-order 

previous stimulus (first order: t22 = 3.731, p = 0.001, Cohen’s d = 0.778; marginally significant 

second order: t22 = 2.042, p = 0.053, Cohen’s d = 0.426; two-sided paired t tests) and tapered 

off with stimulus order.  

Our results so far suggest that previous stimulus history (i.e. numeric disparity of 

previous trials) and pre-stimulus alpha power predict observers’ tendency to bind audiovisual 

signals. This raises the intriguing question whether the effect of previous stimulus history is 

mediated by alpha power. For instance, given the well-established role of pre-stimulus alpha 

oscillations in visual perception31-36 and attention37, one may argue that alpha power is adjusted 

according to observers’ causal expectations based on prior stimulus history. Contrary to this 

conjecture, the numeric disparity of previous stimuli did not significantly predict alpha power 

(Fig. 7C; all clusters p > 0.05; Bayes factors provided substantial evidence in favour of a null 

effect, supplementary Fig. S8). However, we observed a marginally significant interaction 

between numeric disparity of the previous trial and alpha power on observers’ causal prior in 

two clusters from -340 to -240 ms, (p = 0.069) and from -220 to -120 ms (p = 0.096; two-sided 

cluster-based corrected randomization t22 test, Fig. 7C, top panel). The correlation between 

alpha power and the observers’ causal prior was prominent when prior numeric disparity was 

small (cluster from -480 to -80 ms, p = 0.006), but not significant when previous numeric 

disparity was large (i.e. all clusters p > 0.05). In summary, alpha power did not mediate, but to 

some extent (i.e. only marginally significant) moderated the effect of stimulus history on 

observers’ causal prior, i.e. their tendency to bind audiovisual signals (Fig. 7B). 
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Discussion 

To form a coherent percept of the world, the human brain needs to integrate signals arising from 

a common cause, but segregate signals from independent causes. Perception thus relies crucially 

on inferring the world’s causal structure1,2. To characterize the neural dynamics of how the 

brain solves this binding problem, we presented participants with sequences of beeps and 

flashes that varied in their numeric disparity.  

Behaviorally, the number of beeps biased observers’ perceived number of flashes – a 

phenomenon coined sound-induced flash illusion10. Conversely, the number of flashes biased 

observers’ perceived number of beeps18,19, albeit only to a small degree. This asymmetry of 

crossmodal biases operating from vision to audition and vice versa can be attributed to the 

smaller precision of vision for temporal estimation, which is consistent with forced-fusion 

models of reliability-weighted integration3,4,9  (and Bayesian Causal Inference models, cf. Table 

2). Crucially, as predicted by Bayesian Causal Inference, participants did not fully fuse auditory 

and visual stimuli into one unified percept, but they reported different numeric estimates for the 

flash and beep components of numerically disparate flash-beep stimuli. Moreover, audiovisual 

integration and crossmodal biases decreased for large numeric disparities, when the flash and 

beep sequences were unlikely to arise from a common cause5,11. Thus, observers flexibly 

arbitrated between audiovisual integration and segregation depending on the probabilities of 

the underlying causal structures as predicted by Bayesian Causal Inference (see Fig 2C).  

At the neural level, our univariate and multivariate EEG analyses revealed that the 

computations and neural processes of multisensory interactions and Bayesian Causal Inference 

dynamically evolve poststimulus. Initially, the univariate ERP analyses revealed an early 

audiovisual interaction effect starting at about 70 ms poststimulus that is related to the visual 

P1 component and has previously been shown to be susceptible to attention23. Potentially, these 

early non-specific audiovisual interactions enhance the excitability in visual cortices and the 

salience of the visual input and may thereby facilitate the emergence of the sound-induced flash 
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illusion38. Our multivariate EEG analyses revealed that the audiovisual weight index wAV was 

influenced by both auditory and visual inputs until 400 ms postimulus, though with a slightly 

stronger influence of the visual input. This visual dominance in the multivariate pattern 

decoding may at least partly explain the surprisingly strong correlation between EEG activity 

pattern and the unisensory visual segregation estimate in the RDM analysis reaching a plateau 

from 200 ms to 400 ms poststimulus (see methods section for further discussion about 

methodological caveats). In addition, the posterior probability over causal structures is 

decodable from EEG activity patterns shortly after the final flash-beep slot. Likewise, the 

weight index wAV indicated an early numeric disparity effect at about 400 ms poststimulus (i.e. 

200 ms after the final stimulus slot; Fig 3). Thus, causal inference starts immediately after 

stimulus presentation based on numeric disparity and influences early audiovisual interactions 

and biases as quantified by the neural weight index. However, only relatively late, starting at 

about 200-300 ms and peaking at 400 ms after the onset of the final stimulus slot, does the brain 

compute numeric estimates consistent with Bayesian Causal Inference by averaging the forced-

fusion estimate with the task-relevant unisensory estimate weighted by the posterior 

probabilities of common and independent causal structures (i.e. model averaging). The 

exceedance probability of the hierarchical Bayesian Causal Inference estimate steadily rises 

until its peak, where it outperforms all other numeric estimates in accounting for the 

representational geometries obtained from EEG activity patterns (i.e. exceedance probability ≈ 

1). Likewise, the relative audiovisual weight index wAV revealed a task-relevance by numeric-

disparity interaction at similar latencies as the characteristic qualitative profile for Bayesian 

Causal Inference.  

This dynamic evolution of neural representations dovetails nicely with a hierarchical 

organization of Bayesian Causal Inference that has recently been shown in fMRI research12,13: 

Low-level sensory areas represented sensory estimates mainly under the assumption of separate 

causes, whereas posterior parietal areas integrated the signals weighted by their sensory 
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precision under the assumption of a common cause. Only at the top of the cortical hierarchy, in 

anterior parietal areas, did the brain form a final Bayesian Causal Inference estimate that takes 

into account the observers’ uncertainty about the signals’ causal structure. Collectively, fMRI 

and EEG research jointly suggest that computations involving unisensory estimates rely on 

lower-level regions at earlier latencies, while Bayesian Causal Inference estimates that take into 

account the world’s causal structure arise later in higher-level cortical regions. Previous fMRI 

research implicated prefrontal cortices in the computations of the causal structure28,39, which 

may in turn inform the integration processes in parietal and temporal cortices40.  

A recent neural network model with a feedforward architecture by Cuppini et al. (2017, 

2014)41,42 suggests that this explicit causal inference relies on a higher convergence layer, while 

the audiovisual biases in numeric estimates may be mediated via direct connectivity between 

auditory and visual layers and emerge from spatiotemporal receptive fields in auditory and 

visual processing. In contrast to such a feed-forward architecture, we generally observed a 

mixture of multiple representations that were concurrently expressed in EEG activity patterns, 

even though different numeric estimates dominated neural processing at different poststimulus 

latencies. Therefore, we suggest that Bayesian Causal Inference is iteratively computed via 

multiple feed-back loops across the cortical hierarchy whereby numeric estimates as well as 

causal inferences are recurrently updated as the brain accumulates knowledge about the causal 

structure and sources in the environment14,15.  

In Bayesian inference, prior knowledge and expectations are crucial to guide the 

perceptual interpretation of the noisy sensory inputs43. Multisensory perception in particular 

relies on a so-called causal prior that quantifies observers’ prior beliefs about the world’s causal 

structure1,2. A ‘high’ causal prior (i.e. the belief that signals come from a common cause) 

influences multisensory perception by increasing observers’ tendency to bind audiovisual 

signals irrespective of the signals’ instantaneous intersensory congruency28. In the current 

study, we investigated whether the neural activity prior to stimulus onset is related to observers’ 
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causal prior. Indeed, low prestimulus alpha power and high gamma power were associated with 

a high causal prior, i.e. they increased participants’ tendency to integrate audiovisual stimuli. 

Accumulating research has shown effects of prestimulus alpha power on perceptual decisions 

such as detection threshold, decisional biases or perceptual awareness31-36. Further, low alpha 

power was also shown to increase the occurrence of the sound-induced flash illusion16,17,26 

(though see Keil et al.16 for an effect in beta power). In our study, low prestimulus alpha power 

predicted a larger causal prior leading to stronger bidirectional interactions between audition 

and vision and audiovisual biases (see figure 5C, audiovisual weight index wAV). These 

enhanced audiovisual interactions might be explained by a tonic increase in cortical excitability 

for states of low alpha oscillatory power and associated high gamma power (though see Yuval-

Greenberg et al.44 for a cautionary note). Moreover, if peaks and troughs of alpha oscillatory 

activity are modulated asymmetrically45, low alpha power may also induce larger alpha troughs, 

thereby extending the temporal windows where gamma bursts and audiovisual interactions can 

occur46,47. Indeed, our results show that observers’ causal prior depends not only on the tonic 

level of alpha power, but also on its phase. Prestimulus alpha phase may thus influence 

audiovisual binding by defining the optimal time window in which neural processing can 

interact across auditory, visual and association areas, thereby modulating the temporal parsing 

of audiovisual signals into one unified percept27,48,49.  

Next we investigated whether the fluctuations in alpha power may enable observers to 

adapt dynamically to the statistical structure of the sensory inputs. Previous research has shown 

that prior exposure to congruent signals increases observers’ tendency to integrate sensory 

signals, while exposure to incongruent signals enhances their tendency to process signals 

independently (28,29, but see30). In the current study, we also observed that previous low numeric 

disparity trials predicted a greater causal prior or tendency to bind audiovisual signals into a 

coherent percept. Surprisingly, however, the numeric disparity of previous audiovisual stimuli 

did not significantly influence alpha power. It only modulated the effect of alpha power on the 
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causal prior (i.e. a marginally significant interaction between alpha power and prior numeric 

disparity). More specifically, alpha power correlated with observers’ causal prior mainly when 

previous stimuli were of low rather than large numeric disparity. 

Collectively, our results show that observers’ causal prior dynamically adapts to the 

statistical structure of the world (i.e. previous audiovisual numeric disparity), but that these 

adaptation processes are not mediated by fluctuations in alpha power. Instead, spontaneous (i.e. 

as yet unexplained by stimulus history) fluctuations in prestimulus gamma and alpha power as 

well as alpha phase correlated with observers’ causal prior.  Alpha power, phase and frequency 

(i.e. speed)50-52 together with gamma power may thus dynamically set the functional neural 

system into states that facilitate or inhibit interactions across brain regions53,54 and temporal 

parsing of audiovisual signals into common percepts27,47.  

In conclusion, to our knowledge this is the first study that resolves the neural 

computations of hierarchical Bayesian Causal Inference in time. We show that pre-stimulus 

oscillatory alpha power and phase correlates with the brain’s causal prior as a binding tendency 

that guides how the brain dynamically arbitrates between sensory integration and segregation 

(see 55-58 for related studies showing that top-down predictions may be furnished via alpha/beta 

oscillations). Initially, about 70 ms after stimulus presentation, we observed non-specific 

audiovisual interactions, which may increase the bottom-up salience of sensory signals. Our 

multivariate analyses suggested that unisensory numeric estimates initially dominated the EEG 

activity pattern. Only later, from about 200-400 ms after the final stimulus slot, EEG signals 

encoded the Bayesian Causal Inference estimates that combine the forced-fusion and task-

relevant segregation estimates weighted by the probabilities of common and independent cause 

models (i.e. model averaging). Thus, consistent with the notion of predictive coding, the brain 

may accumulate evidence concurrently about i. auditory (or visual) numeric estimates and ii. 

the underlying causal structure (i.e. whether auditory and visual signals come from common or 

independent sources) over several hundred milliseconds via recurrent message passing across 
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the cortical hierarchy to compute Bayesian Causal Inference estimates15,59. By resolving the 

computational operations of multisensory interactions in human neocortex in time, our study 

reveals the hierarchical nature of multisensory perception. It shows that the brain dynamically 

encodes and re-updates computational priors and multiple numeric estimates to perform 

hierarchical Bayesian Causal Inference.  
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Methods 

Participants 

After giving written informed consent, 24 healthy volunteers participated in the EEG study 

based on previous calculations of statistical power. One participant did not attend the interview 

session and was excluded. Thus, data from 23 participants were analyzed (10 female; mean age 

36.0 years, range 25-61 years). Participants were screened for current or former psychiatric 

disorders (as verified by the screening questions of the structured clinical interview for DSM 

IV axis I disorders, SCID-I, German version), cardio-vascular disorders, diabetes and 

neurological disorders. One participant reported an asymptomatic arteriovenous malformation. 

Because behavioral and EEG was inconspicuous, the participant was included. All participants 

had normal or corrected-to-normal vision and audition. The study was approved by the human 

research review committee of the Medical Faculty of the University of Tuebingen at the 

University Hospital Tuebingen (approval number 728/2014BO2). 

  

Stimuli 

The flash-beep paradigm was an adaptation of previous “sound-induced flash illusion” 

paradigms7,10. The visual flash was a circle presented in the centre of the screen on a black 

background (i.e. 100% contrast; Fig. 1A) briefly for one frame (i.e, 16.7 ms, as defined by the 

monitor refresh rate of 60 Hz). The maximum grayscale value (i.e. white) of the circle was at 

radius 4.5° with smoothed inner and outer borders by defining the grayscale values of circles 

of smaller and larger radius by a Gaussian of 0.9° STD visual angle. The auditory beep was a 

pure tone (2000 Hz; ~ 70 dBSPL) of 27 ms duration including a 10 ms linear on/off ramp. 

Multiple visual flashes and auditory beeps were presented sequentially at a fixed SOA of 66.6 

ms (see below).  

 

Experimental design 
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In the flash-beep paradigm, participants were presented with a sequence of i. one, two, three or 

four flashes and ii. one, two, three or four beeps (Fig. 1A). On each trial, the number of flashes 

and beeps were independently sampled from one to four leading to four levels of numeric 

audiovisual disparities (i.e. zero = congruent to four = maximal level of disparity; Fig. 1B). 

Each flash and/or beep were presented sequentially in fixed temporal slots that started at 0, 

66.7, 133, 200 ms. The temporal slots were filled up sequentially. For instance, if the number 

of beeps was three, they were presented at 0, 66.6, 133 and 200 ms, while the fourth slot was 

left empty. Hence, if the same number of flashes and beeps were presented on a particular trial, 

beeps and flashes were presented in synchrony. On numerically disparate trials, the ‘surplus’ 

beeps (or flashes) were added in the subsequent fixed time slots (e.g. in case of 2 flashes and 3 

beeps: we present 2 flash-beeps at 0 and 66.6 ms in synchrony and a single beep at 133 ms). 

Across experimental runs, we instructed participants to selectively report either the number of 

flashes or beeps and to ignore the stimuli in the task-irrelevant modality. Hence, the 4 × 4 × 2 

factorial design manipulated (i) the number of visual flashes (i.e. one, two, three or four), (ii) 

the number of auditory beeps (i.e. one, two, three or four) and (iii) the task relevance (auditory- 

vs. visual-selective report) yielding 32 conditions in total (Fig. 1B). For analyses, we 

reorganized trials based on their absolute numeric disparity (|#A - #V| ≤ 1: small numeric 

disparity; |#A - #V| > 1: large numeric disparity). Thus, we analyzed the data in a 2 (task 

relevance: visual vs. auditory report) x 2 (numeric disparity) factorial design.  

The duration of a flash-beep sequence was determined by the number of sequentially 

presented flash and/or beep stimuli (see above for the definition of temporal slots). Irrespective 

of the number of flashes and/or beeps, a response screen was presented 750 ms after the onset 

of the first flash and beep for a maximum duration of 2.5 s instructing participants to report 

their perceived number of flashes (or beeps) as accurately as possible by pushing one of four 

buttons. The order of buttons was counterbalanced across runs to decorrelate motor responses 

from numeric reports. On half of the runs, the buttons from left to right corresponded to one to 
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four number of stimuli; on the other half they corresponded to four to one. After a participant’s 

response, the next trial started after an inter-trial interval of 1-1.75 s. 

In every experimental run, each of the 16 conditions was presented 10 times. 

Participants completed 4 runs of auditory- and 4 runs of visual-selective report in a 

counterbalanced fashion (except for one participant performing 5 runs of auditory and 3 of 

visual report). Further, each participant completed two unisensory runs with visual or auditory 

stimuli only (i.e. 4 unisensory conditions presented 40 times per run) from which we computed 

the difference wave (see below). Before the actual experiment, participants completed 56 

practice trials.  

 

Experimental setup 

Psychtoolbox 3.09 (www.psychtoolbox.org) 60,61 running under MATLAB R2016a 

(MathWorks) presented audiovisual stimuli and sent trigger pulses to the EEG recording 

system. Auditory stimuli were presented at ≈ 70 dB SPL via two loudspeakers (Logitech Z130) 

positioned on each side of the monitor. Visual stimuli were presented on an LCD screen with a 

60 Hz refresh rate (EIZO FlexScan S2202W). Button presses were recorded using a standard 

keyboard. Participants were seated in front of the monitor and loudspeakers at a distance of 85 

cm in an electrically shielded, sound-attenuated room. 

 

Behavioral Analysis 

Overview of general linear model and Bayesian modelling analysis for behavioral data  

To characterize how human observers arbitrate between sensory integration and segregation, 

we developed a general linear model (GLM)-based and a Bayesian modelling analysis 

approach.  

The GLM-based analysis computed a relative weight index wAV which quantified the 

relative influence of the auditory and the visual numeric stimuli on observers’ auditory and 
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visual behavioral numeric reports. This GLM-based analysis allowed us to reveal audiovisual 

weight profiles in our 2 (numeric disparity) x 2 (task-relevance) factorial design that are 

qualitatively in line with the principles of Bayesian Causal Inference (Fig. 1C).  

The Bayesian modelling analysis fitted the full-segregation, the forced-fusion and the 

Bayesian Causal Inference (BCI) model to the behavioral numeric reports with different 

decision functions. We then used Bayesian model comparison to determine the model that is 

the best explanation for observers’ behavioral data (Table 2 and supplementary Table S1). 

 

Behaviour: GLM-based analysis for reported number of stimuli – audiovisual weight index 

We quantified the influence of the true number of auditory and visual stimuli on the reported 

(behavioral) auditory or visual numeric estimates using a linear regression model13.  In this 

regression model, the reported number of stimuli were predicted by the true number of auditory 

and visual stimuli separately in the four conditions in the 2 (numeric disparity) x 2 (task 

relevance) factorial design. The auditory (ßA) and visual (ßV) parameter estimates quantified 

the influence of the experimentally defined auditory and visual stimuli on the 

perceived/decoded number of stimuli for a particular condition. To obtain a relative audiovisual 

weight index wAV, we computed the four-quadrant inverse tangens of the auditory (βA) and 

visual (βV) parameters estimates for each of the four conditions (i.e. wAV = atan(βV, βA)). An 

audiovisual weight index wAV = 90º indicates purely visual and wAV = 0º purely auditory 

influence on the reported/decoded number of stimuli.  

We performed the statistics on the behavioral audiovisual weight indices using a two 

(auditory vs. visual report) x two (large vs. small numeric disparity) factorial design based on 

a likelihood ratio test statistic (LRTS) for circular measures62. Similar to an analysis of variance 

for linear data, LRTS computes the difference in log likelihood functions for the full model that 

allows differences in the mean locations of circular measures between conditions (i.e, main and 

interaction effects) and the reduced null model that does not model any mean differences 
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between conditions. To refrain from making any parametric assumptions, we evaluated the 

effects of task-relevance, numeric disparity and their interaction in the factorial design using 

randomization tests (5000 randomizations)63. To account for the within-subject repeated-

measures design at the second random-effects level, randomizations were performed within 

each participant. For the main effects of numeric disparity and task-relevance, wAV values were 

randomized within the levels of the non-tested factor64. For tests of the numeric disparity x task 

relevance interactions, we randomized the simple main effects (i.e. (A1B1, A2B2) and (A1B2, 

A2,B1)) which are exchangeable under the null-hypothesis of no interaction65. To test 

deviations of wAV from specific test angles (e.g. wAV < 90º), we used one-sided one-sample 

randomization tests in which we flipped the sign of the individual circular distance of wAV from 

the test angle66 and used the mean circular distance as test statistic.  

  Unless otherwise stated, results are reported at p < 0.05. For plotting circular means of 

wAV (Fig. 1C and 5C for behavioral wAV, Fig. 3C for neural wAV, see multivariate EEG analysis), 

we computed the means’ bootstrapped confidence intervals (1000 bootstraps). 

 

Behaviour: Full-segregation, forced-fusion and Bayesian Causal Inference models 

Next, we fitted the full-segregation, the forced-fusion and the Bayesian Causal Inference model 

with model averaging, model selection and probability matching as decision functions to 

observers’ behavioural reports. Using Bayesian model comparison, we then assessed which of 

these models is the best explanation for observers’ reported numeric estimates. 

In the following, we will first describe the Bayesian Causal Inference model from which 

we will then derive the forced-fusion and full-segregation model as special cases. Details can 

be found in Kording et al. (2007)1.  

Briefly, the generative model (Fig. 2C) assumes that common (C = 1) or independent 

(C = 2) causes are determined by sampling from a binomial distribution with the causal prior 

P(C = 1) = pcommon (i.e.  a priori binding tendency25). For a common cause, the “true” number 
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of audiovisual stimuli NAV is drawn from the numeric prior distribution N(μP, σP). For two 

independent causes, the “true” auditory (NA) and visual (NV) numbers of stimuli are drawn 

independently from this numeric prior distribution. We introduced sensory noise by drawing xA 

and xV independently from normal distributions centered on the true auditory (respectively 

visual) number of stimuli with parameters σA (respectively σV). Thus, the generative model 

included the following free parameters: the causal prior pcommon, the numeric prior’s mean μP 

and standard deviation σP, the auditory standard deviation σA, and the visual standard deviation 

σV. The posterior probability of the underlying causal structure can be inferred by combining 

the causal prior with the sensory evidence according to Bayes rule:   

(1)                                                p(C = 1|xA, xV) =
p(xA, xV|C=1)pcommon

p(xA, xV)
 

The causal prior quantifies observers’ belief or tendency to assume a common cause and 

integrate stimuli prior to stimulus presentation. After stimulus presentation, the disparity 

between the number of beeps and flashes informs the observers’ causal inference via the 

likelihood term (cf. Fig. 2C). In the case of a common cause (C = 1), the optimal audiovisual 

numeric estimate (N̂AV,C=1) is obtained under the assumption of a squared loss function, by 

combining the auditory and visual numeric estimates as well as the numeric prior (with a 

Gaussian distribution of N(μP, σP)) weighted by their relative reliabilities: 

(2)                                                N̂AV,C=1 =

xA

σA
2 +

xV

σV
2 +

μP

σP
2

1
σA

2 +
1

σV
2 +

1
σP

2

 

In the case of independent causes (C = 2), the optimal numeric estimates of the unisensory 

auditory (N̂A,C=2) and visual (N̂V,C=2) stimuli are independent: 

(3)                                                N̂A,C=2 =

xA

σA
2 +

μP

σP
2

1
σA

2 +
1

σP
2

,     N̂V,C=2 =

xV

σV
2 +

μP

σP
2

1
σV

2 +
1

σP
2

 

To provide a final estimate of the number of auditory or visual stimuli, the observer is thought 

to combine the estimates under the two causal structures using various decision functions such 
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as “model averaging,” “model selection,” or “probability matching”20. According to “model 

averaging”, the brain combines the two auditory numeric estimates weighted in proportion to 

the posterior probabilities of their underlying causal structures:  

(4)                                               N̂A = p(C=1|xA, xV) N̂AV,C=1 + (1 - p(C=1|xA, xV) )N̂A,C=2    

(5)                                               N̂V = p(C=1|xA, xV) N̂AV,C=1 + (1 - p(C=1|xA, xV) )N̂V,C=2   

According to the ‘model selection’ strategy, the brain reports the numeric estimate selectively 

from the more likely causal structure (eq. 6 only for N̂A): 

(6)                                  N̂A = {
N̂AV, C=1  if p(C=1|xA, xV) >  0.5

N̂A, C=2  if p(C=1|xA, xV) ≤  0.5
   

According to ‘probability matching’, the brain reports the numeric estimate of one causal 

structure stochastically selected in proportion to its posterior probability (eq. 7 only for N̂A): 

(7)                                   N̂A = {
N̂AV, C=1  if p(C=1|xA, xV) >  α, α~ U(0,1)

N̂A, C=2  if p(C=1|xA, xV) ≤  α, α~ U(0,1)
   

Thus, Bayesian Causal Inference formally requires three numeric estimates (N̂AV,C=1, N̂A,C=2, 

N̂V, C=2) which are combined into a final estimate (N̂A or N̂V, depending on which sensory 

modality is task-relevant) according to one of the three decision functions. 

We evaluated whether and how participants integrate auditory and visual stimuli based 

on their auditory and visual numeric reports by comparing (i) the full-segregation model that 

estimates stimulus number independently for vision and audition (i.e. formally, the BCI model 

with a fixed pcommon = 0), (ii) the forced-fusion model that integrates auditory and visual stimuli 

in a mandatory fashion (i.e. formally, the BCI model with a fixed pcommon = 1) and (iii) the BCI 

model (i.e. model averaging; Table 2) Because the decisional strategy of ‘model averaging’ 

outperformed the other decision functions (eq. (4)-(7))) based on Bayesian model comparison 

at the group level (Supplementary Table. S1), the main report and analysis of the neural data 

focuses on model averaging.  
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To arbitrate between the full-segregation, forced-fusion and BCI models, we fitted each 

model to participants’ numeric reports (Table 2) based on the predicted distributions of the 

auditory (i.e. the marginal distributions: p(N̂A|NA,NV)) and visual (i.e. p(N̂V|NA,NV)) numeric 

estimates that were obtained by marginalizing over the internal variables xA and xV that are not 

accessible to the experimenter (for further details of the fitting procedure see Kording et al. 

(2007)1). These distributions were generated by simulating xA and xV 5000 times (i.e. 

continuous variables sampled from Gaussian distributions) for each of the 32 conditions and 

inferring N̂A and N̂V from equations (1)-(5). To link the continuous distributions p(N̂A|NA,NV) 

and p(N̂V|NA,NV) to participants’ categorical auditory or visual numeric reports (i.e. from 

{1,2,3,4}), we assumed that participants selected the button that is closest to N̂A or N̂V and 

binned N̂A and N̂V accordingly into a four-bin histogram. From these predicted multinomial 

distributions (i.e. one for each of the 32 conditions; auditory and visual numeric reports were 

linked to N̂A and N̂V, respectively), we computed the log likelihood of participants’ numeric 

reports and summed the log likelihoods across conditions. To obtain maximum likelihood 

estimates for the five parameters of the models (pcommon, µP, σP, σA, σV; formally, the forced-

fusion and full-segregation models assume pcommon = 1 or = 0, respectively), we used a non-

linear simplex optimization algorithm as implemented in Matlab’s fminsearch function (Matlab 

R2015b). This optimization algorithm was initialized with 20 different parameter settings that 

were defined based on a prior grid-search.  

We report the results (across-participants’ mean and standard error) of the parameter 

setting with the highest log likelihood across these initializations (Table 2 and supplementary 

Table S1). This fitting procedure was applied individually to each participant’s data set for the 

Bayesian Causal Inference (with three different decision functions), the forced-fusion and the 

full-segregation models. The model fit was assessed by Nagelkerke’s coefficient of 

determination67 using a null model of random guesses of stimulus number 1-4 with equal 
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probability 0.25. To identify the optimal model for explaining participants’ data, we compared 

the candidate models using the Bayesian Information Criterion (BIC) as an approximation to 

the model evidence68. The BIC depends on both model complexity and model fit. We performed 

Bayesian model comparison69 at the random effects group level as implemented in SPM1270 to 

obtain the protected exceedance probability (the probability that a given model is more likely 

than any other model, beyond differences due to chance71) for the candidate models.  

To generate predictions for the audiovisual weight index based on the Bayesian Causal 

Inference model (with model averaging), we simulated new xA and xV for 10000 trials for each 

of the 32 conditions using the fitted BCI model parameters of each participant. For each 

simulated trial, we computed the BCI model’s i. unisensory visual (N̂V,C=2), ii. unisensory 

auditory (N̂A,C=2) estimates, iii. forced-fusion (N̂AV,C=1), iv. final BCI audiovisual numeric 

estimate (N̂A or N̂V depending on whether the auditory or visual modality was task-relevant) and 

v. posterior probability estimate of each causal structure (p(C = 1|xA, xV)). Next, we used the 

mode of the resulting (kernel-density estimated) distributions for each condition and participant 

to compute the model predictions for the audiovisual weight index wAV (Fig. 1C, 5C) and the 

RDMs (see multivariate EEG analysis, Fig. 2C). 

 

EEG data acquisition and preprocessing 

EEG signals were recorded from 64 active electrodes positioned in an extended 10-20 montage 

using electrode caps (actiCap, Brain Products, Gilching, Germany) and two 32 channel DC 

amplifiers (BrainAmp, Brain Products). Electrodes were referenced to FCz using AFz as ground 

during recording. Signals were digitized at 1000 Hz with a high-pass filter of 0.1 Hz. Electrode 

impedances were kept below 25 kOhm.  

Preprocessing of EEG data was performed using Brainstorm 3.472 running on Matlab 

R2015b. EEG data were band-pass filtered (0.25-45 Hz for the main EEG analyses). Eye blinks 

were automatically detected using data from the FP1 electrode (i.e. a blink was detected if the 
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band-pass (1.5-15 Hz) filtered EEG signal exceeded two times the STD; the minimum duration 

between two consecutive blinks was 800 ms). Signal-space projectors (SSPs) were created from 

band-pass filtered (1.5-15 Hz) 400 ms segments centered on detected blinks. The first spatial 

component of the SSPs was then used to correct blink artifacts in continuous EEG data. Further, 

all data were visually inspected for artifacts from blinks (i.e. residual blink artifacts after 

correction using SSPs), saccades, motion, electrode drifts or jumps and contaminated segments 

were discarded from further analysis (on average 6.4 % ± 0.9 % SEM of all trials discarded). 

Finally, EEG data were re-referenced to the average of left and right mastoid electrodes and 

downsampled to 200 Hz. For analysis of event-related potentials (ERPs) and decoding analyses 

(see below), all EEG data were normalized with a 200 ms prestimulus baseline and were 

analysed from 100 ms before stimulus onset up to 750 ms after stimulus onset, when the 

response screen was presented.  

 

Preprocessing for multivariate EEG analyses – EEG activity pattern 

Single-trial EEG data from the 64 electrodes were binned in time windows of 20 ms. Hence, 

given a sampling rate of 200 Hz, each 20 ms time window included four temporal sampling 

points. 64-electrode EEG activity vectors (for each time sample) were concatenated across the 

four sampling points within each bin resulting in a spatio-temporal EEG activity pattern of 256 

features. EEG activity patterns were z scored to control for mean differences between 

conditions. The first sampling point in the 20 ms time window was taken as the window’s time 

point in all analyses.  

 

Overview of EEG analysis 

We characterized the neural processes underlying multisensory integration by combining 

several analysis approaches: 
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1. Univariate EEG analysis: We identified multisensory integration by testing for audiovisual 

interactions focusing on the classical ‘sound-induced flash illusion’ conditions, where one flash 

is presented together with two beeps. 

2. Multivariate EEG analysis and neural audiovisual weight index wAV: We computed the 

audiovisual weight index wAV which quantifies the relative influence of the true number of 

auditory and the visual stimuli on the ‘internal’ numeric estimates decoded from EEG activity 

patterns using support vector regression (see behavioural analysis above).  

3. Multivariate EEG analysis and Bayesian Causal Inference model: We assessed how the 

numeric estimates obtained from the BCI model, i.e. the unisensory auditory and visual full-

segregation, the forced-fusion and the Bayesian Causal Inference estimates (i.e. based on model 

averaging) are dynamically encoded in EEG activity pattern across post-stimulus time using 

representation dissimilarity analyses24. In supplementary analyses, we also directly decoded the 

numeric estimates from EEG activity patterns using support vector regression or canonical 

correlation analyses (Supplementary methods and Fig. S6). 

4. Pre-stimulus EEG activity and parameters of the Bayesian Causal Inference model: We 

investigated whether the power or phase of brain oscillations as measured by EEG before the 

stimulus onset correlates with the causal prior or the visual precision parameters of the Bayesian 

Causal Inference model (selectively refitted to trials binned according to their oscillatory power 

or phase). 

 

EEG: Univariate analysis of audiovisual interactions 

To assess basic sensory components in ERPs and early audiovisual interactions, we averaged 

trial-wise EEG data time-logged to stimulus onset into ERPs for audiovisual congruent 

conditions. We then averaged the ERPs across parietal electrodes (i.e. Cz, CP1, CPz, CP2, P1, 

Pz, P2; Fig. 1D) or occipital electrodes (i.e. O1, O2, Oz, PO3, POz, PO4; Fig. 1E). To analyze 

early audiovisual interactions as reported for the sound-induced flash illusion, we computed the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/504845doi: bioRxiv preprint 

https://doi.org/10.1101/504845
http://creativecommons.org/licenses/by/4.0/


34 
 

difference between audiovisual and the corresponding unisensory conditions (i.e. A1V1A2 - 

(A1A2 + V1))
21,22. However, the auditory and visual trials were acquired in separate unisensory 

runs and may therefore differ in attentional and cognitive context. Further, our experimental 

design did not include null trials to account for anticipatory effects around stimulus onset and 

ensure a balanced audiovisual interaction contrast73. Hence, these audiovisual interactions need 

to be interpreted with caution. To test whether the difference wave deviated from zero at the 

group level, we used a non-parametric randomization test (5000 randomizations) in which we 

flipped the sign of the individual difference waves and computed a two-sided one-sample t tests 

as a test statistic74. To correct for multiple comparisons across the sampling points, we used a 

cluster-based correction75 with the sum of the t values across a cluster as cluster-level statistic 

and an auxiliary cluster defining threshold of t = 2 for each time point. 

 

EEG: Multivariate GLM-based analysis, decoding accuracy and audiovisual weight index  

For each 20 ms time window, we trained linear support-vector regression (SVR) models 

(libSVM 3.2076) to learn the mapping from spatio-temporal EEG activity patterns to the number 

of flash-beep stimuli of the audiovisually congruent conditions (including conditions of 

auditory and visual report) from all but one run. The SVRs’ parameters (C and ν) were 

optimized using a grid search within each cross-validation fold (i.e. nested cross-validation). 

Before training the SVR models, we recoded the stimulus numbers as labels to the range of [-

1,1] (i.e. -1 = 1 stimuli;  -0.33 = 2 stimuli; 0.33  = 3 stimuli;  1  = 4 stimuli).     

This learnt mapping from EEG activity patterns to external number of stimuli was then 

used to decode the number of stimuli from spatio-temporal EEG activity patterns of the 

audiovisual congruent and incongruent audiovisual conditions of the remaining run. In a leave-

one-run-out cross-validation scheme, the training-test procedure was repeated for all runs. To 

account for SNR differences across runs, predicted stimulus numbers were z-scored within each 

run. The decoded stimulus numbers for the congruent and incongruent conditions were used to 
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assess i. decoding accuracy based on congruent trials only and ii. to compute the audiovisual 

weight index wAV in subsequent GLM-based analysis approaches (see below).  

First, we computed decoding accuracy based selectively on the audiovisual congruent 

conditions. We decoded stimulus numbers 1-4 at all time points even though the distinctions 

between high flash and/or beep numbers (e.g. three vs. four) was only possible at later time 

points. Hence, as expected the decoder was able to discriminate between higher stimulus 

numbers (e.g. three vs. four stimuli) only after about 250 ms (Fig. 3A). Next, we evaluated the 

decoder’s accuracy in terms of the Pearson correlation between true and decoded stimulus 

number selectively in audiovisual congruent conditions (Fig. 3B). We tested whether individual 

Fisher’s z-transformed correlation coefficients were larger than zero at the group level using a 

one-sided non-parametric randomization test (sign flip of correlation coefficient in 5000 

randomizations) and a cluster-based correction for multiple comparisons across time intervals 

(as applied to difference waves, see above; cluster-level statistic: sum of the t values in a cluster; 

auxiliary cluster defining threshold t = 2).  

Second, we quantified the influence of the true number of auditory and visual stimuli 

on the decoded (neural) auditory or visual numeric estimates in a GLM-based analysis approach 

that was equivalent to our behavioral analysis. In a linear regression model13, the decoded 

number of stimuli was predicted by the true number of auditory and visual stimuli separately 

for the four conditions in the 2 (numeric disparity) x 2 (task relevance) factorial design (see 

behavioral analysis for further details). Statistical analysis was also equivalent to the behavioral 

analysis with the exception that we accounted for multiple comparisons across time using a 

cluster-based correction (cluster-level statistic: sum of the LRTS values in a cluster; auxiliary 

cluster defining threshold LRTS = 2). Unless otherwise stated, results are reported at p < 0.05 

corrected for multiple comparisons in EEG. For plotting circular means of wAV (Fig. 3C), we 

computed the means’ bootstrapped confidence intervals (1000 bootstraps). 
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EEG: Multivariate Bayesian Causal Inference and Representational Dissimilarity Matrices 

To characterize the neural dynamics of Bayesian Causal Inference, we next investigated 

whether and when the four numeric estimates of the Bayesian Causal Inference model are 

represented in EEG activity patterns using support vector regression (i.e. similar to a previous 

fMRI study12), canonical correlation analysis and representational similarity analysis (RSA)24. 

Because these three analysis approaches yield comparable results, we focus in the main 

manuscript on the RSA (see supplementary materials for the canonical correlation and support 

vector regression analysis and results, Fig. S6).  

To define the representational dissimilarity matrices (RDMs) for the RSA24, we 

computed the pairwise absolute distance between the BCI model’s four numeric estimates, i.e. 

i. unisensory visual (N̂V,C=2), ii. unisensory auditory (N̂A,C=2) estimates, iii. forced-fusion 

(N̂AV,C=1), iv final BCI audiovisual numeric estimate (N̂A or N̂V depending on whether the 

auditory or visual modality were task-relevant)  as well as the posterior causal probability across 

all 32 conditions individually for each participant and then averaged those across participants 

(Fig. 2C). Likewise, we generated RDMs for the behavioral numeric reports by computing the 

pairwise absolute distance between the mean numeric reports across all 32 conditions for each 

participant and then averaged the individual RDMs across participants.  

To resolve the evolution of the full-segregation auditory, full-segregation visual, forced-

fusion and the BCI estimates in time, we correlated their RDMs with the EEG RDMs. The EEG 

RDMs were computed as the Mahalanobis distance between single trial spatiotemporal EEG 

activity patterns for 20 ms time windows over conditions (c.f. decoding analysis above)77. More 

specifically, we computed the Mahalanobis distance from the activity patterns’ variance-

covariance matrix using the pattern component modeling toolbox78. We quantified the 

similarity of the RDMs of the numeric estimates of the BCI model (Fig. 2C) with the EEG 

RDM at each 20 ms time interval using the Spearman’s rank correlation r (Fig. 4A; i.e. 

correlation of the RDMs’ the upper triangular part). The Fisher’s z-transformed correlation 
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coefficients were tested against zero using a one-sided randomization test (sign flip of 

correlation coefficient in 5000 randomizations) and a cluster-based correction for multiple 

comparisons across time intervals (as applied to decoding accuracy, see above).  

From the explained variance of the RDMs’ correlation (i.e. r2), we computed the 

Bayesian Information Criterion as an approximation to the model evidence for each estimate 

and time point68 (BIC = n * log(1- r2) + 1 * log(n); n = number of EEG activity patterns). We 

entered these participant-specific model evidences in a random-effects group analysis to 

compute the protected exceedance probability (SPM12) that one numeric estimate was more 

likely encoded than any of the other estimates separately for each time interval (Fig. 4B; see 

above).  

 

Time-frequency analysis of the effect of prestimulus oscillations on the causal prior and the 

visual precision parameters in the Bayesian Causal Inference model 

We investigated whether prestimulus oscillatory power or phase over occipital electrodes (i.e. 

O1, O2, Oz, PO3, POz, PO4)16,17,26 is related to the brain’s prior binding tendency as quantified 

by the causal prior (i.e. pcommon) or the precision of the visual representation (i.e. 1/σV
2) as 

estimated in the Bayesian Causal Inference model. We band-pass filtered the continuous EEG 

data to 0.25-100 Hz with a notch filter at 50 Hz and re-epoched it into trials of -1.5 to 1 s. Using 

complex Morlet wavelets (as implemented in Brainstorm72), we extracted the spectral power 

and phase of single-trial EEG data  from -0.5 s to +0.1s from 6 to 80 Hz  in 2 Hz steps with the 

cycles increasing linearly from 5 to 13 cycles across frequencies79. We downsampled the time-

frequency representation to 50 Hz (i.e. 38 frequencies × 25 time points). First, based on previous 

research pointing towards a role of alpha, beta and gamma oscillations in the sound-induced 

illusion16,17,26, we investigated whether the oscillatory power in these bands prior to stimulus 

onset was correlated with pcommon or σV. For each point in time-frequency space, we sorted and 

binned the trials according to their oscillatory power (or phase for alpha frequency) into 10 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/504845doi: bioRxiv preprint 

https://doi.org/10.1101/504845
http://creativecommons.org/licenses/by/4.0/


38 
 

deciles separately for each of the 32 conditions to control for any condition-specific effects (cf. 

Fig. 1B)80,81. Using maximum likelihood estimation, we refitted selectively the pcommon (resp. 

σV) parameter of the BCI model to the multinomial distribution of observers’ numeric reports 

over the 32 conditions separately for each decile (i.e. based on ~120 trials), while fixing the 

remaining four BCI parameters to the parameters obtained from the estimation based on the 

complete data set (i.e. pooled over the 10 deciles). For each point in time-frequency space, we 

then computed the correlation between the oscillatory power (averaged across trials within a 

decile) and the BCI parameter (i.e. pcommon, σV) over the 10 deciles for each participant. At the 

group level, we tested whether the Fisher’s z-transformed correlation coefficients were 

significantly different from zero using a randomization test (i.e. sign flip of correlation 

coefficients in 5000 randomizations; test statistic: two-sided t-tests) and a cluster-based 

correction for multiple comparisons75 separately for the alpha (8-12 Hz), beta (14-28 Hz) and 

gamma (30-80 Hz) bands (Fig. 5A; cluster-level statistic: sum of the t values in a cluster; 

auxiliary cluster threshold t = 2). Note that initially, prior to the sort-and-bin approach, all five 

BCI parameters were re-fitted to the whole data set with valid EEG data. This additional refit 

was required because additional trials (i.e. 2.9 ± 0.4 % (mean ± SEM) of trials) were rejected 

due to EEG artefacts in the longer epochs from -1.5 s to 1 s. For illustrational purposes, we also 

computed the relative weight index wAV for each decile both for the BCI model’s predictions 

and the participants’ numeric reports averaged across the significant clusters (Fig. 5 C).  

Second, based on previous research implicating prestimulus alpha phase in temporal 

binding26,27, we investigated whether the circular mean phase (i.e. averaged across trials within 

a decile) of alpha oscillations (8-12 Hz) was correlated with the BCI parameters (i.e. pcommon or 

σV) over alpha phase deciles using linear-circular correlation66. To enable an unbiased group 

level statistic, we first randomized the assignment between mean circular phase and BCI 

parameters across the deciles (5000 randomizations) within each participant. Next, we 

computed the percentile of a participant’s true circular-linear correlation in relation to this 
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participant’s null-distribution of circular-linear correlations. At the group level, we then tested 

whether the across-participants’ mean percentile was significantly greater than 50% (i.e. the 

mean percentile under the null hypothesis) using a randomization test (i.e. sign flip of deviation 

of percentile from 50% in 5000 randomizations; test statistic: one-sided t-tests) and cluster-

based correction for multiple comparisons (Fig. 6A; cluster-level statistic: sum of the t values 

in a cluster; cluster threshold t = 2).  

To characterize the modulation of pcommon by alpha phase, we first fitted a sine and cosine 

to pcommondec
 over alpha phase deciles Φdec at 10 Hz individually to each participant’s data, 

separately for each time point (eq. 8). Thus, we computed the average phase Φdec at 10 Hz 

across trials for each decile at a particular time point. We then used this average phase Φdec  in 

each decile at 10 Hz to predict pcommondec
 for this particular time point over deciles based 

on a sinusoidal model: 

 

 (8)           pcommondec
=  βsin sin(Φdec) + βcos 

cos(Φdec) + C
 
+ εdec 

   

 

with pcommondec
= causal prior estimated based on trials in a particular decile; Φdec= across 

trials average phase in a particular decile; C = constant 

Crucially, this regression model (i.e. eq. 8) is estimated independently for each time point 

resulting in βsin and βcos  separately for each time point. Thus, eq. 8 characterizes the 

relationship between alpha phase and pcommon over deciles for a particular time point, so that 

the phase of this modulation can in principle vary across time (Fig. 6D).  

Second, we fitted a more constrained regression model with one single sine and cosine 

at F = 10 Hz that uses the Φdec t
  averaged over trials within a particular decile = dec at a time 

point = t to predict  pcommon𝑑𝑒𝑐 𝑡
. Hence, this model assumes that the modulation of 

 pcommon𝑑𝑒𝑐 𝑡
 
by alpha phase for each time point (i.e. a column in Fig. 6B) evolves slowly 

over time according to a 10 Hz alpha oscillatory rhythm:  
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(9)                        pcommondec t
  

= βsin sin(2π F t − Φdec t 
) + βcos cos(2π F t − Φdec t

) + C + εdec t 

 

  pcommondec t
 =      causal prior estimated over trials in a particular decile for time t 

 Φdec t
      =  across trials average phase in a particular decile at time = t; C = constant            

The statistical significance of this model was assessed for the time window of -280 up 

to -80 ms  encompassing the significant cluster (i.e. to include two alpha cycles; Fig. 6A) in 

each participant with an F test on the residual sum of squares against a reduced model that 

included only the constant C as a regressor (i.e. df1 = 2; df2 = 107; see Fig. 6B). Next, we 

assessed whether the phase angle of the alpha oscillation (i.e. Φ𝑆𝑢𝑏𝑗𝑒𝑐𝑡 = angle(βcos + i βsin) 

from equation (9) was consistent across participants and hence deviated significantly from a 

circular uniform distribution using a Raleigh test66. The distribution of phase angles over 

participants was not significantly different from uniformity, which can be explained by 

participant-specific cortical folding leading to differences in the orientation of the underlying 

neural sources. We therefore identified the peak in predicted pcommondec,t
 at t = -160 ms in 

each participant (based on eq. 8), computed the difference in deciles between the participant’s 

peak decile and the group peak decile (Supplementary Fig. S5B) and then shifted the predicted 

and observed pcommondec,t
  in each participant by this difference across all time points. As a 

consequence, the adjusted participant’s peak is aligned with the predicted group peak 

pcommondec,t
 at t = -160 ms; -0.29 π= 52° (Supplementary Fig. S5A, B)82. Then we averaged 

the observed and predicted (cf. eq. 8) pcommon across participants for illustrational purposes 

(Fig. 6C and D).  

 

EEG: The relationship of prior stimulus history, prestimulus alpha power and the causal prior 

probability 
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To investigate whether the numeric disparity of prior stimuli influences observers’ causal prior, 

we sorted current trials according to whether previous trials up to the order of five were of small 

(≤1) or large (>1) numeric disparity. We selectively refitted the causal prior (holding all other 

parameters fixed) separately depending on whether the ‘previous trial of a specific order’ was 

of small or large numeric disparity. We compared the causal prior for small versus large 

numeric disparity conditions across participants using a 2 (numeric disparity: small vs. large) x 

5 (stimulus order: 1, 2, 3, 4, 5 trials back) repeated measures ANOVA. Post-hoc two-sided 

paired t tests were used to determine up to which trial order previous small numeric disparity 

led to a larger causal prior as expected.  

To investigate whether alpha power (i.e. 8-12 Hz) mediates the effect of prior numeric 

disparity on the causal prior, we compared alpha power for previous large versus small numeric 

disparity (i.e. selectively for order one, which had the greatest impact on causal prior) using a 

randomization test (i.e. sign flip of power difference between previous large vs. small disparity 

trial in 5000 randomizations; test statistic: two-sided t-tests) and a cluster-based correction for 

multiple comparisons75 (cluster-level statistic: sum of the t values in a cluster; auxiliary cluster 

threshold t = 2). 

 Finally, we investigated whether the effect of previous numeric disparity interacts with 

the correlation between alpha power and the causal prior (i.e. moderation). For this, we first 

sorted trials according to whether the previous trial (i.e. only order one) was of small or large 

numeric disparity. We then sorted and binned the trials according to their oscillatory power into 

10 deciles separately for previous small versus large prior numeric disparity. We selectively 

recomputed the causal prior for each decile and assessed the influence of alpha power on causal 

prior in terms of correlation coefficients separately for previous low and high numeric disparity 

exactly as in the our initial main analysis on alpha power (see above). Finally, we compared the 

Fisher’s z-transformed correlation coefficients of alpha power with the causal prior for previous 

low and high numeric disparity trials in a randomization test (i.e. sign flip of z-transformed 
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correlation differences in 5000 randomizations; test statistic: two-sided t-tests) and cluster-

based correction for multiple comparisons (as described above). 

 

Assumptions and caveats of multisensory analysis approaches 

This study combined several complementary approaches to characterize the neural 

processes underlying multisensory integration83: 

 Univariate analyses and multisensory interactions: Consistent with previous 

research22,23,38, we identified multisensory integration in terms of audiovisual interactions, i.e. 

response non-linearities. As discussed in detail in Noppeney (2012)83, this approach is limited 

because single neuron recordings in neurophysiological research have demonstrated that 

sensory signals are also combined linearly. Linear multisensory integration processes would 

thus evade interaction analyses. Moreover, interactions computed as AV versus A+V can result 

if processes are involved for each stimulus component such that the sum of the two unisensory 

and the multisensory conditions are not matched. For instance, if observers perform a task, 

decision- and response-preparation-related processes will be counted twice for the sum of the 

unisensory conditions (i.e. A+V), but be involved only once for the multisensory condition (i.e. 

AV). Likewise, early putative audiovisual interactions in EEG have been suggested to emerge 

because of anticipatory ERP effects that precede all stimulus presentations and are therefore 

counted twice for A+V, but only once for AV (see73). Therefore, multisensory interactions 

should optimally be computed including ‘null events’ to account for non-specific expectation 

effects (i.e. AV+Null vs. A+V). Further, in our study unisensory and multisensory conditions 

may differ in attentional context, because auditory and visual conditions were performed in 

separate experimental runs where either auditory or visual information were task-relevant. 

Collectively, these factors need to be taken into account when interpreting audiovisual 

interactions in EEG (or fMRI) responses in our and other studies. 
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Multivariate decoding: The EEG activity patterns measured across 64 scalp electrodes 

represent a superposition of activity generated by potentially multiple neural sources located 

for instance in auditory, visual or higher-order association areas. The extent to which auditory 

or visual information can be decoded from EEG activity pattern depends therefore inherently 

not only on how information is neurally encoded by the ‘neural generators’ in source space, but 

also how these neural activities are expressed and superposed in sensor space (i.e. as measured 

by scalp electrodes). For example, the number of auditory beeps is perceptually more precisely 

represented than the number of flashes (based on observers’ behavioral reports, Table 2), 

suggesting that the brain encodes the timing and number of events with a greater precision in 

audition than vision. Nevertheless, supplementary decoding analyses in sensor space revealed 

that the number of unisensory flashes can be more accurately decoded from EEG activity 

patterns than the number of unisensory beeps (Supplementary Fig. S2). These discrepancies 

between precision (or accuracy) measured at the behavioral/perceptual level and EEG decoding 

accuracy at the sensor level may result from differences in neural encoding in source space or 

how these neural activities are expressed in sensor space (e.g. source orientation, superposition 

etc.). Potentially, the greater decodability of visual numeric information may contribute to the 

visual bias we observed for the audiovisual weight index wAV (Fig. 3C) and the dominance of 

the visual numeric estimates in our decoding analysis based on the estimates of the Bayesian 

Causal Inference model (Fig. 4A). 

In the analysis of the audiovisual weight index wAV, we trained the support vector 

regression model on the audiovisual congruent conditions pooled over task-relevance to ensure 

that the decoder was based on activity patterns generated by sources related to auditory, visual 

and audiovisual integration processes. Moreover, this approach ensures that the effects of task-

relevance on the audiovisual weight index wAV cannot be attributed to differences in the 

decoding model (see84 for a related discussion). In a supplementary analysis, we also trained 

the SVR models separately for visual and auditory report and obtained comparable results 
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(Supplementary Fig. S7) suggesting that our results are immune to this particular choice of 

decoding model. While the univariate interaction analysis (see above) cannot identify linear 

response combinations, this multivariate decoding analysis cannot exclude the possibility that 

auditory and visual stimuli jointly influence EEG activity pattern even though auditory and 

visual signals are not integrated at the single neuron level.  

In our second multivariate analysis approach, we decoded (directly: SVR, canonical 

correlation analysis; or indirectly: RDM analysis) the numeric estimates of the Bayesian Causal 

Inference model from EEG activity pattern and then computed the exceedance probability that 

one numeric estimate was more likely encoded than any other one. The decoding approaches 

using support vector regression, canonical correlation analysis and representational 

dissimilarity analysis provided comparable results indicating that our results are robust to the 

specific decoding approach (Fig. 4 and supplementary Fig. S6). However, given the caveats 

discussed above (e.g. superposition of EEG activity patterns) and the high correlation between 

the different numeric estimates in the BCI model, it seems likely that multiple numeric 

estimates are concurrently represented in the brain even if the exceedance probability is high 

for only one particular numeric estimate. 

 

Code availability 

The Matlab code to fit the Bayesian Causal Inference model1 to the behavioral data is available 

in the Dryad repository, [PERSISTENT WEB LINK TO DATASETS; UPLOAD WILL 

FOLLOW UPON ACCEPTANCE OF THE MANUSCRIPT]. Custom Matlab code for the 

analyses of EEG data are available from the corresponding author on reasonable request. 
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Figures 
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Figure 2 
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Figure 3 
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Figure 4 
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 Figure 5 
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Figure 6 
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Figure 7 
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Figure legends 

Figure 1. Example trial, experimental design and behavioral as well as EEG data. (A) 

Example trial of the flash-beep paradigm (e.g. two flashes and four beeps are shown) in which 

participants either report the number of flashes or beeps. (B) The experimental design 

factorially manipulated the number of beeps (i.e. one to four), number of flashes (i.e. one to 

four) and the task relevance of the sensory modality (report number of visual flashes vs. 

auditory beeps). To characterize the computational principles of the Bayesian Causal Inference 

(BCI) model, we reorganized these conditions into a two (task-relevance: auditory vs. visual 

report) x two (numeric disparity: high vs. low) factorial design for the GLM-based analysis of 

the behavioral and EEG data (e.g. audiovisual weight index). (C) The behavioral audiovisual 

weight index wAV (across-participants circular mean and bootstrapped 68% CI; n = 23) is shown 

as a function of numeric disparity (small: ≤ 1 vs. large: > 1) and task relevance (auditory vs. 

visual report). wAV was computed for participants’ numeric reports (solid) and the BCI model’s 

predicted reports (dashed). wAV = 90° for purely visual and wAV = 0° for purely auditory 

influence. (D) Event-related potentials (ERPs; across-participants mean; n = 23) elicited by one 

to four stimuli in audiovisual congruent conditions averaged across parietal electrodes and the 

ERP topography at the peak (averaged over conditions with one to four stimuli). The x axis 

shows the stimulus onsets. (E) Difference between ERPs elicited by two beeps and one flash 

and the sum of the corresponding unisensory ERPs (i.e. V1A2- (A2+V1), black dotted), the 

unisensory auditory ‘two beeps’ (A2, green), visual ‘one flash’ (V1, red), audiovisual (A2V1, 

black solid) and the sum of the unisensory (A2+V1, pink) averaged across occipital electrodes. 

A positive component was significant from 65-150 ms (p = 0.040, two-sided cluster-based 

corrected randomization t22 test; see horizontal dashed line) and a negative component was 

significant 335-730 ms after stimulus onset (p < 0.001). The ERP topography at the peak of the 

positive component is shown.  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/504845doi: bioRxiv preprint 

https://doi.org/10.1101/504845
http://creativecommons.org/licenses/by/4.0/


58 
 

Figure 2. Representational dissimilarity matrices (RDMs) for numeric reports and 

estimates of the BCI model. (A) Participants’ auditory and visual numeric reports (across-

participants’ mean; n = 23) are plotted as a function of the true number of visual (# V) and 

auditory (# A) stimuli, separately for auditory (top) and visual report (bottom). The auditory 

reports are more strongly influenced by the true number of auditory stimuli, while the visual 

reports are more strongly influenced the number of visual stimuli. Yet, crossmodal biases are 

also present. (B) RDM (across-participants’ mean) showing the absolute differences in 

participants’ numeric reports between all pairs of the 32 experimental conditions. The true 

number of beeps (green) and flashes (red) for each condition is indicated by the number of dots. 

(C) RDMs (across-participants’ mean) computed from the numeric estimates and the estimate 

of the posterior probability of a common cause of the BCI model: The generative BCI model 

assumes that in case of a common  cause (C = 1),  the “true” number of audiovisual stimuli NAV 

is drawn from a common numeric prior distribution leading to noisy auditory (xA) and visual 

(xV) inputs. In case of independent causes (C = 2), the “true” auditory (NA) and visual (NV) 

numbers of stimuli are drawn independently from the numeric prior distribution. To account 

for the causal uncertainty, the final BCI estimate of the auditory or visual stimulus number (N̂A 

or N̂V, depending on whether auditory or visual modality is reported) is computed by combining 

the forced-fusion estimate of the auditory and visual stimuli (N̂AV,C=1) with the task-relevant 

unisensory visual (N̂V,C=2) or auditory estimates (N̂A,C=2), each weighted by the posterior 

probability of a common (C = 1) or independent (C = 2) causes, respectively (p(C| xA, xV)). 

Arrows indicate the influence of component estimates on the RDM of the final BCI estimate. 

The probability of independent causes (dashed) increases with larger numeric disparity and vice 

versa for the probability of common cause (n.b. they sum to unity). 
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Figure 3. Decoded stimulus number, decoding accuracy, and relative audiovisual weight 

index. (A) Decoded stimulus number in audiovisual congruent conditions (across-participants 

mean ± SEM; n = 23). Note that the stimulus numbers {1, 2, 3, 4} as labels were transformed 

to {-1, -0.33, +0.33, +1} before decoding such that the decoder predicts a stimulus value of 0 

in case of no information on stimulus number in EEG activity patterns) and decoded stimulus 

number was z scored in each run. Stimulus onsets are shown on the x axis. (B) Decoding 

accuracy (Fisher’s z-transformed correlation; across-participants mean ± SEM) of the decoders 

as a function of time. Decoding accuracy was computed as Pearson correlation coefficient 

between true and decoded stimulus number in audiovisual congruent conditions. Decoding 

accuracy was significant in a cluster from 120-740 ms (p < 0.001, one-sided cluster-based 

corrected randomization t22 test; see horizontal dashed line). (C) Neural audiovisual weight 

index wAV (across-participants circular mean and bootstrapped 68% CI) as a function of 

numeric disparity (small vs. large), task relevance (visual (V) vs. auditory (A) report) and time. 

wAV = 90° for purely visual and wAV = 0° for purely auditory influence. Horizontal dashed lines 

indicate significant clusters for effects of numeric disparity, task relevance and their interaction 

(p < 0.05; cluster-based corrected randomization test based on a LRTS statistic, cf. Table 1). 

 

Figure 4. Correlation of the representational dissimilarity matrices of EEG activity 

patterns with the BCI model’s estimates and their exceedance probability. (A)  Spearman’s 

rank correlation coefficients (across-participants mean of Fisher’s z-transformed r; n = 23) as a 

function of time. The correlation coefficients were computed between the RDMs of EEG 

activity patterns of all 64 electrodes and the RDMs of the BCI model’s internal estimates: i. the 

unisensory visual (N̂V,C=2, red), ii. the unisensory auditory (N̂A,C=2, green) estimates under the 

assumption of independent causes (C = 2), iii. the forced-fusion estimate (N̂AV,C=1, yellow) under 

the assumption of a common cause (C = 1) and iv. the final BCI estimate (N̂A or N̂V, depending 

on the task-relevant sensory modality, blue) that averages the task-relevant unisensory and the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2018. ; https://doi.org/10.1101/504845doi: bioRxiv preprint 

https://doi.org/10.1101/504845
http://creativecommons.org/licenses/by/4.0/


60 
 

reliability-weighted estimate by the posterior probability estimate of each causal structure 

(p(C = 1|xA, xV)). Color-coded horizontal dashed lines indicate clusters of significant 

correlation coefficients (p < 0.05; one-sided cluster-based corrected randomization t22 test). 

Stimulus onsets are shown along the x axis. (B) To identify which of the four numeric BCI 

estimates is most likely represented in the EEG activity patterns, we computed the protected 

exceedance probability (i.e. the probability that a given variable is more likely encoded in the 

EEG activity patterns than any other variable, beyond differences due to chance) for each of 

the four numeric BCI estimates as a function of time. The length of an estimate’s bar indicates 

the estimate’s protected exceedance probability (n.b.: the y axis indicates protected exceedance 

probabilities cumulated over the BCI estimates).. 

 

Figure 5. Effect of prestimulus oscillatory power on the BCI model’s causal prior (pcommon) 

over occipital electrodes. (A) Time-frequency t-value map (n = 23) for the correlation between 

pcommon and the oscillatory power deciles averaged across occipital electrodes. Significant 

clusters (p < 0.05; two-sided cluster-based corrected randomization t22 test) are demarcated by 

a solid line. (B) pcommon (across-participants’ mean ± within-participants’ SEM) as a function of 

power deciles averaged across the significant clusters in the gamma and alpha band shown in 

(A). (C) The weighting index wAV (across-participants’ mean and bootstrapped 68% CI) 

computed from participants’ behavior (left column) and the BCI model’s predictions (right 

column) for each of the 10 power deciles shown in (B). wAV is shown as a function of numeric 

disparity (small: ≤ 1 vs. large: > 1) and task relevance (A: auditory vs. V: visual report), 

separately for the significant cluster in the gamma (top) and alpha band (bottom). wAV = 90° 

for purely visual and wAV = 0° for purely auditory influence. 

 

Figure 6. Effect of prestimulus alpha phase on the BCI model’s causal prior (pcommon) in 

occipital electrodes. (A) Time-frequency t-value map (n = 23) for the circular-linear 
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correlation between pcommon and the phase deciles of alpha oscillations for 8, 10 and 12 Hz and 

averaged across occipital electrodes. Significant clusters (p < 0.05; one-sided cluster-based 

corrected randomization t22 test) are demarcated by a solid line. (B) Left: Across participants’ 

mean predicted pcommon (colour coded) as a function of time (x-axis) and 10 Hz alpha phase bin 

(y-axis, alpha phase indicated as fraction of π). The predicted pcommon is based on the constrained 

sinusoidal model which predicts pcommon for a particular decile and time by a single sine and 

cosine of the phase at 10 Hz averaged across trials in this particular decile and time bin (see eq. 

9).  Hence, this constrained sinusoidal model assumes that the modulation of pcommon by alpha 

phase evolves at 10 Hz over time. Right: Individual model fits are significant (p < 0.05; 

individual F2,107 tests, dashed lines) in 20 of 23 participants, but the sinusoidal model’s phase 

angles (i.e. Φ𝑆𝑢𝑏𝑗𝑒𝑐𝑡 = angle(z) = angle(βcos + i βsin) ) do not deviate significantly from a 

circular uniform distribution (z22 = 2.486, p = 0.082, Raleigh test) across participants. (C,D). 

Across-participants’ mean observed (C) and predicted (D) pcommon  is shown coded in color as 

a function of time (x-axis) and 10 Hz alpha phase bin (y-axis, alpha phase indicated as fraction 

of π). The phases of the observed and predicted pcommon were aligned across participants (at the 

peak of the non-aligned effect  with alpha phase = -0.29 π at-160 ms; see methods section and 

Supplementary Fig. S3B) before averaging across participants. The predicted pcommon (D) is 

based on the sinusoidal models that predicted pcommon by alpha phase across the deciles 

independently for each time point (i.e. time-specific alpha phase models) and participant (i.e. 

eq. 8).  

 

Figure 7. The effect of prior numeric disparity on the BCI model’s causal prior (pcommon) 

and prestimulus alpha power (A). Effect of previous numeric disparity on causal prior pcommon 

(across-participants’ mean ± within-participants’ SEM, n = 23) as a function of the numeric 

disparity (small: ≤ 1 vs. large: > 1) of the previous trial of order 1-5. The effect of previous 

numeric disparity on causal prior decays with increasing trial order Asterisks denote statistical 
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significance in two-sided one-sample t22 tests (**: p < 0.01, *: p < 0.05, (*): p < 0.1, n.s.: not 

significant). (B) Mediation and moderation: Previous numeric disparity and pre-stimulus alpha 

power significantly predict pcommon. However, previous numeric disparity does not predict pre-

stimulus alpha power. Hence, pre-stimulus alpha power does not mediate the effect of numeric 

disparity on causal prior. Instead, we observed a marginally significant interaction between 

previous numeric disparity and alpha power suggesting that previous numeric disparity 

moderates the effect of pre-stimulus alpha power on pcommon. (C) Mediation: Effect of previous 

numeric disparity on alpha power: Time-frequency t-value map (n = 23, averaged over occipital 

electrodes) reveals no significant difference in prestimulus alpha power between small versus 

large previous numeric disparity (i.e. trial order 1). All clusters p > 0.05 (two-sided cluster-

based corrected randomization t22 test). (D) Moderation: Interaction effect between previous 

numeric disparity and alpha power on causal prior: Time-frequency t-value maps (n = 23) for 

the correlation between pcommon and the alpha power averaged across occipital electrodes over 

deciles for trials with large (lower panel) or small (middle panel) numeric disparity of the 

previous trial and the difference in correlations between small and large disparity of the 

previous trial (top panel). We observed only a marginally significant interaction between 

previous disparity and alpha power on pcommon (p < 0.1; two-sided cluster-based corrected 

randomization t22 test demarcated by dashed line in top panel). Prestimulus alpha power 

correlated significantly with observers’ causal prior only if the previous trial was of a small 

numeric disparity (p < 0.05; demarcated by a solid line, middle panel). 
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Tables 

Table 1. Effects of numeric disparity (D) and task relevance (T) 

on the behavioral and the neural audiovisual weight index wAV 

computed from numeric estimates decoded from EEG activity 

patterns (i.e. significant clusters). 

 Behavioral wAV Neural wAV 

Effect LRTS p Cluster # Time (s) p 

   T 85.620 <0.001 1 0.42-0.54 <0.001 

 
  2 0.62-0.66 0.007 

   D 1.624 <0.001 1 0.40-0.48 <0.001 

   T X D 1.761 <0.001 1 0.56 0.039 

   2 0.68-0.72 0.001 

 Note: p values are based on randomization tests using a circular log-

likelihood ratio statistic (LRTS). Effects for the neural wAV are cluster-

based correction for the multiple time points. Only significant (i.e. p < 

0.05) clusters are reported. N = 23. 
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Table 2. Results of the Bayesian model comparison of the Bayesian Causal Inference, a forced-

fusion and a full-segregation model. 

 pcommon µP σP σA σV R2 relBIC pEP % win 

Causal Inference 

(model averaging) 
0.42±0.05 2.26±0.20 2.34±0.29 0.53±0.03 1.11±0.23 87.45±1.16 0 1 95.7 

Forced fusion - 2.10±0.22 4.38±0.60 1.17±0.04 1.45±0.04 61.68±1.58 8362.42 0 4.3 

Full segregation - 2.15±0.20 2.11±0.32 0.55±0.03 1.01±0.11 84.61±1.54 920.70 0 0 

Note: pcommon, causal prior; µP, mean of the numeric prior; σP, standard deviation of the numeric prior; σA, 

standard deviation of the auditory likelihood; σV, standard deviation of the visual likelihood; R2, coefficient 

of determination; relBIC, Bayesian information criterion at the group level, i.e. subject-specific BICs 

summed over all subjects (BIC = LL − 0.5 M ln(N), LL = log likelihood, M = number of parameters, N = 

number of data points) of a model relative to the Bayesian Causal Inference (“model averaging”) model 

(n.b. a smaller relBIC indicates that a model provides a better explanation of our data); pEP, protected 

exceedance probability, i.e. the probability that a given model is more likely than any other model, beyond 

differences due to chance). % win, percentage of participants in which a model won the within-participant 

model comparison based on BIC. 
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