


















10 AN INTEGRATED FRAMEWORK FOR PREDICTING VIRUS-HOST INTERACTIONS

among the 360 HMP hosts, we observed that two host genera in the phylum of Bacterioidetes, Prevotella
and Parabacteroides, had CRISPR spacers that are similar to crAssphage with the scores of 2.80 and
0.60, respectively. All the above facts support the claim in the previous studies20,50 that the phylum of
Bacteroidetes could be the candidate host of crAssphage.
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Figure 4. The p-values of the rank-sum tests and the effect sizes for the (a) four phyla (Bac-
teroidetes, Firmicutes, Proteobacteria and Actinobacteria) and (b) three genera (Bacteroides,
Lactobacillus and Escherichia) studied in prediction of the host of crAssphage, for evaluating
whether hosts from a particular taxonomic class have significantly higher prediction scores than
the other hosts. The horizontal bars display the median, boxes display the first and third quar-
tiles, whiskers depict minimum and maximum values, and the squares and the numbers below
them display the effect sizes.

Our prediction model also indicated Akkermansia muciniphila from the phylum Verrucomicrobia as
a potential host for crAssphage. Using our new model for complete genomes in Eq. (5), Akkermansia
muciniphila had the highest ranked score of 1 out all of possible 31,986 hosts. Carefully examination
of the individual measures contributing to this result explain why it was so highly ranked. Among the
31,986 hosts, only Akkermansia muciniphila yielded a positive BLAST alignment score. Its score of 5.1%
indicated that this strain has high similarity (97.2% identity on average) with 5.1% of the crAssphage
genome, or about 5,000 bp. These regions of similarity ranged from 40 to 400 bp and were scattered
across the Akkermansia muciniphila genome

The alignment-free similarity score between crAssphage and Akkermansia muciniphila was s∗2 = 0.339,
which was higher than the average value of s∗2 between crAssphage and all other host bacterial genomes.
In comparison, the Bacteroides strains had s∗2 scores in the range of 0.272 to 0.495. Although two
CRISPRs were found along the Akkermansia muciniphila genome51, the associated spacers could not
be mapped to crAssphage. Since no viruses are known to infect Akkermansia muciniphila, its SV+(v, b)
score was 0.

To support this prediction further, we investigated the co-occurrence pattern between crAssphage and
Akkermansia muciniphila in human gut metagenomic samples. Dutilh et al.20 previously calculated the
Spearman correlation between the abundance profiles of crAssphage and 404 bacteria from the HMP1
metagenome set, but their host collection did not contain Akkermansia muciniphila. We repeated this
analysis by now including Akkermansia muciniphila, and excluded metagenomes that did not have any
reads that mapped to crAssphage. By Spearman’s rank correlation, Akkermansia muciniphila was the
most highly correlated with a coefficient of 0.29 (p-value = 0.003). In comparison, all other strains
including many Bacteroides strains has coefficients of < 0.25. Thus, the co-occurrence patterns between
crAssphage and Akkermansia muciniphila also strongly support it as a potential host.
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Discussion

The dynamics between virus and prokaryotic host interactions play important roles in human health
and ecosystems. Millions of unknown viruses have been identified using the high-throughput metagenomic
sequencing technology, but little is known about their biological functions and the prokaryotic hosts with
which they interact. We developed a network-based integrated framework for predicting the hosts of
prokaryotic viruses. The new method provides a huge improvement on the prediction accuracy compared
with previous methods by integrating multiple measures for informing host prediction. Based on the
evaluation of the methods using a large benchmark dataset containing 1,075 viruses and 31,986 hosts,
the method achieves 61% and 88% prediction accuracy at the genus and the phylum levels, respectively,
yielding 27% and 14% improvements at the genus and the phylum levels comparing to the highest accuracy
achieved by previous methods.

The novel two-layer network of virus-virus, host-host, and virus-host genomic similarity lays the foun-
dation for this method. The employment of the two-layer networks is inspired by the underlying biological
phenomena. First, it is observed that genetically similar viruses tend to infect closely related hosts43,44.
So the host of a new virus can be inferred based on the similarity to related viruses with known hosts,
if they exist. Similarly, since the similar hosts can be infected by the same type of viruses, new hosts
of a virus can be inferred based on the similarity between the new hosts and the known hosts. Second,
because viruses depend on the cellular machinery of their host to replicate, viruses often share highly
similar patterns in codon usage or short nucleotide words with their hosts. Then the host of a new virus
can be indicated using nucleotide word similarity between the virus and the candidate hosts11,24,25. Thus,
the two-layer network model is a natural formulation of biological system stated above. Despite the fact
that the viruses in our current database only have one reported host for each virus such that host-host
network connections cannot be incorporated into the prediction model, the novel two-layer network can
be fully utilized in the future as the multiple hosts of viruses are revealed.

Multiple types of features, including virus-host shared CRISPR spacers and virus-host BLAST matches,
combined with the network-based features, were incorporated to obtain an integrated framework for host
prediction. The CRISPR and BLAST features are based on the biological phenomenon that some virus
and their hosts share a portion of their genomes due to CRISPR defense system, horizontal gene trans-
fer, or prophage integration. Though these features have been investigated individually in previous
studies24–26,52, it is the first time that multiple types of features have been integrated into a unified
framework for virus-host prediction. Not surprisingly, the results show that the integrated method com-
bining all features achieves the highest prediction accuracy among all models tested that use different
combinations of the various features.

We also markedly improved the host prediction accuracies on shorter viral fragments at all taxonomical
levels as compared to WIsH26, a recently released software developed for this particular purpose. Metage-
nomically assembled viral genomes are most often partial and incomplete. The CRISPR and BLAST
features depend highly on the overlap of particular regions between viral and host genomes, and thus
can have limited utility in host prediction for metagenomic viral contigs. In addition, the alignment-free
similarity score s∗2 requires a certain size of sequence to obtain high statistical power. Therefore, it makes
sense that the prediction accuracy is reduced for short viral sequences. Our method is able to obtain
49%, 46% and 41% prediction accuracies at the genus level for 20 kb, 10 kb and 5 kb sequence lengths,
respectively. The prediction accuracies for 20 kb, 10 kb, and 5 kb contigs are all above 75% at the phylum
level. In practice, we recommend using at least 10 kb for host prediction at the genus level and at least
5 kb for prediction at the phylum level.

Setting a minimum threshold for making predictions displayed a notable improvement on accuracy
and we show that this improvement comes at a minimal cost in recall. We also investigated the host
prediction accuracy for different groups of viruses. Specifically, our observations indicate that viruses in
the siphoviridae group have higher prediction accuracy than others, since siphoviruses tend to have a
narrower range of target hosts46,47. Likewise, restricting the possible hosts from all available prokaryotic
genomes to a focused set of relevant microbes can help improve prediction accuracy, as in the case of
crAssphage for host prediction using HMP genomes only.

We used our new model to predict the hosts of viral genomes identified from SAGs to evaluate the
method in real metagenomic data. The true hosts of the SAGs were previously inferred at the phylum
level. Five of the six Proteobacteria viruses and five of the eight Verrucomicrobia viruses were predicted
correctly at the phylum level. The low prediction accuracy for Verrucomicriobia viruses is probably
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12 AN INTEGRATED FRAMEWORK FOR PREDICTING VIRUS-HOST INTERACTIONS

impacted by the under-representation of this phylum in our host database, and the fact that no viruses
in our virus database infect this host. The latter fact highlights the utility and power of our model’s
multi-layered approach.

We also employed our model to predict host of crAssphage, an abundant and ubiquitous human gut
virus. Our results support that a member of the phylum Bacteroidetes is the probable host of crAssphage,
as was previously suggested20,50. Our model interestingly also suggests Akkermansia muciniphila, a
member of the phylum Verrucomicrobia, as a new possible host of crAssphage since it was the most
highly ranked strain in our model results. Its high BLAST score in particular explains its high prediction
ranking. It is particularly compelling that only Akkermansia muciniphila yielded a positive BLAST score
among ∼32,000 possible hosts. Recombination between viruses and hosts can occur during infection,
so these results are suggestive of interaction between Akkermansia muciniphila and crAssphage. It is
somewhat surprising however that no significant nucleotide similarity was detected between crAssphage
and Bacteroidetes strains. Perhaps the Bacteroidetes strains in our analysis have not experienced recently
recombination with crAssphage that could be detected by nucleotide searches. It was observed previously,
though, that some crAssphage genes show similarity to Bacteroidetes genes at the protein level20.

We similarly found a strong co-abundance correlation between Akkermansia muciniphila and crAssphage
in human gut metagenomes and in fact this correlation was stronger than to all other hosts tested including
Bacteroides strains. Co-abundance approaches were used to previously suggest Bacteroides strains as a
probable host of crAssphage but did not include Akkermansia muciniphila 20. Results from co-abundance
approaches for inferring virus-host interactions must be interpreted cautiously since virus-host interac-
tions may not always yield positive or negative associations dependent on the complexity of virus lifestyles
(e.g. lytic vs. lysogenic) and when during an infection cycle samples were taken53. Likewise non-specific
hosts and viruses can exhibit spurious correlations due to the computational bias in terms of the compo-
sitional data where the abundance vector is constrained to a constant sum, or the biological bias where
for example those hosts share a similar niche to the virus true hosts. Nonetheless, the combined results of
significant co-abundance along with our model results provide compelling evidence to further investigate
Akkermansia muciniphila as a potential host of crAssphage.

Akkermansia muciniphila has been found to be negatively associated with inflammation, obesity and
type 2 diabetes42,54,55, and a very recent study revealed that Akkermansia muciniphila helps to improve
the efficacy of the immunotherapy41. If Akkermansia muciniphila proves to be infected by the ubiquitous
crAssphage, it could have implications for human health and our understanding of the complex interac-
tions among intestinal tissues, prokaryotic cells, and their viruses in the human gut. Note that, though
we collected as many host genomes as possible from NCBI, the current host database still cannot repre-
sent the extant host diversity. This means that the predicted hosts cannot be confirmed purely based on
computational methods. Further experimental work is needed to validate as true hosts of crAssphage.

A major advantage of our network-based integrated framework is that the framework can be eas-
ily extended to incorporate more meaningful features that can better inform virus-host interactions in
the future. Virus-host co-abundance profiles have been shown to provide some evidence of virus-host
interactions56, but Edwards et al.24 suggested that its performance on host prediction was relatively
poor compared to other measures such as CRISPR and sequence homology. Our preliminary analysis
of incorporating such co-abundance data as a feature, however, showed reduced prediction accuracy (see
Supplementary Fig. B.3), so we did not report on this in detail here. If however future refinement of
co-abundance data can demonstrate improved utility in host prediction, it could then be included in our
tool’s framework.

Sequence-based and alignment-based measures such as CRISPR and BLAST scores generally suffer
from the limited availability, but can provide solid evidence for virus-host interactions when a strong
signal is present. On the other hand, alignment-free s∗2 similarity can be computed for any virus-host
pairs, but may not always perform as strongly as CRISPR and BLAST evidence. We compared the
prediction accuracies for s∗2 score and BLAST score when the hosts belonging to the true host genus
of the viruses are removed from the candidates. The result showed that when the specific hosts were
removed, the prediction accuracy for BLAST at the class level decreased largely to 0.20, while the accuracy
for s∗2 was 0.32 (Supplementary Fig. B.4). It is shown that alignment-based method depends heavily on
the existence of the true host in the database, and it can perform much worse than the alignment-free
based method for predicting hosts of new viruses when true host genus are not in the host candidate set.
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Therefore, the integrated framework combining both alignment and alignment-free based features helps
to complement the two methods and improve the overall prediction accuracy.

We suspect that the lower host prediction accuracy found when using our method on SAG viruses is
influenced largely by the absence of related hosts in our training set. This in fact is why the SAG method
has been employed, to expand the catalog of genomes for difficult-to-culture microbes. Tentatively, the
viral genomes in the SAGs application can be added to our training data, to promote the success rate
of detecting hosts in phyla Verrucomicrobia, Marinimicrobia and Thaumarchaeota in future predictions.
This problem of low representation of relevant genomes in the host database will be ameliorated over time
as more genomes are sequenced. It is expected that with an increased dataset of hosts and virus-host
interactions for training our models, the prediction accuracy of our method will increase further.

In summary, our novel network-based integrated approach provides a flexible framework with the
potential to be updated along with the development of new computational theories and biological un-
derstanding in virus-host interactions. Despite the stated limitations, our results demonstrate the strong
prediction ability of the model, and this approach will be valuable for identifying the putative hosts of
newly discovered viral genomes.

Materials and Methods

Data sets. We used the same data as in25 that includes 1,427 RefSeq viral genomes and 31,986 prokary-
otic (bacterial and archaeal) genomes downloaded from NCBI on 5/8/2015. The viral data set includes
all viruses at that time for which the taxonomy of its host was reported at least at the genus level. The
hosts of the viruses where the viruses were originally isolated were collected based on the key words
‘isolate host=’ or ‘host=’ within each Genbank file. Furthermore, for a subset of 352 viral genomes, their
hosts were reported at either strain, subspecies, or serovar, and only a single host genome was reported
in the NCBI genome database for that particular strain, subspecies or serovar. The accession numbers
of the viruses and their hosts can be found in the supplementary material of Ahlgren et al.25.

We used the developed computational methods to predict the host of crAssphage20, a newly discovered
virus from the human gut samples that is abundant and ubiquitous in human gut. The NCBI accession
number for crAssphage is NC 024711.1. We also applied our methods to predict the host of viral sequences
in 20 SAGs sampled from the Gulf of Marine21 to see if our method can correctly identify the host
genomes, assuming those viruses specifically infect those associated host cells without data contamination.
The sequences of the 20 viruses were provided by Labonte et al.21 in the supplemental material.

A Markov random field (MRF) approach for virus-host interactions. We formulate the virus-
host interactions using a Markov random field (MRF) model31,57. Given a set of viruses {v1, v2, ..., vn}
and a set of hosts {b1, b2, ..., bm}, we define the set of virus-host pairs (VHP) and their interaction statuses,

K = {κij = I(vi, bj), i = 1, 2, .., n, j = 1, 2, ..,m},

where I(v, b) = 1 if v infects b and I(v, b) = 0 otherwise. We construct a VHP network where nodes are
VHPs and edge weights are the pairwise similarity between two VHPs.

The likelihood of an assignment K of the VHP network is proportional to the likelihood of the assign-
ments of the VHP nodes and the likelihood of the edges given the assignment. Let the probability of
having interaction between a pair of virus and host be π. The probability of an assignment of K is∏

i,j

πκij (1− π)1−κij =

(
π

1− π

)F1

(1− π)F = λ exp (βF1) ,

where F1 =
∑
κij , F = ||K|| is the size of K, β = log( π

1−π ), and λ = (1− π)F .
Now consider the relationship between two VHPs in the network. The probability of two similar VHPs

having the same 0-1 status is higher than the probability of having different 0-1 assignments. Let Sij,i′j′
be the similarity between two VHPs (vi, bj) and (vi′ , bj′). We model the the probability of K conditional
on the similarity network as proportional to

exp(γ1F01 + γ2F11 + F00),

where (γ1, γ2) are parameters indicating the penalty/award of having the 0-1 and 1-1 assignment for a
pair of neighbors. The Fcc′ is defined as the total similarities between (c, c′), c, c′ = 0, 1 pairs of VHPs,
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namely

F01 =
∑

(i,j) 6=(i′,j′)∈K
(1− κij)κ′i′j′Sij,i′j′ + (1− κ′i′j′)κijSij,i′j′ ,

F11 =
∑

(i,j) 6=(i′,j′)∈K
κijκ

′
i′j′Sij,i′j′ ,

F00 =
∑

(i,j) 6=(i′,j′)∈K
(1− κij)(1− κ′i′j′)Sij,i′j′ .

Therefore, the probability of the assignment conditional on the similarity network is,

Pr(K|θ) =
1

Z(θ)
exp(U(K)) =

1

Z(θ)
exp (βF1 + γ1F01 + γ2F11 + F00)

where θ = (β, γ1, γ2) are the parameters, and Z(θ) is the normalizing factor.
With this distribution function, for any κij ∈ K , we can calculate

Pr(κij = 1|K[−ij])

Pr(κij = 0|K[−ij])
= exp

(
β + (γ2 − γ1)mij

1 + (γ1 − 1)mij
0

)
where K[−ij] = K \ κij , mij

1 =
∑
κ′
i′j′∈K[−ij],κ

′
i′j′=1 Sij,i′j′ , m

ij
0 =

∑
κ′
i′j′∈K[−ij],κ

′
i′j′=0 Sij,i′j′ . Then the

log-odds of the probability Pr(κij = 1|K[−ij], θ) is,

logit
(

Pr(κij = 1|K[−ij], θ)
)

= β + (γ2 − γ1)mij
1 + (γ1 − 1)mij

0 .

Denote γ+ = γ2 − γ1 and γ− = γ1 − 1. Then we have,

logit
(

Pr(κij = 1|K[−ij], θ)
)

= β + γ+m
ij
1 + γ−m

ij
0 .

The similarity between two VHPs and the generalized probability model for a VHP to
interact. The MRF network model is constructed based on the similarity between two VHPs Sij,i′j′ .
Various similarity measures between VHPs can be defined. In this study, we define the similarity be-
tween two VHPs as the similarity between the two viruses and the similarity between the two hosts,
namely, Sij,i′j′ = Svi,vi′ + Sbj ,bj′ . To measure the similarity between two genomic sequences, we previ-

ously developed novel measures d∗2 and dS2 for alignment-free sequence comparison based on k-mers as
genomic signatures58–61, and showed that the dissimilarity measure d∗2 and dS2 have high correlation with
alignment-based distance measures62. Since viruses are highly diverse and alignments of highly divergent
sequences are not reliable, alignment-free measures are more suitable for sequence comparison than the
alignment-based methods. Furthermore, Ahlgren et al.25 showed that d∗2 outperformed dS2 for the com-
parison of virus and bacterial sequences for the purpose of virus-host interaction prediction. Therefore,
here we choose to use d∗2 and transform it to s∗2 to measure the similarity between two sequences.

For each sequence, we represent it by the normalized k-mer frequency vector (f̃w,w ∈ Ak), where A
is the set of alphabet {A,C,G, T}, k is the length of word, and

f̃w = (Nw − Ew)/
√
Ew,

with Nw and Ew being the observed and expected numbers of occurrences of word w in the sequence.
The expected count is calculated under a certain Markov chain model. Since it was shown in25 that k = 6
and second order Markov chain performed well in virus-host interaction prediction, we choose k = 6 and
second order Markov chain in this study. The similarity between two sequences, s∗2, is defined as the
un-centered correlation between their corresponding normalized frequency vectors. That is,

s∗2 = 1− 2d∗2 =
∑

w∈Ak

f̄ (1)
w f̄ (2)

w

where d∗2(v, b) is the dissimilarity measure used in the previous studies, and f̄w = f̃w/||f || with ||f || being

the Euclid norm of the feature vector f =
(
f̃w,w ∈ Ak

)
. Thus, we define the similarity

Sij,i′j′ = s∗2(vi, vi′)I(bj = bj′) + s∗2(bj , bj′)I(vi = vi′).

Plug Sij,i′j′ into the logit function,

(1) logit
(

Pr(κij = 1|K[−ij], θ)
)

= β + γ+SV
ij
+ + γ−SB

ij
+ + γ−SV

ij
− + γ−SB

ij
− .
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SV ij+ =
∑

I(v′,bj)=1,v′ 6=vi
s∗2(v′, vi),

SBij+ =
∑

I(vi,b′)=1,b′ 6=bj
s∗2(b′, bj),

SV ij− =
∑

I(v′,bj)=0,v′ 6=vi
s∗2(v′, vi),

SBij− =
∑

I(vi,b′)=0,b′ 6=bj
s∗2(b′, bj).

The above formulation takes into account both the similarity network between viruses, and the simi-
larity network between hosts. In our dataset, however, each virus has only one reported host. So when we
train the model using the current dataset, both SBij+ and SBij− are set to zero. Then the model reduces
to,

logit
(

Pr(κij = 1|K[−ij], θ)
)

= β + γ+SV
ij
+ + γ−SV

ij
− .

Though the terms SBij+ and SBij− cannot be used given the current dataset, as more virus-host pairs are
collected in the training data, the host-host similarity network will contribute to the prediction model
and the two-layer MRF network will be fully utilized based on Eq. (1).

The assumption that any VHP has the same probability π for interaction is not realistic. Different
pairs of virus and host have different features that determines the probability of interaction. For
example, the probability can be associated with the similarity between the virus and the host. Thus, the
probability π is modeled specifically to each individual pair (vi, bj),

(2) log

(
πij

1− πij

)
= α+ βs∗2(vi, bj).

Then the logit model with the generalized probability can be written as,

logit
(
Pr(κij = 1|κ[−ij], θ)

)
= α+ βs∗2(vi, bj) + γ+SV

ij
+ + γ−SV

ij
− .

Therefore, the network-based MRF for predicting virus-host interaction is finally written as a logistic
regression model where the predictors are the features of virus-virus similarity and virus-host similarity,

(3) logit(Pr(I(v, b) = 1)) = α+ βs∗2(v, b) + γ+SV+(v, b) + γ−SV−(v, b),

where α is a constant, (β, γ+, γ−) measure the contributions of the features s∗2(v, b), SV+(v, b), and
SV−(v, b), respectively. We expect that β and γ+ to be positive and γ− to be negative. However, we
do not make these assumptions and let the data inform us the values of these parameters. To learn the
parameters, we trained the model in a smaller training dataset, and predicted virus-host interactions in
the network of all viruses and hosts. Since the scales of SV+(v, b) and SV−(v, b) are proportional to the
scale of the dataset, in practice we used the normalized variables, that is,

SV+(v, b) =
1

||Hb||
∑
v′∈Hb

s∗2(v, v′), SV−(v, b) =
1

||Hc
b ||

∑
v′∈Hc

b

s∗2(v, v′),

where Hb = {v′|I(v′, b) = 1, v′ 6= v}, Hc
b = {v′|I(v′, b) = 0, v′ 6= v}, and || · || is the size of the set. When

Hb or Hc
b is an empty set, the value of SV+(v, b) or SV−(v, b) is set to zero.

To achieve the best performance, in addition to the similarity score s∗2, we integrate other types of
features, including the CRISPR score and the alignment score between the virus vi and host bj into the
framework.

Sharing of CRISPR spacers between the virus and the host. CRISPR systems play an important
role as an adaptive and heritable immune system of prokaryotes. They help the host fight against the
invasion of specific viruses by inserting small fragments of viral genomes (typically 21-72bp) as spacers
into a CRISPR locus. The spacers are transcribed and are used as a guide by a Cas complex to target
the degradation of the corresponding viral DNA63.

Given a host genome, the CRISPR locus can be computationally located and thus the spacers can be
extracted. In our study, we used the CRISPR Recognition Tool (CRT)64 to find spacers. The spacers in
a host genome (if available) were aligned to a viral genome by blastn65 and alignment with E-value less
than 1 were recorded. This threshold was chosen the same as the one used in a previous study24. For
each pair of virus and host, we define the score SCRISPR(v, b) as the largest value of − log(E-value). If
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there is no match between a virus and host, a score of zero is assigned. The detailed parameters for the
implementation of the procedures are given in the supplementary materials.

With the CRISPR information, we modify the assumption of πij in Eq. (2) to

log

(
πij

1− πij

)
= α+ βs∗2(vi, bj) + ηSCRISPR(vi, Gbj ),

and our logistic regression model in Eq. (3) to

logit(Pr(I(v, b) = 1)) =α+ βs∗2(v, b) + γ+SV+(v, b) + γ−SV−(v, b)

+ ηSCRISPR(v,Gb),(4)

(Network with CRISPR)

where Gb is the set of hosts that belong to the same genus as host b, and

SCRISPR(v,Gb) = max
b′∈Gb

SCRISPR(v, b′).

Due to the limited availability of CRISPR information in the training data, as shown in Fig.1b, we group
hosts by genus for the CRISPR feature.

The fraction of virus genome aligning to the host genome. Viruses and their hosts frequently
exchange genetic materials and viruses play important roles in horizontal gene transfer. Therefore, similar
regions in virus and host genomes can provide a strong evidence for linking a virus to its potential host.
On the one hand, phages, especially those temperate phages, are able to integrate their own genomes to
the hosts. On the other hand, phages can obtain genetic material from their hosts. If a genetic element
brings an evolutionary advantage to the virus, the borrowed genetic segment will be preserved in the
viral genome24. One example is cyanophages, phages that infect cyanobacteria. Many cyanophages have
acquired and express host photosystem genes that are thought to bolster photosynthetic energy during
infection.66.

Similar to the method in24, we used blastn to find similarities between each pair of virus and host
genomes. For each pair of virus and host, their similarity, Sblastn(v, b), is defined as the fraction of the
virus genome that can be mapped to the host genome. Only matches with percent identity higher than
90% are used for prediction. Note that different parts of the virus genome can be matched to different
positions on the host genome and all contribute to the coverage percentage. We used the same parameter
setting as in24 for our analysis. The detailed parameter settings can be found in the supplementary
material.

Finally, with the CRISPR feature and the alignment-based similarity, we have the following model:

logit(Pr(I(v, b) = 1)) =α+ βs∗2(v, b) + γ+SV+(v, b) + γ−SV−(v, b)

+ ηSCRISPR(v,Gb) + δSblastn(v, b).(5)

(Network with CRISPR and BLAST)

Incorporation of WIsH score for predicting host of virus contigs. In many metagenomic studies,
the whole genome of a virus may not be available. Instead, only parts of the virus genome referred as
contigs that were assembled from shotgun reads are known. Several algorithms such as VirFinder and
VirSorter etc.67–72 can be used to decide if the contigs come from virus genomes. Our objective is to
predict the hosts for full virus genomes as well as viral contigs.

Galiez et al.26 recently developed a program, WIsH, to predict the hosts of viral contigs and showed
that WIsH outperforms d∗2 for predicting the hosts of viral contigs as short as 5kb. WIsH trains a
homogeneous Markov chain model for each bacteria genome, and calculates the likelihood of a viral
contig based on each Markov chain model. Instead of using s∗2(v, b) as a feature, we hereby replace it
with the log-likelihood of viral contig v fitting to the Markov chain model of bacteria b, SWIsH(v, b).
Then the model for predicting the host b of viral contig v becomes,

logit(Pr(I(v, b) = 1)) =α+ βSWIsH(v, b) + γ+SV+(v, b) + γ−SV−(v, b)

+ ηSCRISPR(v,Gb) + δSblastn(v, b).(6)

(Network using WIsH scores with CRISPR and BLAST)
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Note that both SV+(v, b) and SV−(v, b) are still computed by s∗2, since WIsH is not able to depict the
similarities between viral contigs.

Model training and evaluation. Among the 1,427 viruses, we use the set of 352 viruses whose exact
host genome sequences were known and the set of their corresponding 71 hosts as the positive training
set. We randomly select 352 pairs of virus-host within the 352 viruses and 71 hosts as negative training
data. To alleviate potential false negative interactions, we require that the the selected hosts for each
virus is not in the same genus level as the true host. We then learned the model based on the training
data for the various models.

It is possible that the selected 352 non-interacting pairs may contain some positive-yet-unknown in-
teraction pairs, which may influence the training and test results. We recognized this possibility while
assuming the fraction of such pairs is relatively low since the virus-host interaction is specific so that
the overall fraction of virus-host interacting pairs among all the pairs is very small. The additional re-
quirement that the host in a virus-host pair of a different genus level further mitigated this potential
problem.

The trained models are then used to predict the hosts of the remaining 1,075 viruses against 31,986
candidate prokaryotic hosts. For each virus, we estimate its probability of infecting any bacteria, and
the bacteria with the highest probability was predicted as its host. For a taxonomic group L at an upper
taxonomic level containing a set of hosts, we define the prediction score between v and L as the maximum
probability between v and all hosts in L, that is

P (I(v,L) = 1) = max
b∈L

P (I(v, b) = 1).

We predict the host group of the virus v by the one having the highest prediction score P (I(v,L) = 1).
In case of ties, we first checked the number of hosts having the highest probability in each group and
chose the one with the largest number of hosts having the highest probability. Further, if there are more
than one taxon with the same number of bacteria having the highest probability, all of taxa are reported.

We then compared the predicted host taxonomic groups with the true taxonomic group of every virus
at several taxonomic levels: genus, family, order, class, and phylum. At a particular taxonomic level L,
let Tv be the set of predicted groups and CL(v) = I(hv, Tv)/||Tv||, where I(hv, Tv) = 1 if the true host of
v, hv, belongs to the set of the predicted host groups Tv, and I(hv, Tv) = 0, otherwise. The prediction
accuracy for a certain taxonomic level is defined as

AccL =
1

||V||
∑
v∈V

CL(v),

where V is the set of viruses for prediction.

Statistical measures for determining the significant host taxon. We employ a few statistical
methods to determine the host taxon at a high level, such as the genus and phylum levels, that most
likely associate with the virus. Determine the host at a high level is especially helpful in practice, when
the true host strain is not but its close relatives are in the host database. Wilcoxon rank-sum test is used
to test for each taxon if the prediction score P (I(v, b) = 1) for the hosts in this taxon has higher mean
than the hosts in other taxa. To achieve a reasonable statistical test power, we only test the taxa that
include more than 20 host strains. Bonferroni correction is applied to adjust the p-values derived from
multiple tests.

The effect size is used to measure the difference in the mean scores between two groups. The effect size
is not affected by sample size, enabling us to compare across different taxa even if they include different
numbers of hosts73,74. The effect size is defined as the standardized difference between the mean of
prediction scores P (I(v, b) = 1) of the hosts in a particular taxon and the mean of the scores of the hosts
in other taxa, normalized by the standard deviation of the scores in other taxa. We compute the Z-score

as Z(v,b) = P (I(v,b)=1)−P̄ (I(v,·)=1)
σ(P (I(v,·)=1)) , where P̄ (I(v, ·) = 1) is the mean of the predicted scores between v

and all the hosts in other taxa, and σ(P (I(v, ·) = 1)) is the standard deviation of the predicted scores
between v and the hosts in other taxa pairs. Then the effect size for a taxon is the mean of Z(v,b) for all

hosts in the taxon. The effect size > 0.5 is considered as medium to large effect74.

Data and code availability. All the relevant data and code are available from the authors upon
request.
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Appendix A. Supplementary methods

Sharing of CRISPRs between the virus and the host. We used CRT1.2-CLI64 to find CRISPRs
in all bacterial genomes, with parameters -minNR 3 -minRL 20 -maxRL 50 -minSL 20 -maxSL 60 -searchWL

7. All recognized CRISPRs were merged to one file to construct a BLAST database using makeblastdb

(BLAST 2.6.0). We then searched all viral genomes against the database using blastn with parameters
-evalue 1 -gapopen 10 -penalty -1 -gapextend 2 -word size 7 perc identity 90 -dust no -task

blastn-short.
Fraction of virus genome mapped to the host genome. A BLAST database was created for all

bacterial genomes by makeblastdb (BLAST 2.6.0). We then searched all viral genomes against the data-
base by blastn with parameters -word size 11 -evalue 0.01 -reward 1 -penalty -2 -gapopen 0

-gapextend 0 perc identity 90.
Incorporation of the WIsH score for predicting hosts of virus contigs. WIsH26 scores were

computed using WIsH 1.0 with the default parameters.
Consideration of co-abundance profile. In order to investigate if co-abundance can help with

prediction of virus-host interaction, we tried to incorporate this feature to the model in a smaller data set
to evaluate its contribution. The data set included a subset of 2,695 prokaryotic reference genomes and
1,403 viruses. A total of 148 stool metagenomic samples from the Human Microbiome Project (HMP)75

and 103 metagenomes from Tara Ocean (filter size 0.22 to 3 µm)76 were collected. We used centrifuge

(centrifuge-1.0.3-beta) to compute the abundance of virus and bacteria genomes in each of the
metagenome, resulting in an abundance profile of 251-dimensional vector for every virus and bacteria
genome. The co-abundance feature Sco−abundance(v, b) is defined by the Pearson correlation between the
abundance profiles for the pair of virus and bacteria. We then modified the integrated model to

(A.1) logit(P{I(v, b) = 1}) = α+ βs∗2(v, b) + γ+SV+(v, b) + γ−SV−(v, b) + δSco−abundance(v, b).

We compared the performance of this model with that of the model in Eq. (3). Both models were
trained based on a subset of 308 viruses and 50 hosts, including 308 pairs of true interacting pairs and
308 randomly chosen negative pairs. After the models were trained, we predicted the hosts of 1,095
viruses. The results are shown in Fig. B.3. The co-abundance feature itself had weak prediction ability
and adding it to the model did not help prediction. Therefore, we did not consider it as a feature in the
final model presented in the main text.
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Appendix B. Supplementary tables and figures

SAG name True phylum Predicted phylum
AAA160-P02 Bacteroidetes Firmicutes
AAA160-C11 Marinimicrobia Firmicutes
AAA160-I06 Marinimicrobia Marinimicrobia
AAA076-E06 Proteobacteria Proteobacteria
AAA160-D02 Proteobacteria Proteobacteria
AAA160-J14 Proteobacteria Proteobacteria
AAA160-J18 Proteobacteria Proteobacteria
AAA168-P09 Proteobacteria Proteobacteria a

AAA300-J04 Proteobacteria Proteobacteria
AAA160-J20 Thaumarchaeota Verrucomicrobia
AAA164-A08 Verrucomicrobia Verrucomicrobia
AAA164-A21 Verrucomicrobia Proteobacteria
AAA164-B23 Verrucomicrobia Verrucomicrobia
AAA164-I21 Verrucomicrobia Verrucomicrobia
AAA164-L15 Verrucomicrobia Actinobacteria
AAA164-M04 Verrucomicrobia Verrucomicrobia
AAA164-P11 Verrucomicrobia Proteobacteria
AAA168-E21 Verrucomicrobia Verrucomicrobia b

a Two hosts from Verrucomicrobia and Firmicutes also
have the highest score.
b Both Proteobacteria and Verrucomicrobia have the same
number of hosts with the highest prediction score.

Table B.1. Host predictions for viral genomes revealed in SAGs and the comparison between
the predicted hosts and the reported hosts at the phylum level in Labonte et al.21. The names
in bold suggest correct predictions.
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Figure B.1. ROC curves for predicting virus-host interactions using s∗2 and WIsH based on
352 virus-host interactions and randomly chosen negative virus-host complete genome pairs.
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Figure B.2. Prediction improvement by thresholding on the prediction score when predicting
on three viral families.
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Figure B.3. The prediction accuracies of virus-host interactions for different methods using
the individual feature, co-abundance, s∗2, and the integrated network-based model in Eq. (3),
and the integrated network-based model combined with the co-abundance feature in Eq. (A.1),
respectively, from left to right. The results are binned by taxonomic level. Error bars show the
95% confidence intervals of the accuracies, based on 100 different (randomly selected) negative
training sets.
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Figure B.4. The prediction accuracies of CRISPR, BLAST and s∗2, respectively, when the
hosts in the true genus level are excluded. Predictions were made by excluding all the true
hosts in the genus level and were evaluated at higher taxonomic levels. Average prediction
accuracies for the set of 1,075 viruses are shown. The performance for alignment-free measure
s∗2 was least susceptible to this situation where the true host(s) was missing from the candidates.
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