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Figure S5. Model results for co-development. For a systematic exploration of the outcome of pairwise developmental interactions 

within the three-dimensional strain-specific parameter space (γ, θ, λ), strains in each mix are labeled according to their relative value of 

the sensitivity threshold, θ. We use the subindex lt, standing for ‘low threshold’, to label strain-specific parameter values of the strain 

with the lowest θ, and the subindex ht, standing for less sensitive, to label strain-specific parameter values of the strain with the highest 

θ. a, 𝛾ℎ𝑡/𝛾𝑙𝑡 — 𝜃ℎ𝑡/𝜃𝑙𝑡 parameter space (𝜃ℎ𝑡/𝜃𝑙𝑡 > 1 by definition). The thick-dashed lines trace two transects of the parameter space 

in which 𝜅ℎ𝑡 =  𝜅𝑙𝑡 (lower line) and 𝜅ℎ𝑡 =  4𝜅𝑙𝑡 (upper line). Densities of mixed loners are shown in (b-d) for the parameter values 

along the lower line and in (e-g) for parameter values along the upper line. Specific parameter relationships are indicated by the positions 

of the squares, whose color is maintained in the mixed-loner curves (b-g). b-d, 𝜅ℎ𝑡 =  𝜅𝑙𝑡 = 600, with 𝜃ℎ𝑡 = 300; and 𝜃𝑙𝑡 = 300 (darker 

brown), 𝜃𝑙𝑡 = 150 (brown), 𝜃𝑙𝑡 = 100 (lighter brown); b, 𝜆ℎ𝑡 = 𝜆𝑙𝑡 = 1; c, 𝜆ℎ𝑡 = 2, 𝜆𝑙𝑡 = 1; d, 𝜆ℎ𝑡 = 1, 𝜆𝑙𝑡 = 2. e-g, 𝜅ℎ𝑡 = 800, with 

𝜃ℎ𝑡 = 400 and 𝜅𝑙𝑡 = 200 with 𝜃𝑙𝑡 = 25, 33, 50, 100, 200, 400 from top to bottom curve (red to black); e, 𝜆ℎ𝑡 = 𝜆𝑙𝑡 = 1; f, 𝜆ℎ𝑡 = 2, 

𝜆𝑙𝑡 = 1; g, 𝜆ℎ𝑡 = 1, 𝜆𝑙𝑡 = 2.  Dashed lines in (b-g) indicate the null hypothesis. Model parameterization shown in Table S1 with D = 

10-7 and ρ0 = 3x105. Averages taken over 100 independent model realizations. 
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Figure S6. Statistical analysis of non-linearity in mixed strain experiments. a-c, Maximum likelihood analysis. a, Grey points = 

experimental mixed loner densities (see Fig. 3b). Black curve = expected loner densities for the maximum likelihood estimate of shape 

parameter a (see Methods). Blue areas = envelopes for the loner density curves for the confidence intervals defined by likelihood ratios 

of 2, 8 and 16, from darker to lighter. b, Negative Log-likelihood profile for the shape parameter a of the model with the best Akaike 

Information Criterion (AIC). Blue areas = confidence intervals defined as in (a). c, ΔAIC, the difference in AIC between a given model 

and the best model in the candidate set. Blue values = the two best-fitting models. d,e, Bootstrapping analysis. For each of the five 

strain mix proportions, empirical distributions were bootstrapped and 50.000 data sets were constructed. d, Grey lines = piecewise linear 

regressions of 20 of these resampled data sets. Black line = the mean of all resampled data sets. Error bars = standard errors. e, For each 

resampled data set, a linear regression was performed using only the pure strain experiments and another linear regression was performed 

using only the mixed strain experiments. The difference between these inclinations is a measure of the non-linearity of the data set. 

Black line shows the probability density function of these inclination differences. Red line at zero marks linearity (p=0.033).
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Figure S7. Model results for the effects of co-development on individual strains. 

Developmental interactions lead strains to become more similar (a, b) or more different (c, d). (a, 

c) Simulations of the individual based model, D =10-7. (b, d) The analytical approximations to (a, 

c) obtained in the limit 𝐷 → ∞ (Eqs. (2.31) and (2.33) in the Supplementary Information), 

qualitatively recapitulate the behavior of mixed-loners and of the loners of each strain. 

Parameterization: γw = 0.5, θw = 400 (κw = 800), λw = λb = 1, κb = 200 with (a) γb = 1 and (b) γb = 

0.25. w = worse aggregator; b = better aggregator. Remaining parameters are as in Table S1. The 

color code for each strain corresponds to Fig. 4. 
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Figure S8. Schematic of the competition model. The model consists of a sequence of growth-

starvation cycles. During growth, cells consume a shared pulse of resources and divide; during 

starvation, loners and aggregated cells die at different rates. The length of the starvation periods 

Tst can be either fixed (deterministic environments, defined by Tst) or drawn from an exponential 

distribution (stochastic environments, defined by the mean starvation time 𝑇̅𝑠𝑡). Upon resource 

exhaustion (at the end of the growth period), the population partitions into aggregators and loners 

according to our population partitioning model. We compare two scenarios: well-mixed, where co-

occurring strains co-develop and loner densities are obtained from co-development curves (e.g., 

as in Figure S7), or segregated, where strains are assumed to not mix and loners are derived from 

each strain’s clonal development partitioning. 
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Table S1. Parameterization of the two theoretical models. CMF is conditioned medium factor. 

 

Theory Experiment 

 Symbol Definition Units Model value Experimental observable Exp. value Ref. 

P
o

p
u

la
ti

o
n

 p
a

rt
it

io
n

in
g

 m
o

d
el

 

λ Strain specific P-to-A transition rate hour-1 Varied -- 

θ Strain-specific sensitivity threshold Kg/cm2 Varied -- 

γ Strain-specific signaling rate  Kg/hour Varied -- 

𝑣 Strain-specific A-cells velocity μm/min 
Varied 

around 12 
Velocity of aggregating cells 12μm/min (Loomis, 2012) 

𝑣̃ 
Rescaled cell velocity  

(D → ∞ limit; see Sup. Information) 
hour-1 Varied -- 

N0 Initial number of P-cells # cells Varied -- 

η Decay constant of the signal min-1 1.2 Parameter used for model fitting. 

D Signal diffusion coefficient cm2/s Varied 
cAMP diff. coeff. (2% agar) 

CMF diff. coeff. (water film) 

4.4x10-6 cm2/s 

8x10-7 cm2/s 

(Dworkin & Keller, 

1977; Song et al., 2006; 

Yuen & Gomer, 1994) 

R
es

o
u

rc
e
 c

o
m

p
et

it
io

n
 m

o
d

el
 

μ Decrease rate of survival probability hour-1 2x10-3 
Number of alive/moving loners 

versus time 

2x10-3 hour-1 
Fitting from 

(Dubravcic, 2013) ς Resistance to starvation parameter -- 2 2 

Tsur Loner maximum lifespan hour 240 240 hour 

Tger Spore germination time hour 4 
Mean germination time 1-3 days 

old spores 
4-8 hour (Cotter & Raper, 1968) 

δ Spore death rate hour-1 2x10-4 -- 

c Maximum division rate hour-1 0.173 Doubling time 4 hour (Fey et al., 2007) 

s Spore:stalk ratio -- 0.8 Spore:stalk proportion ~ 80:20 
(Stenhouse & Williams, 

1977) 

ω Spore germination success -- 0.63 Germination efficiency 0.63 (Dubravcic et al., 2014) 

R0, X0 
Food pulse size; normalized initial 

population size 
# cells 3x105 -- 

R1/2 
Resources consumption 

half saturation constant 
-- 0.1R0 -- 

𝑇̅𝑠𝑡  Mean starvation time hour Varied -- 
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1 Calculation of stationary signal profile

We assume that cells are punctual sources that release signal at a constant strain-specific rate γ. The signal

has a spontaneous decay rate η and a diffusion coefficient D. Given these conditions, the equation that

governs the spatiotemporal evolution of signal density, σ(x, y; t), is

∂σ(x, y; t)

∂t
= D∇σ(x, y; t)− ησ(x, y; t), (1.1)

The first term on the right side of Eq. (1.1) accounts for the diffusion of signal and the second term for

its spontaneous decay. Here, we first solve the stationary limit (∂t = 0) of Eq. (1.1) in an infinite domain,

imposing as boundary conditions the facts that cells continuously release signals and that signal density goes

to zero when the distance from the emitting cell tends to infinity. Subsequently, we discuss the effect of

considering a finite integration domain with periodic boundary conditions.

Due to the radial symmetry of the problem, we transform Eq. (1.1) to polar coordinates, in which the

partial differential equation in (x, y) becomes an ordinary differential equation in the radial coordinate r

that indicates the distance to the source of the signal,

D

(

d2σ(r)

dr2
+

1

r

dσ(r)

dr

)

− ησ(r) = 0. (1.2)

Since the position of the emitter, r = 0, is a singular point of Eq. (1.2), we will first assume that cells have a

finite radius r̃ and then take the limit r̃ → 0. After the transformation to polar coordinates, and assuming

a finite radius for the cell, the boundary conditions can be written as,

σr̃(r → ∞) = 0, (1.3)

−2πr̃D
dσr̃(r)

dr

∣

∣

∣

∣

r=r̃

= γ. (1.4)

1

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/508507doi: bioRxiv preprint first posted online Dec. 31, 2018; 

http://dx.doi.org/10.1101/508507
http://creativecommons.org/licenses/by-nc-nd/4.0/


Eq. (1.3) imposes the finiteness of the density, and Eq. (1.4) imposes that the amount of mass released

through the boundary of the cell per unit time has to be constant and equal to the strain-specific emission

rate γ. The subscript r̃ in the densities accounts for the finite radius of the cells.

Equation (1.2) is the modified Bessel equation of order zero, and its general solution can be expressed as

σr̃(r) = AI0

(
√

η

D
r

)

+BK0

(
√

η

D
r

)

, (1.5)

where I0 and K0 are the zero order modified Bessel functions of the first, respectively second, kind. From

the boundary condition of Eq. (1.3), it follows that A = 0, since I0 diverges when its argument tends to

infinity. B is calculated from the second boundary condition, Eq. (1.4),

B =
γ

2πr̃
√
ηDK1

(√

η
D r̃
) , (1.6)

whereK1 is the first order modified Bessel function of the second kind and we have used thatK ′

0(r) = −K1(r).

Inserting Eq. (1.6) into (1.5), the stationary signal profile produced by a source of finite radius r̃ is,

σr̃(r) =
γ

2πr̃
√
ηDK1

(√

η
D r̃
)K0

(
√

η

D
r

)

. (1.7)

Finally, to obtain the profile generated by a punctual source, we take the limit r̃ → 0 in Eq. (1.7),

σ(r) =
γ

2πD
K0

(
√

η

D
r

)

. (1.8)

The solution provided by Eq. (1.8) assumes an infinite system size, whereas we perform numerical simu-

lations of the developmental model on a finite domain of lateral length ℓ with periodic boundary conditions.

To impose periodic boundary conditions is equivalent to considering that the simulated finite domain corre-

sponds to a tile embedded into an infinite lattice in which each tile is a mirroring image of the focal domain.

The signal density within the focal tile is obtained by adding over the contributions of all other tiles. How-

ever, since our numerical simulations only explore a range of diffusion coefficients in which σ(ℓ/2) ≈ 0, we

can truncate the sum over tiles at the nearest neighbors of the focal one. This is equivalent to calculating

distances to the position of each emitting cell, (xem, yem), in each spatial coordinate:

rx =







|x− xem| if |x− xem| ≤ ℓ/2

ℓ− |x− xem| if |x− xem| > ℓ/2

ry =







|y − yem| if |y − yem| ≤ ℓ/2

ℓ− |y − yem| if |y − yem| > ℓ/2

The total distance is then given by the radial coordinate r, as r =
√

r2x + r2y.

2 Analytical treatment of the developmental model in the spatially-

implicit limit D → ∞
The spatially-implicit limit of the individual based population-partitioning model consists of disregarding the

spatial effects introduced by a finite signal diffusion coefficient (i.e. the limit D → ∞), but still accounting

for cell movement at a finite velocity. To this end, we map cell movement into a stochastic transition in cell

2
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state from aggregating to being multicellular; the rate of this transition is related to cell velocity, v.

First, we calculate the stationary signal density profile produced by each cell in the limit D → ∞. Unlike

in the low D case explored in the spatially-explicit simulations, in which periodic boundary conditions were

implemented considering only the nearest neighbors of the focal tile, now, since the signal spreads infinitely

far, we need to include the contribution of an infinite number of tiles. This results in each cell generating

a homogeneous signal distribution within the focal tile, σH = M/ℓ2. M is the mass of signal that is being

released by each cell in the stationary limit, which can be obtained by integrating Eq. (1.8) over the entire

range of distances,

M =

∫

∞

0

rσ(r)dr =
γ

2πη
. (2.1)

Due to the conservation of the total population size N0 (since demographic events are neglected on the

temporal scales of aggregation), the state of the system is fully determined by the sizes of two of the three

subpopulations (P,A, and M cells). We choose the number of cells in the P -state, NP , and in the A-state,

NA, as state variables. The number of cells in theM state, NM (t) (i.e., the size of the multicellular aggregate)

can then be obtained from NP (t) +NA(t) +NM (t) = N0.

In order for the aggregation process to be initiated at all, a quorum must be met by the initial population

(all of which are P -cells), i.e. we must have N0σ
H > θ. In the absence of a quorum, all initial cells remain as

loners and therefore the total loner number is L = N0. If there is an initial quorum, then P -cells turn into

A-cells at rate λ; A-cells continue to emit signal while they move in the direction of the aggregate. As A-cells

eventually join the aggregate, they stop signaling and therefore the amount of signal in the system continues

to decrease. P -cells continue to become A-cells at rate λ only if the total signal density [NP (t) +NA(t)]σ
H

remains above the strain-specific sensitivity threshold, θ. The P -to-A transition rate as a function of time

is thus given by

λ̂(t) = λΘ(σH [NP (t) +NA(t)]− θ) , (2.2)

where Θ is the Heaviside function, which takes value 1 for non-negative arguments and 0 for negative

arguments. Therefore, omitting the temporal dependence in λ̂, NA and NP ,

λ̂ =







λ if NP +NA ≥ θ/σH

0 otherwise.
(2.3)

The rate at which A-cells stick to the aggregate and become M -cells can be approximated by the inverse

of the time needed to cover the mean distance to the aggregate at a velocity v, i.e.

ṽ =
v

< d >
(2.4)

where < d > is a characteristic spatial scale of the aggregation territory (mean distance to the aggregation

center). For simplicity, we will fix < d >= 1 in the following and refer to ṽ as a rescaled velocity.

Therefore, the aggregation process can be mapped to a sequence of two stochastic reactions, each of

which occurs at a different rate,

P
λ̂(t)−−→ A A

ṽ−→ M, (2.5)

This stochastic process is fully described by a master equation, which gives the temporal evolution of the

probability g(NP , NA; t) of finding the system in a state (NP , NA) at time t,

∂g(NP ,NA;t)
∂t = ṽ(NA + 1)g(NP , NA + 1; t) + λ̂(NP + 1)g(NP + 1, NA − 1; t) (2.6)

−
(

NP λ̂+NAṽ
)

g(NP , NA; t) (2.7)

3
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To simplify the notation, the temporal dependence in NA, NP and λ̂ has been omitted.

Following standard procedures, from the Master equation (2.7) we can derive a system of coupled ordinary

differential equations for the mean value of each subpopulation size,

ṗ(t) = −λ̂p(t) (2.8)

ȧ(t) = λ̂p(t)− ṽa(t) (2.9)

where p(t) and a(t) are the mean values of NP , respectively NA, at time t. The dot over a and p on the left

side of the equation indicates a time derivative. System (2.8) can be solved analytically, using that initially

all cells are in the pre-aggregation state, i.e. p(0) = N0, a(0) = 0. Then

p(t) = N0e
−λ̂t (2.10)

a(t) =
λ̂N0

ṽ − λ̂

(

e−λ̂t − e−ṽt
)

. (2.11)

Since the ultimate objective of this approximation is to obtain analytical expressions for the loner-

aggregator partitioning behavior, an important observable is the time τ at which the decaying signal density

exactly equals the strain-specific sensitivity threshold. τ can thus be obtained by solving

θ = σH[p(τ) + a(τ)] =
σHN0

ṽ − λ

(

ṽe−λτ − λe−ṽτ
)

, (2.12)

where we have used the fact that λ̂(τ) = λ according to Eq. (2.2). Since aggregating cells also contribute to

the pool of signal, τ does not represent the aggregation time; after a time τ , any A-cell in the system will

continue to move towards the aggregate at rate ṽ until a(τ + ∆t) = 0. However, importantly, τ gives the

time at which the last P −A transition occurs. Therefore, all cells that are still in the P -state at time τ will

remain as loners and we can find the total number of loners as

L =







p(τ) if N0σ
H > θ (i.e. a quorum is met)

N0 otherwise
(2.13)

Henceforth we will focus on the former case, when aggregation does get initiated.

In general, we can not solve for τ in Eq. (2.12) and therefore we can not determine the number of loners

analytically. Below, we try to circumvent this problem by looking at a few special cases.

2.1 Analytical results for the non-spatial limit ṽ → ∞
In this limit, cells spend an infinitesimally short time in the A state and therefore p(t) + a(t) → N0e

−λ/t.

To obtain τ we

then solve σHN0e
−λ/τ = θ, which gives τ = ln

(

σHN0

θ

)

/λ. Then, from Eq. (2.13), the number of loners,

when there is a quorum for aggregation, is

L = exp(−λ/τ) = θ/σH. (2.14)

Therefore, in this limit, λ gives the time scale of the aggregation but it has no effect on the number of loners,

which is equal to the sensing-to-signal ratio.

4
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2.2 Analytical results when ṽ = kλ or ṽ = λ/k

In the special case ṽ = 2λ, using the change of variables y = exp(−λτ), (2.12) becomes a quadratic equation

from which y and thus τ can be obtained,

y2 − 2y +
θ

N0σH
= 0. (2.15)

Given the definition of y, Eq. (2.15) only has physical meaning in the domain y ∈ (0, 1]. Within that interval,

if a quorum exists (i.e. N0 > θ/σH), Eq. (2.15) has a single root, which determines the number of loners

p(τ) according to Eq. (2.10) and the definition of y:

L = N0y = N0

(

1−
√

1− θ

N0σH

)

. (2.16)

In the limit N0 → ∞, Eq. (2.16) tends to θ/(2σH), as predicted by Eq. (1) in the main text (also Eq. (2.23)

below).

In the other special case, ṽ = λ/2, Eq. (2.12) becomes again Eq. (2.15) using the change of variables

y = exp(−ṽt). Thus, if there is a quorum for aggregation (i.e. N0 > θ/σH) the number of loners is

L = N0y
2 = N0

(

1−
√

1− θ

N0σH

)2

, (2.17)

which tends to 0 in the limit N0 → ∞, as predicted by the phase separation defined by Eq. (1) of the main

text (also Eq. (2.23) below).

In general, the changes of variables introduced here, y = exp(−λt) and y = exp(−ṽt), will turn Eq. (2.12)

into a polynomial equation of degree n provided that ṽ = nλ or ṽ = λ/n. If the root of such a polynomial

within the interval y ∈ (0, 1] can be obtained, then an expression for the number of loners as a function

of the initial population N0 is accessible. In Figure S4, we show the two cases obtained here (Eqs. (2.16)

and (2.17)), as well as the non-spatial limit ṽ → ∞. In addition, we also show the ṽ = 4λ case, where the

equivalent to Eq. (2.15) is a 4-th degree polynomial, whose root in the interval y ∈ (0, 1] we obtained using

Mathematica 11.1.

2.3 Analytical results in the large population limit N0 → ∞
In the limit of infinitely large initial population size, a quorum is always met. Therefore, from Eq. (2.13),

the number of loners is

L = lim
N0→∞

p(τ) = lim
N0→∞

N0e
−λτ . (2.18)

At the end of this section, we prove that p is a positive and monotonically decreasing function of N0;

therefore L always exists and is greater than or equal to zero. This also implies that lim
N0→∞

e−λτ = 0

(otherwise L would not be finite); applying L’Hôpital’s rule to Eq. (2.18), we obtain

L =
N2

0 ṽσ
H

[

e−2λτ − e−λτe−ṽτ
]

θ(ṽ − λ)
, (2.19)

where we have used Eq. (2.26) for the derivative of τ with respect to N0. Finally, defining Q ≡ lim
N0→∞

N0e
−ṽτ

and rearranging terms, we get

L = Q+
θ(ṽ − λ)

σHṽ
. (2.20)

To obtain an independent expression for L we need another, non-redundant relationship between L and
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Q. This can be obtained by first rearranging terms in Eq. (2.12),

N0

[

e−λτ

λ
− e−ṽτ

ṽ

]

=
(ṽ − λ)θ

ṽλσH
, (2.21)

and then taking the limit N0 → ∞ in Eq. (2.21),

L

λ
− Q

ṽ
=

(ṽ − λ)θ

ṽλσH
. (2.22)

Solving for L in Eqs. (2.19) and (2.22), we find

L =







2πηℓ2 θ
γ

(

1− λ
ṽ

)

if λ ≤ ṽ

0 if λ > ṽ,
(2.23)

where we have used the fact that σH = γ
2πηℓ2 (see Section 2). In the limit N0 → ∞, there is thus a phase

separation given by the relative magnitudes of the P -to-A and A-to-M transition rates.

Proof of the existence of L. In order to obtain in Eq. 2.23 the limit of p(τ) for infinite initial population

sizes, we first need to prove that such a limit exists and is finite. To this end, we will first calculate the

derivative of p(τ) with respect to N0:

dp(τ)

dN0
= e−λτ −N0λτ

′(N0)e
−λτ , (2.24)

Although Eq. (2.12) for τ cannot be solved in general, we can obtain an analytical expression for the derivative

of τ with respect to N0 using implicit differentiation. We differentiate both sides of Eq. (2.12)

[

ṽe−λτ − λe−ṽτ
]

+N0

[

−λṽτ ′(N0)e
−λτ + ṽλτ ′(N0)e

−ṽτ
]

= 0, (2.25)

and solving for τ ′(N0), we obtain

τ ′(N0) =
1

ṽλN0

[

ṽe−λτ − λe−ṽτ

e−λτ − e−ṽτ

]

, (2.26)

which is always positive for any relationship between ṽ and λ. Using Eq. (2.26) in Eq. (2.24), we find

dp(τ)

dN0
= e−λτ

[

1− e−λτ − λ
ṽ e

−ṽτ

e−λτ − e−ṽτ

]

=
e−(λ+ṽ)τ

(

λ
ṽ − 1

)

e−λτ − e−ṽτ
(2.27)

Since the numerator and the denominator of Eq. (2.27) have opposite signs for both λ > ṽ and ṽ > λ,

dp(τ)/dN0 is always negative. Thus, p(τ) is a decreasing function of N0. Since p is a non-negative and

decreasing function, the limit of p(τ) as N0 tends to infinity exists and is always greater than or equal to

zero. Importantly, due to the symmetry between p and N0 exp(−ṽτ), the limit Q defined in the calculation

of L also exists and has the same properties as L.

2.4 Analytical results for co-development of two strains with same λ and ṽ = 2λ

In mixed development, we consider two strains defined by the set of strain-specific parameters (λ, θ, γ). λ

and θ have been defined above, and γ determines the strain-specific signal density σH released by each cell.

We use the term high-threshold strain and the notation ht for the strain with the higher signal sensitivity

threshold and low-threshold strain (lt) for the one with the lower signal-sensitivity threshold. Thus, θht > θlt.
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If both strains have the same strain-specific λ, which is the case studied in this section, then the high-

threshold strain also has the higher investment in loners (i.e. it is the worse aggregator) if

θht
σH

ht

>
θlt
σH

lt

. (2.28)

To obtain the mixed loners, we generalize Eq. (2.12) to the two-strain case,

σH

ht[pht(τht) + aht(τht)] + σH

lt[plt(τlt) + alt(τlt)] = θht, (2.29)

where τht is the time at which the density of signals reaches the strain-specific sensitivity of the high-

threshold strain. Therefore, for t > τht, λ̂ht = 0 and only cells of the low-threshold strain continue to

aggregate (λ̂lt 6= 0).

Let Π be the proportion of the high-threshold strain in the mix; ΠN0 is thus the initial population of

the high-threshold strain, and (1−Π)N0 the initial population of the low-threshold strain. Substituting the

expressions for a(t) and p(t) obtained in Eqs. (2.10) and (2.11), Eq. (2.29) becomes

N0Πσ
H

ht

ṽ − λht

[

ṽe−λhtτht − λhte
−ṽτht

]

+
N0(1−Π)σH

lt

ṽ − λlt

[

ṽe−λltτht − λlte
−ṽτht

]

= θht. (2.30)

τht cannot be obtained from Eq. (2.30) in general. However, since we assume in this section that λht =

λlt ≡ λ and ṽ = 2λ, then the change of variables y = exp(−λτht) turns Eq. (2.30) into a quadratic equation

of the form

y2 − 2y +
θht

N0Π(σH

ht − σH

lt) +N0σH

lt

= 0, (2.31)

that has only one root in the interval (0, 1]. Using that root, we obtain the number of loners of the high-

threshold strain,

Lht = ΠN0y = ΠN0

(

1−
√

1− θht
N0Π(σH

ht − σH

lt) +N0σH

lt

)

(2.32)

After τht, only cells of the low-threshold strain continue to aggregate. The number of loners left by the

low-threshold strain is determined by the relationship between Lht, σ
H

ht, and θlt:

• If σH

htLht ≥ θlt the loners of the high-threshold strain provide quorum for a full aggregation of the

low-threshold strain and therefore Llt = 0.

• If σH

htLht < θlt, the low-threshold strain stops aggregating at a time τlt > τht, such that

σH

htLht + σH

ltplt(τlt) = θlt, (2.33)

which gives the number of loners for the low-threshold strain

plt(τlt) ≡ Llt =
θlt
σH

lt

− σH

htΠN0

σH

lt

(

1−
√

1− θht
N0Π(σH

ht − σH

lt) +N0σH

lt

)

(2.34)

The transition from one outcome to the other occurs at a population composition Π̃ such that σH

htLht =

θlt. Using Eq. (2.32) for the number of loners of the high-threshold strain, we obtain

Π̃ =
2θltσ

H

lt

σH

ht(θht − 2θlt) + 2θltσH

lt

. (2.35)
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