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Enrolment, research ethics and consent 
The NIHR BioResource (NBR) has enrolled 9,742 individuals comprising patients with rare 
diseases and their close relatives as part of a pilot study for the 100,000 Genomes Project. For 
this study 15 rare disease domains were approved after review by the Sequencing and 
Informatics Committee of the NBR. Enrolment of participants started in December 2012 and 
was completed in March 2017. In addition, samples from a second rare diseases pilot study, 
coordinated by Genomics England Ltd (GEL) are included together with a number of control 
samples and samples from the UK Biobank cohort 1. All together study participants were 
enrolled in one of 18 domains.  
 
The NBR study was coordinated by the University of Cambridge. Participants were recruited 
mainly at NHS Hospitals in the UK, but also at overseas hospitals (Supplementary Table 1 
(Enrolment by hospital), Extended Data Figure 1a). All 13,187 participants provided written 
informed consent, either under the East of England Cambridge South national research ethics 
committee (REC) reference 13/EE/0325 or under local IRB approval and governance. Obtaining 
consent for overseas samples was the responsibility of the respective principal investigators at 
the enrolling hospitals. The NBR retained de-identified versions of the consent forms from 
overseas participants and a material transfer agreement was applied to regulate the exchange 
of samples and data between the donor institutions and the University of Cambridge. 
 
The eighteen domains 
The participants were enrolled in one 18 domains  (Supplementary Table 1 (Domain 
metrics)). The specifics of the domains are described in the following section.  

BPD (Bleeding, Thrombotic and Platelet Disorders). Participants for this domain were enrolled 
at 31 hospitals according to the approved eligibility criteria. Probands had either a platelet 
disorder, with or without pathological bleeding; a pathological bleeding disorder not explained by 
platelet function or coagulation factor defects or multiple thrombotic events at a young age. To 
enrich for inherited causes probands with a positive family history and/or early onset and/or 
presence of syndromic features were preferentially selected. In participants with informative 
pedigrees, where possible, affected and unaffected individuals were recruited. Characteristics of 
a large portion of participants have been reported 2. Patients with a BPD of known molecular 
aetiology (e.g. Haemophilia A and B) were excluded from enrolment, with some exceptions. 

CNTRL (Process Controls). A set of DNA control samples from consented participants: 27 
healthy individuals from the NBR enrolled under the REC approved study BLUEPRINT (REC 
12/EE/0040), 5 healthy individuals enrolled under the REC-approved study GENES & 
PLATELETS Healthy (REC 10/H0304/65) and 18 patients (9 individuals with BMI > 40 and 9 
individuals with partial lipodystrophy) collected under the REC-approved study Inherited platelet 
conditions (BPD) (REC 10/H0304/66). These samples were used for testing laboratory 
procedures, data transfer and analysis pipelines. 
 
CSVD (Cerebral Small Vessel Disease). Participants for this domain were enrolled at 10 
hospitals according to approved eligibility criteria. In short, patients were eligible if they were 
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suspected to have familial CSVD, based on clinical features such as lacunar stroke or cognitive 
impairment, at an early age (typically < 60 years), and had changes consistent with SVD on 
magnetic resonance imaging (MRI) of the brain such as lacunar infarcts and white matter 
hyperintensities. Data on other typical features of monogenic SVD was also included including 
migraines, encephalopathy and psychiatric disturbance. Clinical information and MRI results for 
all recruited patients underwent assessment by a Consultant neurologist and databases of 
previous stroke admissions were screened. Individuals with causal variants in NOTCH3 were 
excluded from enrolment and the cohort was further expanded by a retrospective review of 
patients who tested negative for NOTCH3 variants. 
  
EDS (Ehlers-Danlos and Ehlers-Danlos-like Syndromes). Participants for this domain were 
enrolled at 5 hospitals according to approved eligibility criteria. Patients with EDS subtypes of 
known molecular aetiology were excluded from enrolment. Patients met the Villefranche criteria 
for hypermobility EDS 3. Probands had generalised joint hypermobility, skin hyperextensibility, 
connective tissue fragility and chronic pain. At the time of recruitment patients had previously 
undergone ophthalmological and cardiac assessments to exclude Marfan syndrome or other 
non-EDS hereditary disorders of connective tissue. Participants had a family history suggestive 
for autosomal dominant inheritance. Where possible, affected and unaffected individuals were 
recruited. 
 
GEL (100,000 Genomes Project–Rare Diseases Pilot). Enrolment for this second pilot study 
was coordinated by GEL in partnership with the NBR and the main aims were to test processes 
and capabilities of National Health Service (NHS) hospitals to enrol individuals with rare 
diseases and their close relatives within the governance framework of the NHS. Patients with a 
high likelihood or clear clinical evidence of one of 161 rare inherited disorders and their close 
relatives (probands and both parents, proband and mother, proband only or larger pedigrees) 
were enrolled at eight NHS hospitals in England. Patients with known causal mutations were not 
eligible. Detailed clinical characteristics were collected on the participants using the human 
phenotyping ontology (HPO). All participants are followed over their life course using electronic 
health data from primary care (general practitioners), secondary care (hospitals) and relevant 
registries. The GEL data were primarily used to increase the number of WGS results from 
genetically independent individuals and to have a larger number of ‘controls’ for the BeviMed 
association analysis (see below).    
 
HCM (Hypertrophic Cardiomyopathy). Participants for this domain comprise individuals with an 
unequivocal diagnosis of HCM made at one of four UK specialist NHS centres for HCM care. In 
short HCM is characterised by primary left ventricular hypertrophy and has an estimated 
population prevalence of approximately 1 in 500. It is the leading cause of arrhythmia and 
sudden death in athletes and young adults aged under 35 years. All participants were 
diagnosed below the age of 70, or affected relatives. Prior to inclusion into the cohort, all 
patients had undergone clinical genetic testing on an HCM gene panel, with no pathogenic 
mutation identified. 
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ICP (Intrahepatic Cholestasis of Pregnancy). Severe ICP is defined as gestational pruritus in 

association with maternal serum bile acids ≥40 µmol/L. It is associated with adverse pregnancy 

outcomes, including spontaneous preterm labour, fetal asphyxia and intrauterine death. ICP 

typically presents in the third trimester. Affected women and their relatives are at increased risk 
of biliary disease in later life, e.g. drug-induced cholestasis, gallstones, and hepatic fibrosis. The 
ICP cohort comprises women with disease onset before 32 completed weeks of gestation, that 
affects approximately 1 in 3,000 pregnant women in the UK. Individual cases with severe, early 
onset ICP were recruited from 14 UK consultant-led antenatal NHS clinics and from three 
international units in Argentina, Australia and Sweden. Women were excluded from the study if 
they had other known causes of hepatic dysfunction such as haemolysis, elevated liver 
enzymes and low platelets (HELLP) syndrome, preeclampsia, acute fatty liver of pregnancy, 
acute viral hepatitis, confirmed primary biliary  cholangitis or any cause of biliary obstruction on 
ultrasound. No genetic pre-screening for causal variants in known genes was applied before 
enrolment. 
 
IRD (Inherited Retinal Disorders). IRD describes a phenotypically heterogeneous group of 
conditions consequent upon dysfunction and/or degeneration of the neural retina or retinal 
pigment epithelium, resulting in visual impairment. It is the most common cause of severe visual 
impairment. Most of the individuals were enrolled at the Moorfields Eye Hospital, London and 
the remainder at four other NHS hospitals. Most individuals had undergone some previous 
genetic testing using routine diagnostic approaches and the analysis of the genotyping of a 
fraction of this cohort has been reported previously 4.  
 
LHON (Leber Hereditary Optic Neuropathy). LHON causes subacute sequential bilateral visual 
loss which is usually irreversible. Participants with a diagnosis of LHON and a positive test for 
one of three mitochondrial DNA (mtDNA) mutations in Europeans (m.11778G>A, m.3460A>G, 
m.81440T>C) were enrolled in this cohort. These mutations are found in ~1 in 300 of the UK 
population, but the prevalence of blindness due to LHON mtDNA mutations is approximately 1 
in 40,000. Environmental factors undoubtedly influence the clinical penetrance, but segregation 
analyses implicate an interaction between a nuclear modifier locus and the mtDNA mutation. 
The LHON cohort was included to test the hypothesis that the blindness only occurs when both 
the nuclear and mtDNA variants are present within the same individual.  
 
MPMT (Multiple Primary Malignant Tumours). Participants for this domain were enrolled through 

the NHS regional clinical genetics services, mostly (> 95%) in the UK. In each kindred there was 

a clinical suspicion of a cancer predisposition syndrome, but routine genetic assessment/testing 

had not identified a genetic cause at the time of enrolment. Most (95%) of cases analysed had 

developed MPMT (defined as ≥2 primaries by age 60 or ≥3 by 70) but a minority had developed 

a single primary and had a first-degree relative with MPMT. Tumours in the same tissue type 
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and organ were considered separate primaries if, in the case of paired organs, they occurred 

bilaterally or if the medical record clearly denoted them as separate. The International Agency 

for Research on Cancer criteria for defining separate primaries were also used 5. In 95% of 
enrolled cases only the DNA of a single pedigree member was analysed. 
 
NDD (Neurological and Developmental Disorders). Participants in this group were adults and 
children with a previously undiagnosed neurological condition. Referrals were from paediatric 
and adult neurology and clinical genetics specialities. Conditions included were early and 
severe epilepsy and encephalopathy, dystonia, spasticity, intellectual disability and metabolic 
disorders. In many, pre-screening of more common genetic causes of disease were performed 
but not systematically. The majority were singleton cases but some trios of proband, mother and 
father were included for paediatric conditions.  
 
NPD (Neuropathic Pain Disorders). Participants with extreme neuropathic pain phenotypes 
(both sensory loss and gain) were recruited at secondary care clinics located in six NHS 
hospitals. Participants had to be over 18 years of age with a history of life-style altering sensory 
disorder (either pain or loss of sensation) for greater than three months. Patients with a known 
underlying genetic cause of chronic pain (e.g. Fabry’s disease [ORPHA:324] and SCN9A 
erythromelalgia [ORPHA:1956]), intellectual disability and/or autistic spectrum disorder sufficient 
that they could not give either consent or partake in additional pain phenotyping were excluded. 
The Neuropathic Pain Special Interest Group of the International Association for the Study of 
Pain grading for neuropathic pain was used for the assessment of all participants 6. Further 
details are available in Appendix 1: NPD and Supplementary Table 1 (NPD Criteria – 
Diagnostic Criteria, NPD Criteria – Outcome Measures). 
 
PAH (Pulmonary Arterial Hypertension). In PAH, adverse remodelling of the pulmonary 
vasculature causes narrowing and obliteration of the capillary arteries in the lung, resulting in 
elevated resting mean pulmonary artery pressure and right heart dysfunction. A mean 
pulmonary artery pressure of 25 mm Hg or above, with a pulmonary capillary wedge pressure of 
less than 15 mm Hg is indicative of PAH. The diagnosis of idiopathic PAH was based on the 
exclusion of other associated forms of PAH. Participants with idiopathic PAH were recruited 
from 10 NHS UK National Pulmonary Hypertension hospitals and four international hospitals. All 
enrolled patients had a clinical diagnosis of idiopathic PAH, heritable PAH, drug-associated 
PAH, or pulmonary veno-occlusive disease/pulmonary capillary haemangiomatosis 
(PVOD/PCH) established by their expert centre. The findings in this cohort have been recently 
reported 7, 8, 9. No systematic genetic pre-screening for causal variants in previously established 
genes was applied before enrolment. 
 
PID (Primary Immune Disorders). Participants were recruited by specialists in clinical 
immunology (either trained in paediatrics or internal medicine) from 21 NHS hospitals in the UK 
and a small number of hospitals from The Netherlands. In short, the eligibility criteria included 
the following: clinical diagnosis of common variable immunodeficiency disorder (CVID) 
according to internationally established criteria 10, extreme autoimmunity, or recurrent (and/or 
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unusual) severe infections suggestive of defective innate or cell-mediated immunity. Patients 
with known secondary immunodeficiency (e.g. due to cancer or HIV infection) were excluded. 
Genetic screening for known causes of PID prior to enrolment was encouraged but not applied 
systematically. Within a broad range of phenotypes, CVID is the most common disease 
category, comprising 46% of the cohort. Participants for this domain consisted predominantly of 
singleton cases, but the DNA samples from additional affected and/or unaffected pedigree 
members of some of the patients were also sequenced. A manuscript describing the findings in 
this cohort is under review (Thaventhiran et al, under review).  
 
PMG (Primary Membranoproliferative Glomerulonephritis). PMG refers to kidney disease in 
which a biopsy shows increased glomerular mesangial matrix and cellularity with thickening of 
the capillary walls and there is an absence of an underlying infectious, neoplastic or 
autoimmune disorder. Participants in this domain were enrolled from all 10 NHS paediatric renal 
units in the UK (64 patients) and 18 NHS adult renal centres (120 participants, of whom 21 had 
paediatric onset of disease). IC-PMG refers to PMG where there is deposition of 
immunoglobulins and complement C3 in the glomeruli, and ‘C3 glomerulopathy’ (C3G) is where 
there is C3 without significant immunoglobulins deposited. The C3G category is further 
subdivided by electron microscopic appearance into C3 Glomerulonephritis (C3GN) and Dense 
Deposit Disease (DDD). PMG has an estimated incidence of 3-5 in 1 million and has a poor 
renal prognosis 11. Where available, kidney biopsies were reviewed centrally to confirm 
classification into IC-PMG, C3GN or DDD. No genetic pre-screening for causal variants in 
known genes was applied before enrolment. 
  
SMD (Stem cell and Myeloid Disorders). Participants for this domain were enrolled if presenting 
with an inherited bone marrow failure of unknown molecular aetiology presenting in childhood, 
or an inherited cytopenia (including erythroid lineage) where acquired causes were excluded 
and without a high index of suspicion for autoimmune aetiology. In addition, patients presenting 
with a myeloproliferative phenotype and a positive family history of a related haematological 
disorder were enrolled. Recruitment into the cohort was done by paediatric and adult 
haematologists from NIHR/National Cancer Research Network Primary Treatment Centres. In 
addition, cases and their close relatives were enrolled at centres in Canada, Egypt, Norway, Sri 
Lanka, South Africa, Sweden, Turkey and the USA. The DNA of most probands had undergone 
previous genetic analysis using targeted sequencing with phenotype-specific gene panel tests 
and no pathogenic variants were identified.  
 
SRNS (Steroid Resistant Nephrotic Syndrome). The incidence of SRNS is estimated at 2-4 in 
100,000 people. There are two major clinical subsets: primary - defined as no response to high 
dose steroid at four weeks in children or four months in adults, and secondary SRNS where 
initial steroid sensitivity is lost and treatment resistance evolves as a secondary event either 
rapidly or over time. Participants for this domain were enrolled through the UK NephroS study, 
at tertiary NHS paediatric nephrology centres and adult renal units across the UK. Patients with 
either sporadic or familial SRNS were eligible. Cases with SRNS secondary to systemic disease 
or obesity were excluded from enrolment. The majority of patients had a histological renal 
biopsy diagnosis that allowed a second tier of stratification based on histology as well as drug 
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response. The majority (70%) of the cases had undergone previous genetic testing by whole 
exome sequencing and tested negative for causal variants in diagnostic-grade SRNS genes.  
 
UKB (UK Biobank – Extreme Red Cell Trait Score). The UK Biobank is a biomedical cohort of 
approximately half a million participants recruited in the UK between 2006 and 2010 1. The 
participants, 54% of whom are women, were aged between 37 and 73 years at their date of 
recruitment. Each participant underwent a baseline assessment at one of 21 centres distributed 
across Great Britain, during which EDTA anticoagulated blood was collected for full blood count 
(FBC) analysis 12. A subset of UK Biobank participants likely to carry rare alleles modulating 
erythropoiesis or red cell survival/clearance mechanisms were selected for WGS by considering 
a univariate score derived from the FBC-measured MCV and RBC# values. 383 and 381 
participants from the extreme left and extreme right tails of the score distribution passed quality 
control after being successfully sequenced. Further details of the approach used for selecting 
samples are given in Appendix 2: UKB. 
 
Overview of sample collection 
Genetically-determined sex chromosome status, ethnicity and relatedness for all samples 
(detailed below) and age of participant at sample collection date were available for the majority 
of samples. These metrics highlight some of the differences in disease presentation and 
recruitment approach between the domains (Extended Data Figure 1b, Supplementary Table 
1 (Domain metrics)). The ICP domain comprised only female participants because the 
phenotype is related to pregnancy. All domains had a high rate of singletons but for GEL and 
SMD, for which a large proportion of recruits were part of parent-child trios or mother-child duos. 
The overall ethnic breakdown for the collections closely matched that of the 2011 UK census 13, 
suggesting equality of access (Supplementary Table 1 (Domain metrics)). In some cases age 
of diagnosis was available and was similar to age at enrolment, while in others there was a lag 
of several years between the two. Age at sampling was significantly older than age of 
presentation of symptoms for domains with a paediatric onset (IRD, NDD, SMD), of childbearing 
age for ICP, later in life for late-onset disorders (CSVD, HCM, MPMT, PAH) and over the age of 
50 for UKB due to its enrolment criteria (Extended Data Figure 1b). The sequence data 
generated on the 13,037 DNA samples (Supplementary Table 1 (Domain metrics)) was 
aggregated and analysed for this manuscript. 
 
Clinical and laboratory phenotype data 
Staff at hospitals responsible for enrolment were provided with the eligibility criteria for their 
respective domains as described above in the domain descriptions. There were different levels 
of pre-screening amongst the 15 domains to exclude previously known disorders. PAH had 
virtually no genetic pre-screening. IRD, NDD, BPD, CSVD, EDS, ICP, NPD, PID, PMG and 
SMD had pre-screening based on clinical presentation and the results of non-DNA based 
laboratory and imaging tests. Many of IRD, PID, BPD and NDD had received some baseline 
genetics testing where no pathogenic mutation had been detected. HCM and SRNS had 
received extensive genetic screening for the relevant diagnostic-grade genes. The clinical and 
laboratory phenotype data were captured through case report forms (CRF) by paper 
questionnaires or by online CRF data capture applications and deposited in the NBR study 
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database managed by the University of Cambridge. Online data capture allowed for the entry of 
Human Phenotype Ontology (HPO) terms 14, 2, 15 by staff at the enrolment hospital and data from 
paper questionnaires were transformed into HPO terms by the NBR study coordination office. 
Free text entries were transformed into HPO terms where feasible. An overview of the HPO 
data obtained for the 15 domains is depicted in Extended Data Figures 1c and 1d. 
 
DNA sequencing 
Samples were received as either DNA extracted from whole blood or as whole blood EDTA 
samples that were extracted at a central DNA extraction and QC laboratory in Cambridge. 
Samples were tested for adequate concentration (Picogreen), DNA degradation (gel 
electrophoresis) and purity (OD 260/280 quality control (Trinean)) before selection for WGS. 
DNA samples were prepared at a minimum concentration of 30 ng/μl in 110 μl, visually 
inspected for degradation and had to have an OD 260/280 between 1.75 and 2.04. They were 
then prepared in batches of 96 and shipped on dry ice to the sequencing provider (Illumina Inc, 
Great Chesterford, UK). 
 
Further sample QC was performed by Illumina to ensure that the concentration of the DNA was 
> 30 ng/μl and that every sample generated high quality genotyping results (Illumina Infinium 
Human Core Exome microarray). Samples with a repeated array genotyping call rate < 0.99, 
high levels of cross-contamination, mismatches with the declared gender that could not be 
resolved by further investigation, or for which consent had been withdrawn, were excluded from 
WGS (n = 59). The genotyping data were also used for positive sample identification and 
sample identity was verified before data delivery. In short 0.5 μg of the DNA sample was 
fragmented using Covaris LE220 (Covaris Inc., Woburn, MA, USA) to obtain an average size of 
450 base pair (bp) DNA fragments. DNA samples were processed using the Illumina TruSeq 
DNA PCR-Free Sample Preparation kit (Illumina Inc., San Diego, CA, USA) on the Hamilton 
Microlab Star (Hamilton Robotics, Inc, Reno, NV, USA). The final libraries were checked using 
the Roche LightCycler 480 II (Roche Diagnostics Corporation, Indianapolis, IN, USA) with KAPA 
Library Quantification Kit (Kapa Biosystems, Inc, Wilmington, MA, USA) for concentration. 
 
From February 2014 to June 2017 three read lengths were used: 100bp (377 samples), 125bp 
(3,154 samples) and 150bp (9,656 samples). Samples sequenced with 100bp and 125bp reads 
utilised three and two lanes of an Illumina HiSeq 2500 instrument, respectively. Samples 
sequenced with 150bp reads utilised a single lane of a HiSeq X instrument. At least 95% of the 
autosomal genome had to be covered at 15X and a maximum of 5% of insert sizes had to be 
less than twice the read length. Following sample and data QC at Illumina, 13,187 sets of WGS 
data files were received at the University of Cambridge High Performance Computing Service 
(HPC) for further QC. 
 
Analysis of genotyping data 
  
Overview of data processing pipeline 
The WGS data for the 13,187 samples returned by Illumina underwent a series of processing 
steps (Extended Data Figure 2), described in detail in the following sections. Briefly, the 
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samples were sex karyotyped and pairwise kinship coefficients were computed. This information 
was used to check for repeat sample submissions and sample swaps. Additionally, four further 
QC checks were applied to ensure the single nucleotide variants (SNVs) and short (<= 50bp) 
insertions/deletions (indels) were of a high standard. Overall, the sequence data from 150 
samples (1.1%) were removed, leaving a dataset of 13,037 samples for downstream analysis. 
The 13,037 individuals were assigned one of the following ethnicities: European, African, South 
Asian, East Asian or Other. Pairwise relatedness adjusted for population stratification was then 
computed and used to generate networks of closely related individuals and to define a maximal 
set of 10,259 unrelated individuals. 
 
The variants in the 13,037 individuals were left-aligned and normalised with bcftools, loaded into 
our HBase database and filtered on their overall pass rate (OPR), defined below. The sex 
karyotypes, the ethnicities and the relatedness estimates were used, along with enrolment 
information, to annotate the samples and variants. Samples were annotated with: 
affected/unaffected status, membership of the set of probands, membership of the maximal 
unrelated set, ethnicity and sex karyotype. Variants were annotated with CellBase consequence 
predictions, HGMD information where available and population-specific allele frequencies.  
 
Alignment and SNV/indel calling 
Reads were aligned with the Illumina Isaac aligner version SAAC00776.15.01.27 16 to reference 
GRCh37 17. This produced BAM files 18 of mean size approximately 95GB for 100 bp samples, 
60GB for 125 bp samples and 65GB for 150bp samples. SNVs and indels were called on all 
BAM files using the Illumina Starling software version 2.1.4.2 19. The genotype calls were 
produced in single-sample mode as both regular VCF and genome VCF (gVCF) files 20; this 
second file format also provides information on coverage and alignment quality in homozygous 
reference regions as well as variant positions. This means that the coverage, alignment quality 
and other factors allow a PASS filter to be applied to all positions in the genome for all samples.  
 
Sample identity checks 
A set of 8,872 common single nucleotide polymorphisms (SNPs) was chosen at the start of the 
project with which to compute an approximate pairwise kinship between samples as the data 
arrived at the HPC as a means of identifying duplicate samples. The SNPs were a random 
subset of those typed by Roche on their targeted microarray platforms for the purpose of 
inferring kinship. These platforms are used in-house for clinical genomics applications. The 
kinship coefficients were computed using PLINK 21 after each data delivery. More precise 
relatedness estimation was performed at a later stage (see below). Any coefficient (PI-HAT) > 
0.99 triggered an investigation to determine whether there had been accidental duplicate 
enrolment, laboratory duplication or enrolment of more than one monozygotic twin. For all pairs 
resolved to be the same individual, the sample with the highest WGS data quality was retained 
and the partner excluded from the resource (124 duplicates and 1 triplicate) and the 22 pairs of 
monozygotic twins were retained in the resource. Eight unconfirmed duplicates were excluded. 
Most of the duplicate submissions occurred at recruitment due to patients being seen by 
multiple clinicians. There was one duplicate observed between domains and this patient was 
confirmed as having a phenotype consistent with the rare disease phenotypes of both domains. 
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Participant-declared sex and genetically-determined genders were compared for concordance 
following each WGS data delivery. For each sample, we counted the number of heterozygous, 
homozygous and hemizygous QC-passing SNVs in the non-pseudoautosomal region of the X 
chromosome. We defined the H-ratio as the number of heterozygous variants divided by the 
number of homozygous and hemizygous variants. We made initial gender calls based on the H-
ratio as follows: individuals with H-ratio < 0.02 were declared putatively male and the others 
were declared putatively female (Extended Data Figure 3e). Comprehensive sex karyotyping 
was performed at a later stage (see below). Based on the initial gender calls, two samples with 
discordant genders were excluded from further analysis. 
 
Variant quality checks 
We performed the following variant quality checks: 

● We computed the proportion of positions in the non-N fraction of the autosomes that 
passed quality filters in the gVCFs. This proportion is referred to as the autosomal 
callability. Samples for which fewer than 95% of bases in the reference genome passed 
were removed (Extended Data Figure 3a). 

● We identified a set of common SNPs by downloading and merging the genome and 
exome data from gnomAD 22 and computing the minor allele frequencies (MAFs) in each 
population in our study (except for South Asian, which is absent from the gnomAD 
genome set). The set of SNVs that had a MAF > 5% overall and in each population was 
recorded. We then determined the proportion of positions in each gVCF that did not pass 
QC filters as a percentage of the overall set. Samples for which this proportion exceeded 
0.55% were excluded (Extended Data Figure 3b). 

● Transition-transversion ratios (Ts/Tv) are commonly used to determine SNV calling 
accuracy 23. We calculated Ts/Tv ratios for all samples and observed that the distribution 
of these ratios varied depending on the read length batch; samples with a Ts/Tv ratio 
outside the corresponding batch-specific interquartile range were excluded (Extended 
Data Figure 3c). 

● We estimated the degree to which a DNA sample was contaminated by any other DNA 
sample using verifyBamID 24. Samples with an estimate of contamination (FREEMIX) 
exceeding 3% were excluded (Extended Data Figure 3d). 

 
In total, 14 samples were excluded due to these four variant quality controls. 
 
Coverage assessment 
The mean (across samples) of the mean autosomal coverage by non-duplicated reads was 
41.4, 37.9 and 35.3, and the mean 10th percentile of coverage was 31.0, 25.7 and 26.2 for the 
100bp, 125bp and 150bp read length batches, respectively (Figure 1b). The mean depths were 
greater than 30X in all samples and 90% of the reference genome was covered at least to 19X 
in all samples. In addition, all samples were covered to at least 15X in at least 95% of the 
reference autosomes. The average read duplication rate was 1.5% for read pair inserts in the 
HiSeq 2500 (100bp and 125bp read lengths), however this value was 18% for the HiSeq X-
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generated 150bp data, which meant that extra reads were required to make up a similar level of 
coverage. 
 
Computation of sex karyotypes 
The sex karyotypes following delivery of the complete dataset were determined as follows using 
the BAM and VCF files. For each sample and chromosome, we normalised the number of 
aligned reads by dividing them by the number of bases which are non-N in the reference 
genome. The X/Auto and Y/Auto ratios were defined as the normalised read counts on X and Y 
divided by the median of the normalised read counts on the autosomes (Auto). The median was 
used because it is robust to large copy number alterations. For the putative males and putative 
females (defined based on the H-ratio, as described above), the mean and standard deviation of 
X/Auto and Y/Auto were computed (Extended Data Figure 3f). Let us define these values as 
meanz(X/Auto), sdz(X/Auto), meanz(Y/Auto) and sdz(Y/Auto), where z = {m,f} denotes whether 
the summaries were obtained from the putative males or the putative females. We defined the 
following four gates to classify individuals according to their specific X/Auto and Y/Auto values, 
denoted x and y, respectively: 

● XY gate (shown in blue in Extended Data Figure 3f): 
○ meanm(X/Auto) - 10 sdm(X/Auto) < x < meanm(X/Auto) + 10 sdm(X/Auto) 
○ meanm(Y/Auto) - 10 sdm(Y/Auto) < y < meanm(Y/Auto) + 10 sdm(Y/Auto) 

● XYY gate (shown in green in Extended Data Figure 3f): 
○ meanm(X/Auto) - 10 sdm(X/Auto) < x < meanm(X/Auto) + 10 sdm(X/Auto) 
○ y > meanm(Y/Auto) + 10 sdm(Y/Auto) 

● XX gate (shown in red in Extended Data Figure 3f): 
○ meanf(X/Auto) - 10 sdf(X/Auto) < x < meanf(X/Auto) + 10 sdf(X/Auto) 
○ meanf(Y/Auto) - 10 sdf(Y/Auto) < y < meanf(Y/Auto) + 10 sdf(Y/Auto) 

● XXY gate (shown in purple in Extended Data Figure 3f): 
○ meanf(X/Auto) - 5 sdf(X/Auto) < x < meanf(X/Auto) + 5 sdf(X/Auto) 
○ meanm(Y/Auto) - 5 sdm(Y/Auto) < y < meanm(Y/Auto) + 5 sdm(Y/Auto) 

● XXX gate (shown in orange in Extended Data Figure 3f): 
○ 1.5 meanf(X/Auto) - 5 sdf(X/Auto) < x < 1.5 meanf(X/Auto) + 5 sdf(X/Auto) 
○ meanf(Y/Auto) - 5 sdf(Y/Auto) < y < meanf(Y/Auto) + 5 sdf(Y/Auto) 

 
One sample had an H-ratio of 0.01 and was thus declared initially as a male. However, the 
sample was located within the XX gate. Coverage information indicated that there were two X 
chromosomes, but that they were almost identical in sequence to one another. Further 
investigation showed that this was due to consanguinity. This and other anomalies are labelled 
in Extended Data Figure 3g. Where possible, within the ethics of the study, non-standard sex 
karyotypes were confirmed with the referring clinician (n = 5). The observed frequencies of non-
standard sex karyotypes, which were present in 13 of the 13,037 individuals (5 XXY, 4 XYY, 2 
XXX, 2 XO), were comparable with those reported in a previous study 25. The variants for the 
samples with non-standard sex karyotypes (except for XXX) were recalled to take into account 
the correct ploidy in the sex chromosomes (Extended Data Figure 2). 
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Ancestry and relatedness estimation 
We estimated the degree of relatedness between individuals and categorised each individual's 
nuclear ancestry into one of European, African, East Asian, South Asian or Other using 
genotype data from a set of SNPs selected as follows. We identified the 292,878 autosomal 
SNPs typed by three widely used Illumina genotyping arrays (HumanCoreExome-12v1.1, 
HumanCoreExome-24v1.0 and HumanOmni2.5-8v1.1). Presence of a SNP in all three arrays 
indicates that it can be reliably measured by microarray and, hence, that it is likely to be reliably 
called using genome sequencing as well. To further ensure this, we removed SNPs with a 
missing genotype in at least one individual or with an overall pass rate below 0.99. We also 
removed SNPs at genomic positions in which more than two distinct alleles had been observed 
in the 1000 Genomes Phase 3 dataset 26 or the NBR dataset to ensure that all genotypes could 
be coded unambiguously as a count of the number of copies of the unique alternative allele 
carried by the individual. We then removed SNPs with a MAF < 0.3 in our dataset. Finally, we 
pruned SNPs using PLINK v1.9 21 so that all pairs of SNPs had an r2 < 0.2. After filtering, 32,875 
SNPs remained. 
 
These well-measured, unlinked common SNPs were used to estimate relatedness in the non-
Admixed individuals within the 1000 Genomes Phase 3 data as follows. First, we ran the 
snpgdsIBDKING function from the SNPRelate R package to compute an initial kinship matrix 
and identify a corresponding initial set of unrelated individuals 27, 28. We then used PC-AiR 29 to 
perform a principal component analysis (PCA) on the standardised genotypes of these 
putatively unrelated individuals and project the standardised genotypes of the other individuals 
onto the fitted principal components (PCs). The PC-AiR object was then passed to the PC-
Relate function to compute a kinship matrix that accounts for population structure as 
represented by the leading 20 PCs. Finally, the kinship matrix was passed to the PRIMUS 30 
function to obtain a final set of pedigree relations and a final set of unrelated individuals on the 
basis that pairs of individuals with a kinship coefficient > 0.09 are related. 
 
We partitioned these unrelated individuals as non-Finnish Europeans, Finns, Africans, South 
Asians and East Asians using their 1000 Genomes population code annotations. Within each 
element of this partition, we modelled the score vectors of the leading five PCs by a multivariate 
normal distribution and estimated the corresponding mean vectors and covariance matrices. 
Subsequently, we projected the genotypes from each of the 13,037 samples onto the vector 
space spanned by the leading five components of the 1000 Genomes PCAs (Extended Data 
Figure 3h). We computed the likelihood of the projected data under the five multivariate normal 
models estimated from the 1000 Genomes scores and labelled the individual with the population 
corresponding to the model that yielded the highest likelihood, provided it was greater than 107. 
Otherwise, the individual was labelled "Other" (Extended Data Figure 3i). The resource is 
predominantly European. However approximately 7% of enrolled individuals are South Asian, 
which is a group with limited whole genome reference data available through other public 
resources such as gnomAD (Extended Data Figure 3j). 
 
To compute the relatedness amongst the 13,037 individuals in our dataset, we merged the 
genotypes with the 1000 Genomes genotypes and followed the procedure described above to 
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compute relatedness a second time. As the 1000 Genomes collection is genetically diverse by 
design, combining the two datasets ensured that a greater amount of genetic diversity was 
accounted for by the PCA than if only the new sequence dataset had been used. The PC-Relate 
estimates of the genome proportions shared by zero, one and two chromosomes between two 
individuals were used to categorise pairwise relations and to identify a maximal set of 10,259 
unrelated individuals (Supplementary Table 1: Domain metrics). A set of 9,244 pedigree 
networks ranging from singletons to a network of 15 were computed (Figure 1d). 
 
Variant normalisation and loading of variants into HBase 
Variants in the gVCF files were processed using the bcftools norm command with the -cs option, 
which left aligns and nomalises indels and sets/fixes incorrect or missing reference alleles 31. 
The variants were then transformed from gVCF format into Google proto format 32 and stored as 
binary proto objects spanning 1000bp of contiguous sequence in the reference genome using 
OpenCGA 33. During the transformation, the anchoring reference base of insertions and 
deletions were removed. The objects of each sample were then copied from the respective 
proto file to the HBase 34 Archive table using the ‘PUT’ operation of the HBase application 
programming interface. The resulting Archive table held the proto objects by sample in columns 
and grouped by position in rows. Header information from the original gVCF files was stored for 
each sample. Any multiple variant calls overlapping the same position within an individual were 
resolved by only retaining the variant with the highest genotype quality. The samples with each 
of the different genotype calls and whether these calls had a PASS filter value were recorded for 
different genomic positions in the HBase Allele count table using the ‘APPEND’ operation. 
Homozygous reference and PASS values were the most frequent and were inferred instead of 
being stored. Only the variants are then transferred from the HBase Allele count table to the 
HBase Analysis table.  
 
SNV and indel annotations 
All variants resulting from the merging across 13,187 samples require annotation with cohort 
summary statistics as well as deleteriousness and conservation scores. Cohort summary 
statistics including allele count, allele number, genotype count, minor allele frequency, minor 
genotype frequency, HWE, call rate, pass rate and overall pass rate (described below) were 
calculated. We used the HTSJDK 35 implementation to obtain HWE statistics. Subsequently, the 
variants stored in the HBase Analysis table were annotated using the RESTful annotation 
service provided by CellBase 36 in order to add consequence types, HGVS notation, 
deleteriousness scores like the combined annotation dependent depletion (CADD) score 37, 
SIFT 38 and PolyPhen-2 39, and conservation scores like genomic evolutionary rate profiling 
(GERP) 40, PhastCons 41 and PhyloP 42. Variants have then been exported to AVRO file format. 
These files have then been complemented with additional annotation from external reference 
datasets, including 1000 Genomes Project Phase 3 43, UK10K project (version 2016-05) 44, the 
ExAC / gnomAD project (version r2.0.2) 45, Trans-Omics for Precision Medicine Program 
(TOPMed, freeze5) 46 and the Human Genome Mutation Database (HGMD, version PRO 
2018.1) 47 using Apache Spark 48. Since the TOPMed data is only available on genome 
reference GRCh38, these data were mapped back onto GRCh37 using CrossMap 49 before 
variant annotation. 
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SNV and indel quality control 
At each position in the reference genome, and for each sample, the HBase database holds a 
record of whether the alignments at that position were such that variants could be called. Let the 
call rate be the proportion of samples in which calling was possible. In samples in which the 
genotype could be called, the genotype calling could either pass or fail QC. Let the pass rate be 
the number of samples with a passing genotype out of all the samples for which calling was 
possible. We defined the overall pass rate (OPR) as the call rate multiplied by the pass rate. 
Only female and male samples were used to set the OPRs for variants on the X and Y 
chromosome, respectively. 
 
We evaluated the distribution of p-values under the null hypothesis of HWE for common SNPs 
and indels (MAF > 5%) amongst 8,511 unrelated Europeans within different tranches of OPR. 
Variants with OPR >= 0.99 were found to have genotype proportions consistent with HWE over 
a wide range of MAFs for SNVs, short insertions and short deletions (Extended Data Figures 
4a, 4b and 4c). At 0.98 > OPR < 0.99, we observed a doubling of the number of P-values < 
0.05 relative to the number expected under the null, approximately uniformly across MAF bins, 
suggesting that deviation from HWE was present in a small proportion of variants in this tranche 
of OPR. We thus applied a threshold of 0.99 for the release of a highly specific set of variants 
through the variant browser (described below), but used a threshold of 0.98 for rare variant 
analyses, where maintaining high sensitivity is of critical importance. 
 
Concordance in duplicates and twins 
The 125 duplicated samples and 22 monozygous twins can be used to estimate the 
reproducibility of sequencing results. From all resolved duplicates and twins, we selected pairs 
where both samples were sequenced with the same read length. The triplicate was not 
included. 
 
For each sample we selected all autosomal SNVs and small insertions and deletions with OPR 
>= 0.99 and biallelic in this sample. Extended Data Figure 4d illustrates all possible 
combinations of genotypes in a pair of samples. If we denote with c and d numbers of variants 
in the cells corresponding to concordant and discordant calls, the mutual non-reference 
concordance can be defined as (Σc / (Σc + Σd)) * 100%, the distribution of this value is shown in 
Extended Data Figure 4e. 
 
The probability of getting a heterozygous variant in sample 2 given it is heterozygous in sample 
1 can be defined as c11 / (d10 + c11 + d12 + d13), the same for homozygous variants: c22 / (d20 + d21 
+ c22 + d23) (Extended Data Figures 4f and 4g). Assignment of which sample is sample 1 and 
which is sample 2 is random, hence for each pair of duplicates/twins there are two probabilities 
of each type. In the plots in Extended Data Figures 4f and 4g the lowest valued probability is 
shown in red and the highest in blue. 
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Overview of SNVs and indels in the dataset 
We identified 172,005,610 variants with an OPR > 0.99, of which 157,411,228 (91.5%) were 
SNVs and 14,594,382 (8.5%) were indels. We annotated them with Sequence Ontology (SO) 
terms based on their predicted consequences with respect to transcripts in Ensembl 75. Thus, 
for each variant, multiple consequences were recorded. However, for the purposes of 
classification, we selected one primary consequence per variant as follows. First, the transcripts 
with the most relevant biotype (e.g. protein coding) were chosen 50. Second, the transcripts with 
the best source of curation were retained (ranked by HGNC, VEGA, Ensembl, UniProt and 
miRBase/RFAM). Third, the consequences with the greatest Ensembl-summarised impacts 
were retained 51; the most impactful being HIGH, MODERATE, LOW and MODIFIER, in that 
order). Fourth, consequences were preferred based on the order provided by Ensembl 51. Fifth, 
transcripts which are canonical according to Ensembl were preferred over other transcripts. 
Finally, the transcript with the longest coding/cDNA sequence length was chosen. 
 
Following these rules, we were able to identify a single primary consequence for each variant. 
Overall, 61.7% of the variants were labelled genic (SO:0001564, gene_variant), while the 
remainder were labelled intergenic (SO:0001628, intergenic_variant), regulatory (SO:0001566, 
regulatory_variant) or other. 80.0% of the genic variants were intronic (SO:0001627, 
intron_variant) and only 4.4% were exonic (SO:0001791, exon_variant) or affected a splice site 
(SO:0001568, splicing_variant). The ratio of coding (SO:0001968, coding_transcript_variant) to 
UTR (SO:0001622, UTR_variant) variants was 45:55 for SNVs and 21:79 for indels. The vast 
majority (64.2%) of the 1,853,212 coding SNVs were missense (SO:0001583, 
missense_variant) while 33.7% were synonymous (SO:0001819, synonymous_variant) and only 
38,886 SNVs (2.1% of coding SNVs) led to a start loss (SO:0002012, start_lost), stop loss 
(SO:0001578, stop_lost) or stop gain (SO:0001587, stop_gained). The majority (62.1%) of the 
67,746 coding indels introduced a frameshift (SO:0000865, frameshift), while 34.5% introduced 
an inframe insertion or deletion (SO:0001817, inframe) and only 2,287 indels (3.4% of coding 
indels) led to a start loss (SO:0002012, start_lost), stop loss (SO:0001578, stop_lost) or stop 
gain (SO:0001587, stop_gained) (Extended Data Figure 5). 
 
48.6% and 59.2% of the SNVs and indels, respectively, were absent from the following 
databases: 1000 Genomes, UK10K, gnomAD, TOPMed (lifted back to GRCh37) and HGMD. 
54.8% of the variants were observed in only one family (i.e. they had a minor allele count of 1 
amongst unrelated individuals), of which 82.6% were novel. The proportion of variants observed 
in two families which were novel was 36.7%. Of the variants observed in more than two families, 
very few (1.90% of SNVs and 9.01% of indels) were novel (Figure 1e). Thus common variants 
are well represented in genetic databases but the vast majority of genetic variants are very rare 
and are mostly absent from the available databases. 
 
Inside coding regions, indels that introduce frameshifts are, on average, selected against due to 
their deleterious effects on reproductive fitness 52, and our analysis corroborates this notion 
(Extended Data Figure 3k). In contrast, in non-coding regions of the genome, indels lengths 
tend to be a multiple of two bases (Extended Data Figure 3l). We have made a similar 
observation in the gnomAD dataset (data not shown) to ensure this is not a technical artefact 



 
 
 

17 

specific to our bioinformatics pipeline. The pattern is specific to repetitive regions of the genome 
(Extended Data Figure 3m), suggesting this pattern can in part be attributed to tandem 
duplications. 
 
Integrative Variant Analysis (IVA) web application 
The SNVs and indels have been loaded into the IVA web application 53. The data can be 
browsed freely online at http://bioinfo.hpc.cam.ac.uk/web-apps/nihrbr. 
 
Large deletion calling and quality control 
Two methods were used to call deletions larger than 50bp in each sample: Manta version 0.23.1 
54, which calls deletions on the basis of split read alignments and larger-than-expected insert 
sizes of read pair alignments, and Canvas version 1.1.0.5 55, which calls deletions on the basis 
of sustained reductions in coverage over a continuous stretch of the reference genome. Manta 
is optimised for calling deletions of 50bp–10Kb while Canvas is optimised for calling deletions > 
10Kb. 
 
As two algorithms were used to call deletions independently in each sample, deletion calls were 
merged across methods within samples if the reciprocal overlap between them was > 70%. 
Whenever deletions were merged, they were annotated with the Manta breakpoints as they are 
more precise than Canvas ones. After merging, each deletion called in each sample was 
assigned to one of the three QC categories “Fail”, “Possible” or “Confident,” as follows. 
 
“Fail”: any of the following criteria are met: 

● Length is > 50Mb, 
● Heterozygous genotype on non-PAR of chromosome X in a male, 
● Located on the mitochondrial or the Y chromosome, 
● Called by Canvas only and CANVAS_QUAL < 10, 
● Called by Manta only and MANTA_FILTER is not “.”. 

 
“Confident”: the call does not meet the “Fail” criteria and none of the following additional criteria 
are met: 

● > 70% overlaps a flagged region (see below), 
● Called by Canvas only and SNPS_DENSITY_HET_PASS > 0.5, 
● Called by Canvas only in a sample in which the number of Canvas calls is greater than 

the mean plus five times the standard deviation (as such extreme values are likely due 
to non-uniformities in coverage leading to excessive false positive calls), 

● Called by Canvas only in a sample with an excessive proportion of the genome deleted 
(greater than the 99.8% percentile across samples) if the number of deletions is greater 
than 50, 

● Called by Manta only and MANTA_QUAL < 20th batch-specific percentile, 
● Called by Manta only and MANTA_GQ < 20th batch-specific percentile, 
● Called by Manta only and MANTA_IMPRECISE = “TRUE”, 
● Called by Manta only and length > 1Mb, 
● Called by Manta only and DUKE0_START = “TRUE” or DUKE0_STOP = “TRUE”, 



 
 
 

18 

● Called by Manta only and SNPS_N_HET_PASS > 0, 
● Called by Manta only and heterozygous and READS_MEAN_MAPQ < 45. 

 
The parameters in capitals above are generated by the Manta and Canvas software,  except for 
DUKE0_START, DUKE0_STOP, SNPS_N_HET_PASS, SNPS_DENSITY_HET_PASS and 
READS_MEAN_MAPQ, which were generated using custom code. DUKE0_START and 

DUKE0_STOP flag deletions with start ± 10bp or end ± 10bp breakpoints within Duke non-

unique region (see definition below); SNPS_N_HET_PASS is the number of heterozygous SNPs 

with OPR ≥ 0.99 within deletion boundaries; SNPS_DENSITY_HET_PASS is the ratio of 

SNPS_N_HET_PASS to the length of deletion in Kb; READS_MEAN_MAPQ is the mean 

mapping quality of reads within deletion boundaries. Flagged regions in the reference genome 

were defined as follows: 
● Low mappability regions: DAC Blacklisted Regions (Encode, Accession: 

wgEncodeEH001432) and Human Mappability Blacklist (Encode, Accession: 
wgEncodeEH000322). 

● Centromeres 56 
● Telomeres 56 
● IG loci (NCBI, Gene IDs: 50802, 3492, 3535) 
● HLA loci (NCBI, Accession: NC_000006) 
● Segmental duplications  57, 58 
● Duke non-unique regions (Encode, Accession: 

wgEncodeDukeMapabilityUniqueness35bp) 
 
“Possible”: the deletion call does not meet either the “Fail” or the “Confident” criteria. Manual 
inspection of the reads using IGV of 100 deletion calls from the Possible and Confident deletion 
sets revealed that the false call rates were 24% and 10% respectively. To control the rate of 
false calls, whilst retaining calls in the Possible class which have a high chance of being real 
due to overlap with calls in the Confident set, any deletion in the Possible set which did not have 
a reciprocal overlap of at least 0.7 with any of the Confident deletions was removed.  
 
In order to select a set of rare deletions for use in the downstream association analysis, the 
deletion calls required annotating with internal cohort allele frequencies. The deletion calls from 
all samples were partitioned into groups corresponding to distinct latent deletions. The 
partitioning was performed as follows. First, we used the ‘hclust’ function in R to construct a 
dendrogram of all deletion calls. One minus the reciprocal overlap was treated as the distance 
between each pair of calls, and the complete linkage option was used (i.e. the distance between 
two clusters corresponds to the maximum distance between two elements chosen from the two 
clusters). The dendrogram was cut at the position corresponding to a reciprocal overlap of 0.7 to 
create the partition, thus ensuring that all pairs of deletion calls within the same cluster had a 
reciprocal overlap of at least 0.7. To boost the number of real deletions retained, the partitioning 
algorithm was applied to the Confident deletions alone, and Possible deletions were 
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subsequently assigned to the same groups as the Confident deletions with which they shared 
the highest reciprocal overlap. Applying this procedure resulted in 201,986 unique latent 
deletions. 
 
Some sets of overlapping Manta deletion calls that were likely generated by the same 
underlying deletion had very different variances of left-hand and right-hand breakpoints across 
samples. This caused the partitioning procedure to fail to assign such calls to the same latent 
deletion. To address this, we employed the following remedy. First, we constructed a 
dendrogram using hierarchical clustering as described above on the 201,986 latent deletions. 
The start and end points of each latent deletion were estimated by taking the mean of the start 
points and the mean of the end points respectively across the Manta calls mapped to the latent 
deletion, or if there were no Manta calls mapped, taking the means across the Canvas calls. For 
each node in the dendrogram for which the mean reciprocal overlap of its descending latent 
deletions exceeded 0.5, we evaluated whether the spatial densities of start points or end points 
were significantly greater than expected by chance. We did this by performing a binomial test 
under the null that the rate of start positions or end positions in the interval was the same as that 
of the entire chromosome. If all P-values (one for each internal node in the dendrogram) were 
greater than a threshold, the procedure was halted, otherwise the deletions descending from the 
node with the lowest P-value were merged, and the procedure was then repeated. We selected 
a threshold of 0.05 which retained high specificity whilst removing a large number of highly 
overlapping clusters which appeared on manual inspection to represent the same latent 
deletions. Application of this merging step reduced the number of deletions by 24,436 deletions, 
resulting in a final 177,550 unique deletions being retained for analysis. 
 
Retained deletion calls were then annotated with cohort allele frequencies based on the number 
of other deletions in their groups. We computed P-values under a null hypothesis of HWE for all 
common deletions as QC. The distribution of P-values was highly skewed (82% of deletions in 
unrelated Europeans with a cohort allele frequency of at least 0.05 had a P-value < 0.01) and 
we therefore concluded that the calling of common deletion genotypes was unreliable but 
retained rare deletions for downstream analysis (see below). 
 
Clinical reporting 
We performed diagnostic multi-disciplinary team (MDT) meetings for all domains except 
CNTRL, GEL, HCM, LHON and UKB. LHON focused on identifying modifier loci in nuclear DNA 
to explain incomplete penetrance of pathogenic mitochondrial variants, while HCM enrolled 
patients which had already been found negative in a screening for likely pathogenic and 
pathogenic variants in HCM diagnostic-grade genes. CNTRL and UKB are not ascertained to 
have a rare disease and the review of the GEL results is proceeding via the NHS Genomic 
Laboratory Hubs and the results will be reported in due course. No likely pathogenic or 
pathogenic variants were found for the 26 EDS samples analysed. Variant analyses and results 
described in the pertinent findings section exclude those six domains. 
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Gene lists and transcript selection 
For each of the 15 rare disease domains (i.e. all domains except CNTRL, GEL and UKB) a 
gene list was generated by domain-specific experts. Genes were included in the lists if there 
was a high enough level of evidence for causality (more than 3 independent families reported, 
or 2 families but additional functional studies and/or a mouse model). The 2,478 gene/domain 
pairs, encompassing 2,073 unique genes across all domains, were manually curated and 
annotated with the relevant RefSeq and/or Ensembl transcript identifiers to support variant 
reporting. Transcripts were selected based on, by order of priority, community input, presence in 
the Locus Reference Genomic (LRG) resource 59 or designation as canonical in Ensembl 
(Supplementary Table 2 (Diagnostic-grade genes)). Genes in the 15 lists were submitted to 
LRG and 38.3% now have a curated transcript. These gene lists were introduced into the 
SapientiaTM web application (Congenica Inc, Cambridge, UK) for use by the MDT to report 
causal variants to referring clinicians. There was significant overlap between the content of gene 
lists for the different domains (Figure 2b). During the course of the project, gene lists were 
updated and reversioned if new genes with an adequate level of evidence had been identified, 
and a final re-analysis of all samples was done on the most recent version of the gene lists. 
Hereafter, genes in the final lists are referred to as ‘diagnostic-grade genes’. 
 
Variant filtering 
Variants (SNVs, indels) were shortlisted if (i) their MAF in control populations 22 was < 1/1,000 
for putative novel causal variants and < 25/1,000 for variants listed as disease-causing in 
HGMD, (ii) their predicted impact according to the Variant Effect Predictor 60 was “HIGH” or 
“MODERATE” or if the consequences with respect to the designated transcript included one of 
“splice_region_variant” or “non_coding_transcript_exon_variant” if the variant was in a non-
coding gene, (iii) the variant affected a gene relevant to the patient’s disease. Variants with 
more than three alleles or a MAF >= 10% in the diseases cohort were discarded to, 
respectively, guard against errors in repetitive regions and remove potential systematic 
artefacts. The above filtering criteria were applied universally to all domains, except for ICP 
which adopted a higher MAF threshold of 3% for both novel and previously reported variants. 
The higher threshold accounted for causal variants being present in the male and non-child 
bearing female population. This strategy reduced the number of variants for review by the MDT 
from about 4 million per individual to fewer than 10, while confidently retaining known regulatory 
or moderately common pathogenic variants. 
 
Web application for variant assessment 
For each affected participant with prioritised variants, the variant calls, HPO-coded phenotype 
and the relevant metadata (unique study numbers; referring clinician and hospital; self-declared 
and genetically inferred gender, ancestry, relatedness, and consanguinity level) were 
transferred to Congenica for visualisation in the SapientiaTM web application during MDT 
meetings. SapientiaTM displays variant information such as predicted effect, location in the 
protein, MAFs in reference cohorts (e.g. ExAC, UK10K, and ESP 22, 44, 61, conserved regions, 
splice sites, and links to external resources (e.g. HGMD 47, ClinVar 62, OMIM 63 and PubMed 64, 
as well as showing patient data such as phenotype information in the form of HPO terms 14. 
SapientiaTM also allows annotation of each variant with its likely level of pathogenicity, the 
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variant’s contribution to the disease phenotype (partial, complete), and generation of tailored 
research reports for the referring clinicians. 
 
Variant interpretation in MDT meetings 
MDTs brought together experts from different hospitals across the UK and overseas, and 
typically consisted of an experienced clinician with domain-specific knowledge, a scientist with 
experience in clinical genomics, a clinical bioinformatician and a member of the reporting team. 
Assignment of the level of pathogenicity to variants followed the American College of Medical 
Genetics (ACMG) guidelines 65 and variants were marked in SapientiaTM as pathogenic, likely 
pathogenic or of unknown significance (VUS). Only pathogenic and likely pathogenic ones were 
systematically reported and VUSs were reported at the MDT’s discretion. As per REC-approved 
study protocol, secondary findings (e.g. pathogenic variants in BRCA1 in patients not presenting 
with a relevant cancer phenotype) were not reported. Deletions involving domain-relevant 
diagnostic-grade genes were reviewed in MDT and reported if deemed likely pathogenic or 
pathogenic. Complex rearrangements were analysed for IRD and NDD 66. The reports stated 
that clinical grade confirmation in accredited laboratory is recommended before feedback to the 
patient or modification of the clinical management. Although Sanger sequence confirmation data 
was not systematic collected on the >1000 reports issued, no failures to independently confirm 
the variants were reported. In addition, >200 variants were confirmed by Sanger sequence 
analysis or microarray internally and all variants reported were confirmed 4. 
 
Sensitivity of WGS to detect HGMD variants 
The mean depth of coverage by WGS was 36.07X across all samples. We compared the 
sensitivity obtained by WGS and by WES for variants catalogued as DM and DM? in HGMD 
Pro2018.1 by calculating the mean coverage for 1,000 representative male samples from our 
WGS data and the mean coverage provided by the ExAC dataset (Extended Data Figures 6a 
and 6b). A nominal cutoff of 20X (10X for variants on the non-PAR of the X chromosome) was 
used to distinguish between detected and non-detected to diagnostic standard. This analysis 
shows that 276 and 53 SNVs and indels, respectively, are not detected by either sequencing 
method and 75% and 64% of these variants, respectively, map to a small number of genes 
(HBA1, HBA2, VWF for SNVs; HBA1, HBA2 for indels). There was a significant difference in 
sensitivity between WES and WGS, with 6,132 (5.89%) versus 139 (0.13%) of DM and DM? 
variants not being detected by WES and WGS, respectively. In keeping with this observation 96 
(10%) of the 955 SNVs and indels reported by the MDT showed insufficient coverage in WES 
data and are thus likely not to have been detected by WES (Extended Data Figure 6c).  
 
Overview of diagnostic results 
In total 1,040 reports were generated by the MDTs listing 1,106 unique causal variants (733 
SNVs, 263 indels, 104 large deletions, 6 other) with 299 (30.0%) of the SNVs and indels being 
absent from HGMD Pro2018.1 (Supplementary Table 2 (SNV and indel list, Large deletion 
list)). The reported variants were observed in 327 unique diagnostic-grade genes, with half of 
the reported variants being in 21 genes and a quarter in only three genes (Figure 2d). 
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The vast majority of causal variants in each domain were observed in fewer than five genes and 
the remaining variants were dispersed over large numbers of the remaining diagnostic-grade 
genes (Extended Data Figure 7). Interestingly, 21 causal variants were reported for diagnostic-
grade genes shared between two domains (Extended Data Figure 7c), showing the pleiotropy 
of the phenotypic consequences of variants in the same gene. Two BPD cases with 
thrombocytopenia, platelet function abnormality accompanied by bleeding and a single NDD 
case with brachycephaly, microcephaly and global developmental delay, carried likely 
pathogenic missense variants in the phosphatase encoded by PTPN11, a gene known to 
harbour variants causal of Noonan syndrome 67, 68.  
 
Altogether, reports with likely pathogenic and pathogenic variants were issued for 1,040 affected 
individuals, with diagnostic yields ranging between 1.6% for PMG and 53.9% for IRD (Figure 
2c). The wide range in yield can be attributed to variation in the extent of genetic screening 
before enrolment (see Enrolment section), variation in the genetic architecture of disease and 
variation in the depth of knowledge of the genetic aetiologies of diseases. For example, the high 
yield for the IRD domain, where more than half of the affected individuals received a conclusive 
report, was achieved thanks to detailed phenotyping by retinal imaging, a lack of genetic pre-
screening and a predominantly autosomal recessive mode of inheritance. In BPD, extensive 
phenotypic pre-screening was performed (e.g. full haemostasis testing). However, certain 
phenotypic traits, such as bleeding, are strongly influenced by environmental exposures (e.g. 
trauma, including surgery), and the genetic architecture is diverse, resulting in an overall yield of 
12.7%. The reasons for the low diagnostic yield for PMG remains unclear, but there is emerging 
evidence that PMG may have a polygenic basis in most cases (manuscript in submission).  
 
Six MPMT cases, two SMD cases and one NDD case carried a protein-truncating variant in NF1 
causative of type 1 neurofibromatosis, manifesting variously as neoplasm of the nervous system 
or small intestine (MPMT), dilatation and neurofibromas (NDD), and failure to thrive, broad 
philtrum, xanthomatosis, cafe-au-lait spot, hypotelorism, juvenile splenomegaly, enlarged 
kidney, hepatomegaly, monocytosis, myelomonocytic leukemia, and thrombocytopenia, 
anaemia (SMD). Conversely, some patients had phenotypes caused by variants in several 
genes. For example, the seven patients with a causal variant in NMNAT1 or RPE65 all have 
retinal dystrophy, as expected, but two also have intellectual disability likely caused by other 
variants. 
 
The calling of deletions from WES results with adequate sensitivity and specificity remains 
challenging, particularly for short deletions encompassing only one exon or part of an exon and 
deletions of exons with poor coverage 69. In contrast, WGS allows improved calling of large 
deletions. From the 177,550 unique deletions being retained for analysis, and after exclusion of 
those with a cohort frequency above 1 in 4,000 in our cohort of unrelated individuals and 
deletions that did not overlap diagnostic-grade genes for the case’s domain, 524 deletions 
remained for visual review of reads in IGV. Nearly 85% (n = 444) unique deletions were deemed 
confirmed or likely to be real after this visual review and were presented to the relevant MDT. Of 
these, 23.42% (n = 104) were labelled as likely pathogenic or pathogenic (Supplementary 
Table 2 (Large deletion list)). The length of the 104 unique reported deletions ranged between 
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203bp and 16.80Mb (mean 786.33Kb; median 15.91Kb) and nearly half (n = 43) were absent 
from ClinVar. 
 
A total of 28 heterozygous deletions encompassing autosomal recessive genes were returned 
to the referring clinician, with 25 of them reported alongside a SNV or indel on the other 
haplotype. For example, one SRNS case harboured a rare heterozygous 14.55Kb deletion that 
removed the last 7 exons of NPHS1, which, in conjunction with a heterozygous splice donor 
variant on the other haplotype, explains the patient’s phenotype. This is the first report of a large 
deletion in NPHS1 being causal of SNRS. 
 
Because the project focussed on rare diseases, we observed an enrichment of probands from 
consanguineous families. When we reviewed the reported deletions, 15 were found to be 
present in homozygous state and nine of these were of probands born to consanguineous 
parents. For one case the apparent homozygosity of the deleted region was upon visual 
inspection of the reads in IGV rejected because it concerned an overlap between two unique 
heterozygous deletions originating from the parents. In the remaining five cases, the rare 
homozygous deletions were confirmed on inspection of the reads in IGV and by additional 
genotyping and uniparental disomy was excluded as a possible cause. Overall, 103 of the 1,040 
reports issued (9.9%) included a large deletion, confirming the clinical importance of this 
category of variants in the pertinent finding analysis, and the value of using accurate deletion 
calling algorithms. In addition, for the IRD and NDD domains, we performed an additional 
analysis for complex structural variants (cxSV) and identified two cases harbouring a cxSV in a 
relevant diagnostic-grade gene 66. 
 
The penetrance of causal genetic variants differed by domain. In general, causal variants in 
diagnostic-grade genes for IRD, NDD, BPD and SMD have high penetrance (conditional on a 
second causal allele being present on the other haplotype in the case of autosomal recessive 
diseases). In contrast, causal variants in the diagnostic-grade genes for ICP (ABCB4, ABCB11) 
result in cholestasis only when a woman becomes pregnant or takes specific drugs such as the 
combined oral contraceptive pill 70. These variants are therefore relatively common in the 
unaffected population: in ICP, variants with a MAF as high as 1/270 in unaffected individuals 
have been previously reported as likely pathogenic 71 and we observed these variants in a large 
portion of the participants in the ICP domain. Causal rare variants in BMPR2, which are present 
in approximately 80% of patients with familial PAH and in 20% of patients with idiopathic 
disease, have been reported to have a penetrance as low as 14% in males 8, 72 and 
environmental triggers are considered important in precipitating this severe disorder. In NPD, 
penetrance is also modulated by environmental exposure for instance low temperature in the 
case of non-freezing cold injury. For the SRNS domain, there was extensive genetic pre-
screening by whole exome sequencing and cases with likely pathogenic and pathogenic 
variants in known diagnostic-grade genes 73, 74, 75 have not been enrolled. This is one important 
reason for the relatively low diagnostic yield and new diagnostic-grade genes remain to be 
discovered for SRNS. It is also likely that there is a polygenic contribution to this condition. 
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Upload of reported variants to public repositories 
Reported alleles and their clinical interpretation have been deposited with ClinVar, accession 
will be available before publication. 
Reported alleles have been deposited with DECIPHER, accession will be available before 
publication. 
 
Reported variants informing changes in clinical management 
We did not systematically capture information whether the MDT-reported results led to changes 
in clinical management or the repurposing of existing drugs. There have however been some 
striking examples of how the latter has changed the care path of patients enrolled in this project. 
First, 27 patients with early-onset dystonia were shown to carry causal variants in the histone 
methyltransferase gene KMT2B, and many have been treated successfully by deep brain 
stimulation 76. Second, gain-of function variants in DIAPH1 cause macrothrombocytopenia and 
deafness 77. We have recently shown that the treatment of such a patient with Eltrombopag, a 
FDA-approved drug for the treatment of autoimmune thrombocytopenia, increases the platelet 
count to a safe level in the perioperative setting 78, thereby reducing the need to use donor 
platelet concentrates. Finally, we identified a pedigree with a p.E527K gain-of-function variant in 
the kinase SRC resulting in juvenile myelofibrosis and severe thrombocytopenia, further 
complicated by osteoporosis. After the discovery of the pathogenic effect of this variant, the 
proband (case 27 of the published pedigree) was successfully cured of her thrombocytopenia by 
an allogeneic haematopoietic stem cell (HSC) transplant from her HLA compatible sister, who 
was negative for the causal variant 79. 
 
There are also many examples of how the reported variants have led to the better stratification 
of patient care, including the frequency of clinic visits. We showed that haploinsufficiency of 
NFKB1 is the most frequent cause of primary immune deficiency, with patients having recurrent 
and severe infections accompanied by autoimmunity and unexplained splenomegaly and an 
increased risk of oncological manifestations. These new findings have a direct impact on the 
care of this genetically defined category of PID patients 10. Similarly, we identified 27 BPD cases 
with isolated thrombocytopenia caused by variants in ANKRD26, ETV6 or RUNX1. These genes 
encode DNA-binding proteins and the identified variants are associated with an increased risk 
for haematological cancers, which is particularly increased for patients with variants in ETV6 80, 

81 and RUNX1 82. Hence frequent follow-up clinic visits are warranted and allogeneic HSC 
transplants needs to be considered as it provides an option for cure. In contrast, the 19 cases 
with thrombocytopenia due to variants in ACTN1, CYCS or TUBB1 could be reassured of the 
benign nature of their condition 83 and such patients do not require regular follow-up but 
haematology consultation is required at times of haemostatic challenges (e.g. childbirth, surgical 
procedures, including dental ones). Finally the identification of four new genes (ATP13A3, 
AQP1, GDF2, SOX17) for PAH has led to an improved diagnostic yield for this severe condition 
and the genetic findings have also confirmed that mutations in BMPR2 84 and EIF2AK4 carry a 
worse prognosis. In particular, patients carrying causal variants in EIF2AK4 should be referred 
for early consideration for lung transplant 7. 
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Structural variants in patients with null protein phenotypes 
Most of the patients enrolled to the BPD domain had comprehensive intermediate phenotype 
data relating to haemostasis, including measurements of coagulation factor levels (Factor I 
(fibrinogen; FGA, FGB, FGG), II (F2), VII (F7), IX (F9), XI (F11), von Willebrand Factor (VWF)), 
platelet receptor expression levels (e.g. of the fibrinogen receptor (GPIIbIIIa; ITGA2B/ITGB3) 
and red cell Rh grouping information. These data allows us to query unexplained cases who 
had a complete or near absence of one of these proteins, which we refer to as having ‘null 
phenotypes’. Genetic defects relating to null phenotypes tend to have recessive and X-linked 
modes of inheritance for genes on the autosomes and chromosome X (F9), respectively. We 
identified 8 unsolved cases with null phenotypes for coagulation factors, 6 unsolved cases of 
possible Glanzmann’s thrombasthenia (determined as cases having impaired aggregation in 
response to at least two of five agonists (arachidonic acid, collagen, epinephrine, thromboxane 
analogue, TRAP), but normal agglutination with ristocetin, and one patient with a mild bleeding 
disorder accompanied by an unexplained haemolytic anaemia lacking all common Rh groups 
from her red cells.  
 
Three of the 15 cases had a rare coding variant on one haplotype of the relevant gene but the 
other haplotype appeared to be wild-type according to the standard variant calls. Through visual 
inspection of the reads in IGV, we were able to resolve two of these three cases. 
The first of these had Glanzmann’s thrombasthenia and carried a variant in ITGB3 which 
encodes a premature stop at amino acid position 242. Visual inspection of the gene body 
revealed an excess of improperly mapped reads in intron 9, primarily due to alignment of paired-
end reads facing away from, rather than towards, each other (Extended Data Figure 8a). We 
counted the number of improperly read pairs in the region in our collection after excluding the 
GEL domain participants (as we do not hold their phenotypic data), and found this case to have 
the greatest number of improperly mapped reads out of 6,656 individuals whose samples were 
sequenced using 150bp reads (Extended Data Figure 8b). We then analysed a further 304 in-
house WGS samples sequenced in the same manner after the main data freeze and identified a 
further two individuals with an excess, primarily due to read mates aligning to different 
chromosomes (Extended Data Figure 8c,d). These two related individuals were from another 
Glanzmann’s thrombasthenia case with his (the proband) platelets being devoid of GPIIbIIIa and 
the mother who showed a ~50% reduced expression of GPIIbIIIa (data not shown). The 
Glanzmann’s case also carried a rare missense paternally inherited variant encoding a change 
from threonine to proline at amino acid position 456 of ITGB3. Sanger sequencing of the ITGB3 
cDNA obtained by reverse transcription of the RNA from the proband’s platelets showed 
exclusive expression of the proline encoding allele and provided no evidence of an alternatively 
spliced transcript (data not shown). Oxford Nanopore-based sequencing of long-range PCR-
amplified target DNA was performed as previously described 66 with the aim to resolve the 
genetic architecture of intron 9. The flow cell ran for 3 hours, and the mean coverage was 
863,986X. We observed an insertion of a SVA (Alu, SINE-VNTR-Alu) retrotransposon (RE) 
element of 2,270bp at position chr17:45369041, predicted to induce nonsense-mediated decay. 
SVA elements are present throughout the reference genome, explaining the short read mates 
aligning to various chromosomes (Extended Data Figure 8e). To date, roughly 130 pathogenic 
variants caused by retrotransposon elements have been documented in the literature 85, but 
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none of them have been implicated in Glanzmann’s thrombasthenia. Here we report a first 
example and demonstrate the utility of long-range sequencing reads in resolving causal variants 
of a complex nature suggested by short-read WGS analysis. 
 
The red cells of the second resolved case serotyped negative for all common antigens of the Rh 
blood group system. Upon further investigation the red cells were shown to lack both the RHD 
and RHCE proteins and also the Rh-associated glycoprotein RHAG. This very unusual Rh-null 
red cell phenotype is known to be cause a syndrome characterised by chronic haemolytic 
anaemia of varying severity 86. The most frequent genetic explanation for this rare condition are 
loss-of-function variants for both RHAG haplotypes, because the RHAG protein is essential for 
the expression of the RHD and RHCE proteins on the red cell membrane 87. This Rh-null case 
was shown to have a known causal loss-of function splice donor acceptor variant in intron 2 of 
RHAG 88, but a second event on the alternate haplotype was not identified by automated variant 
calling. Upon visual inspection of the reads of the RHAG locus, we identified the second event 
being a heterozygous tandem duplication spanning exons 2–7.  
 
Genetic association between rare variants and rare diseases 
 
Statistical approach 
We used the BeviMed statistical method 89 to identify genetic associations with rare diseases in 
our dataset. Each run of BeviMed requires the definition of a set of cases and controls, all of 
which should be unrelated with each other, and a set of rare variants to include in the inference. 
To achieve adequate power, the cases should be chosen such that they potentially share a 
common genetic aetiology (e.g. because the phenotypes are similar) and the rare variants 
should be chosen such that they potentially share a mechanism of action on phenotype (e.g. 
because they are predicted to have a similar effect on a particular gene product). BeviMed 
computes posterior probabilities of no association, dominant association and recessive 
association and, conditional on dominant or recessive association, it computes the posterior 
probability that each variant is pathogenic. We can impose a prior correlation structure on the 
pathogenicity of the variants that reflects competing hypotheses as to which class of variant is 
responsible for disease. These classifications typically group variants by their predicted 
consequences. The class of variant responsible can then be inferred by BeviMed, thereby 
suggesting a particular mechanism of disease. 
 
Case/control groupings using phenotypic tags 
A set of phenotypic ‘tags’ were defined for each domain that determined case/control groupings 
for BeviMed. Cases shared a particular tag if their phenotypic characteristics were considered 
compatible with a shared genetic aetiology of disease. Tags could be set using logical rules 
applied to the HPO terms and other data or they could be set manually. The full set of tags and 
corresponding numbers of cases and controls can be found in Supplementary Table 3 
(Phenotypic Tags). Given a particular tag and a set of rare variants, the corresponding 
case/control groupings were obtained as follows: 

1. Cases: unrelated (i.e. at most one per family) affected individuals with the tag who have 
not been explained by other variants. 
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2. Controls: members of the maximal set of unrelated individuals who do not have the tag 
and who are not related to any of the cases. 

 
Selection of variants affecting transcript sequences 
For each gene, we selected SNVs/indels for inclusion in the BeviMed analyses as follows. First, 
let us define PMAFX for a given variant as the probability that the minor allele count is at least 
the observed minor allele count, given that MAF = 1/X. Only variants with an internal MAF 
amongst unrelated individuals less than 0.002 were used. Additionally, variants had to have a 
PMAF500 less than 0.05 in European and non-European probands and in European and non-
European members of the maximal unrelated set to avoid bias in the association analyses. 
SNVs/indels were retrieved from the HBase variant database and were filtered as follows: 

● Minimum OPR >= 0.98 for each of the three batches 
● Unless a variant was in HGMD with class DM/DM?, it had to have PMAFZ < 0.05 in 

every gnomAD population (only gnomAD males were used to compute the PMAFz on 
variants in the non-PAR of X). We used Z =1,000 for recessive association analyses and 
z =10,000 for dominant association analyses. 

● Variants in the non-PAR of X that appear only as heterozygotes in males were excluded. 
● Multi-allelic variants for which the reference allele was the minor allele were excluded. 
● Unless a variant was in HGMD with class DM/DM?, it had to have a CellBase-predicted 

consequence of type transcript_ablation, splice_acceptor_variant, splice_donor_variant, 
stop_gained, frameshift_variant, stop_lost, start_lost, transcript_amplification, 
inframe_insertion, inframe_deletion, missense_variant, protein_altering_variant, 
regulatory_region_ablation, non_coding_transcript_exon_variant or 
5_prime_UTR_variant on a transcript of type lincRNA, miRNA, misc_RNA, Mt_rRNA, 
Mt_tRNA, protein_coding, rRNA, snoRNA, snRNA, TR_C_gene, TR_D_gene, 
TR_J_gene, TR_V_gene, IG_C_gene, IG_D_gene, IG_J_gene or IG_V_gene ("retained 
biotypes"). 

 
Large deletions with a PMAF500 less than 0.05 in European and non-European probands, and in 
European and non-European members of the maximal unrelated set were selected for use in 
the BeviMed analysis. 
 
The worst predicted consequence of a variant with respect to a particular gene was annotated 
as being “5’ UTR” if there were no consequences with HIGH or MODERATE impact and at least 
one transcript was annotated with the 5_prime_UTR_variant consequence, respectively. The 
worst predicted consequence was annotated as being “moderate” if at least one transcript was 
annotated with a MODERATE or HIGH impact or the non_coding_transcript_exon_variant 
consequence. The worst predicted consequence was annotated as being “high-impact” if at 
least one transcript was annotated with a HIGH impact or the variant was a large deletion that 
overlapped an exon of a transcript with a retained biotype. Thus, all variants in the high-impact 
class were also in the moderate class, while variants in the 5’ UTR class were not present in 
any other classes. The rationale for this is that a missense variant can be loss of function and 
thus have an equivalent effect as a truncating variant such as a frameshift. The prior 
probabilities of the models that included each of the four groupings of variants were 0.01, 0.495, 
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and 0.495 for the “5’ UTR”, “moderate” and “high-impact” variant classes, respectively. All priors 
in the BeviMed model were left as default, including a prior probability of association across all 
association models of 0.01. 
 
BeviMed results for genes 
BeviMed was run for each tag/gene pair. For each pair, the total posterior probability of 
association, summing over all modes of inheritance and classes of variants (5’ UTR, moderate 
and high-impact) was recorded. A total posterior probability greater than 0.75 was considered 
good evidence of a causal relationship. The BeviMed model assumes that cases and controls 
are drawn from the same population and, consequently, that non-causal variants have the same 
MAFs in cases and controls. Using external data from gnomAD, variants with a MAF likely to be 
above a given threshold in any gnomAD-defined population were excluded (see above). 
However, due to the small sample sizes for non-European populations in gnomAD, modelled 
variants observed in non-European study participants were more likely not to be rare in their 
respective populations than modelled variants observed in European study participants. If these 
variants were carried by non-Europeans with the same tag, a false positive association could 
result. In order to guard against this risk, we removed variants observed exclusively in at least 
two people of non-European ancestry and re-ran each analysis. The original tag/gene pairs for 
which the total posterior probability of association in these subsequent analyses dropped below 
0.1 were removed. The results that remained are shown in Figure 3. 
 
Rare variants associated with phenotypic extremes in the UK Biobank cohort 
A genomewide association study (GWAS) of FBC traits measured in approximately 173,000 
European ancestry participants in the UK Biobank cohort (n~133,000) and the INTERVAL trial 
(n~40,000) 90 previously identified 582 genetic variants independently associated with 
quantitative properties of mature red blood cells 91. Most of these variants were common, with 
only 40 having an in sample MAF lower than 1%. However, the GWAS design had limited power 
to identify associations with rare variants due to the imprecision of genotype imputation 
(Supplementary Materials, Appendix 2). In order to identify rare variants associated with full 
blood count measured properties of red cells, we attempted to derive a univariate quantitative 
score with high rare-variant heritability by using the previously reported GWAS associations of 
65 variants modulating properties of red cells of with MAF<1% as a model for the effect of rare 
variants on mature red cell parameters (Figure 4a). 384 individuals were selected for WGS from 
each tail of the score, of which 383 from the left tail and 381 from the right tail passed quality 
control after successfully sequencing (Figure 4b). The left tail of the score (BeviMed tag “Left”) 
represents individuals with lower than average RBC# and higher than average MCV, while the 
right tail (BeviMed tag “Right”) represents individuals with higher than average RBC# and lower 
than average MCV (Figure 4c). The participants from each tail that passed quality control were 
treated as a rare-disease case group in a BeviMed analysis. The inferred posterior probabilities 
for the genes with the strongest evidence for association (posterior probability greater than 0.4) 
are displayed in Figure 4d. The strength of evidence (respective posterior probabilities 0.997 
and 0.575) that rare variants in HBB and TFRC are associated with the low MCV/high RBC# 
phenotype (the right tail of the score) is entirely consistent with biological knowledge 
(Supplementary Table 3 (BeviMed Association UK Biobank)) and these associations can be 
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considered ‘positive controls.’ Similarly, prior biological knowledge suggests that the association 
identified with the transcription factor CUX1 is very plausible while the associations identified 
with ALG1, ZNF407 are plausible. The weight of evidence from a detailed examination of the 
alleles implicated in the other genes exhibiting a BeviMed posterior probability of association > 
0.4, together with the expression profiles of the genes in blood cells and other tissue types is 
less compelling.  In conclusion, our analysis demonstrates that genomic loci carrying rare alleles 
causing large deviations in quantitative traits can be identified by applying the BeviMed analysis 
approach. Since the extreme tails of any heritable quantitative trait are likely to be under 
negative selection, mutations in such genes may cause rare diseases or be otherwise clinically 
relevant. The forthcoming WGS of the full UK Biobank cohort offers a further opportunity to 
search for rare variant associations with other biomedically relevant quantitative intermediate 
traits, including blood cell traits not explored here. 
 
Matchmaker Exchange 
GeneMatcher 92, which is part of Matchmaker Exchange 93, was used to identify patients outside 
our collection with variants in candidate disease genes identified in our collection through a 
manual review process informed by the literature. Two syndromic BPD patients with platelet 
dense granule storage pool disease in addition to having an NDD had a match. The first patient 
with hypotonia, mental disability, epilepsy, uncontrolled movements and gastrointestinal 
problems matched with SLC18A2 (coding for a serotonin transporter VMAT2) deficiency and a 
complete lack of serotonin storage in his platelet dense granules was detected (submitted). The 
second patient with psychomotor retardation and epilepsy, matched with MADD deficiency, a 
candidate gene for platelet function 94. For both these patients, co-segregation analysis 
supported the presence of one recessive variant in each parent. Additionally, an NDD patient 
with intellectual disability, autistic features and seizures was linked via GeneMatcher to three 
unrelated patients with a similar phenotype, and a fourth patient was connected by personal 
correspondence 95. In those five patients, the WASF1 gene had been independently identified 
as a strong candidate because of features consistent with those of developmental-disorder-
associated genes. It is constrained for loss-of-function variation in the ExAC Browser (pLi = 
0.91) and is highly and specifically expressed in the adult human brain 96. All variants are de 
novo, loss of function, and absent from 1000 Genomes, the ExAC and gnomAD data; 
interestingly, they cluster around the WASP-homology 2 (WH2) domain, included in the highly 
conserved C-terminal actin-binding WCA region regulating WASF1. 
 
Regulome analysis 
 
Ethics 
Samples and information for generating open chromatin and histone modification data for 
activated CD4+ (aCD4) T-cells were collected with written and signed informed consent. The 
study was approved by the East of England – Cambridgeshire and Hertfordshire REC reference 
05/Q0106/20. The other regulome data have already been released as part of previous studies 
and information about the consent under which these samples were collected can be found in 
the publicaitons related to these former studies. 
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Definition of cell type specific regulomes 
As WGS provides variant calls across the entire genome, we sought to identify rare variants that 
exert their effect on phenotype through disruption of non-coding (possibly non-exonic) 
regulatory elements, such as enhancers. These elements have not been systematically assayed 
in past studies that used whole-exome or other targeted sequencing. Regulatory elements are 
largely specific to particular cell types. Thus, in order to focus the search for regulatory 
pathogenic variants, we first defined the coordinates of elements for different cell types 
implicated in the disease domains (Supplementary Table 3 (Regulome Cell Data)). We call 
each set of regulatory elements corresponding to a cell type a regulome. We defined regulomes 
for aCD4 cells, B cells (B), erythroblasts (EB), megakaryocytes (MK), monocytes (MON) and 
resting CD4+ T cells (rCD4). 
 
For each cell type, we used open chromatin data (ATAC-seq) and histone modification data 
(H3K27ac) to identify regulatory elements using the RedPop method (see below). Additionally, 
for MK and EB, we had access to the following transcription factor (TF) ChIP-seq data, which 
were used to call peaks (see below) and supplement the regulomes: FLI1, GATA1, GATA2, 
MEIS1, RUNX1, TAL1 and CTCF for MK; GATA1, KLF1, NFE2 and TAL1 for EB; and CTCF for 
MON and B.  
 
For each cell type, the regulome build process proceeded as follows: 

1. Call RedPop regions using ATAC-seq/DNAse-seq and H3K27ac-seq data. 
2. Call TF binding peaks using ChIP-seq data if available and obtain enrichment scores. 
3. Discard TF regions with an enrichment score < 10 unless they overlap between at least 

two different TFs. 
4. Collapse overlapping features to obtain a single genomic track. 
5. Merge features within 100bp of each other. 

 
Each regulome feature was assigned a gene label using either gene annotations from Ensembl 
(v75) or a compendium of previously published promoter capture Hi-C data (pcHi-C) 97 as 
follows: 

1. Assign to a gene if the feature overlaps the gene or the region up to 10,000bp either side 
of the gene body. 

2. Assign to a gene if the feature overlaps the gene’s pcHi-C ‘blind’ spot. This region is 
defined by three HindIII restriction fragments, incorporating the capture fragment 
overlapping target gene TSS, and 5’ and 3’ adjacent fragments. 

3. Assign to a gene if the feature overlaps a linked promoter interacting region identified 
using pcHi-C in the same cell type. 

 
Regulatory element detection using patterns of peaks (RedPop) 
We sought to identify regulatory elements in cell types of relevance to the rare disease domains 
in this project in order to search for possible pathogenic variants within them. It is important to 
locate these elements because they are much more likely to harbour pathogenic variants than 
other non-coding regions of the genome. Open chromatin data alone do not provide sufficiently 
high spatial resolution and transcription factor ChIP-seq restricts to regions bound by proteins 



 
 
 

31 

targeted by specific antibodies. Open chromatin and histone modification (H3K27ac) 
sequencing data together, on the other hand, can be used to detect regulatory elements with 
high resolution and in an unbiased fashion. Open chromatin around binding sites typically 
results in a broad, low-resolution peak of elevated ATAC-seq/DNAse-seq coverage. The 
surrounding nucleosomes of a regulatory element are typically acetylated, leaving two peaks in 
H3K27ac coverage, spaced a few hundred bp apart. By combining the genomic coverage tracks 
of an open chromatin and an H3K27ac assay, regulatory elements can be detected with high 
precision. We developed an algorithm for regulatory element detection using patterns of peaks 
(RedPop) (manuscript in preparation) that utilises these patterns. 
 
First, ATAC-seq/DNAse-seq and H3K27ac ChIP-seq reads were aligned to the genome using 
the BWA 98 aln command. Open chromatin peaks were then called using F-Seq 99. Additionally, 
an open chromatin coverage track was generated, which was normalised by dividing by the 
mean coverage genome-wide and smoothed by binning consecutive segments of 40bp. Peaks 
were extended upstream and downstream symmetrically until their lengths were at least 3.2Kb 
and overlapping segments were subsequently merged. These merged segments were 
subsequently considered separately. 
 
The covariance between the open chromatin track and the H3K27ac track was computed in 
800bp sliding windows and subsequently smoothed by replacing each covariance value with the 
mean of the values in the surrounding 800bp. Local minima of the smoothed covariance were 
obtained as the positions for which the value was less than the values in the surrounding 160bp. 
Any local minima with a smoothed covariance less than -1 was recorded. 
 
For each local minimum, the stretch nearest to it and any other stretches within 100bp of it, for 
which locally normalised open chromatin coverage exceeded the locally normalised H3K27ac 
coverage were recorded and expanded to 400bp, where locally normalised coverage at a 
position was given by the coverage divided by the mean coverage in the surrounding 800bp 
region. These stretches are retained as long as the open chromatin coverage track exceeded 
47X (a default value obtained through a sensitivity/specificity study of data from MKs), otherwise 
they were discarded. The retained stretches were merged and recorded as the locations of 
regulatory elements. 
 
Transcription factor binding peak calling 
We applied the BLUEPRINT protocol for chromatin immunoprecipitation sequencing (ChIP-seq) 
data analysis. 100 Briefly, H3K27ac histone modification sequenced reads were mapped to 
human genome GRCh37 with BWA 98 aln method. Low-quality reads (-q 15), multi-mapped and 
duplicate reads were marked and removed with samtools and picard 101 respectively. ChIP 
enrichment was estimated with deepTools plotFingerprint 102 and samples were merged 
together to obtain one alignment file per cell type. H3K27ac peaks were called with MACS2 103 
with narrow option. For each cell-type the corresponding input file was used and downsampled 
according to ChIP size. 
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Identifying possibly causal deletions of elements regulating diagnostic-grade genes 
In order to identify regulatory elements from the list described above that are involved in rare 
diseases, we examined rare deletions with a PMAF500 less than 0.05 in European and non-
European probands overlapping these elements. We further filtered these deletions to retain 
only those for which one of the putative target genes for an overlapping element is a diagnostic-
grade gene associated with recessive disorders for the domain of the sample with the deletion, 
the cell type for which the element was called is relevant to the domain of the sample 
(Supplementary Table 3), and at least one of the following is true: 

● the gene harbours a moderate impact rare allele (selected as described in the Genetic 
association testing in genes section) in the same sample, 

● the deletion was called homozygous or hemizygous by either Manta or Canvas. 

Our approach is illustrated in Figure 5a. Our filtering resulted in a list of only four deletions: a 
heterozygous deletion overlapping the 5' UTR region of the ARPC1B found in a PID patient who 
also carries a frameshift variant in the same gene (Thaventhiran et al, under review); a 
hemizygous deletion of a GATA1 enhancer in case with thrombocytopenia, described below; a 
homozygous deletion of a CTCF binding site in the first intron of LRBA in a PID patient, 
described below; and a deletion which on manual inspection proved to be a technical error. 

Deletion of GATA1 enhancer and HDAC6 open reading frame  
Screening for deletions of MK-specific enhancers in BPD patients that are absent in the other 
rare disease cohorts identified a hemizygous 4108bp deletion (X:48,659,245-48,663,353) that 
comprised a potential MK enhancer and the four first exons of the histone deacetylase 6 
(HDAC6) gene (Figure 5b, Extended Data Figure 9a) in a 9-year old boy with 
macrothrombocytopenia, bleeding symptoms and mild intellectual disability (ID) with an autism 
spectrum disorder (ASD) (Figure 5c). His parents are healthy though mild asymptomatic 
thrombocytopenia was also present in the mother (Figure 5c). The patient was hemizygous for 
the deletion while the mother was a heterozygous carrier (Figure 5d, Extended Data Figure 9b). 
Platelets of the propositus express no HDAC6 protein as the deletion removes part of this X-
linked gene including the ATG start site (Figure 5e). In contrast, HDAC6 expression in platelets 
from the mother was comparable to expression levels in platelets from unrelated controls and 
the father. HDAC6 is the major deacetylase responsible for removing the acetyl group from 
Lys40 of α-tubulin, which is located in polymerized microtubules 104. Indeed, absence of HDAC6 
expression in platelets was accompanied with very high expression levels of acetylated α-
tubulin while non-acetylated α-tubulin was expressed at similar levels as controls (Figure 5e). 
Platelets from the mother but not the father contain at least some platelets with hyperacetylated 
α-tubulin levels (Figure 5e). HDAC6 is extremely intolerant to LOF variants (pLI:1 and 
%HI:48.03) and the propositus is the only patient in our cohort with a hemizygous high impact 
variant. Figure 5b illustrates that the deleted region also contains binding sites for several 
transcription factors important for megakaryopoiesis 105. In addition, this region overlaps with a 
recently identified regulatory element upstream of HDAC6 that was shown to strongly control 
GATA1 expression in megakaryoblastic K562 cells 106. Interestingly, GATA1 protein was 
significantly decreased in platelets from the propositus and mother (Figures 5f and 5g). GATA1 
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is an important transcription factor that regulates platelet formation and hemizygous variants 
result in macrothrombocytopenia 107.  
 
Platelets of the propositus have an increased Mean Platelet Volume (MPV) and Platelet 
Distribution Width (PDW) while for the mother only the PDW was increased (Figure 5c). 
Electron microscopy (EM) analysis of platelets from the propositus confirmed larger and rounder 
platelets with fewer alpha granules, very similar to GATA1 deficient platelets 108 (Extended Data 
Figure 9c, quantification shown in Extended Data Figures 9d and 9e). HDAC6 deficiency has 
never been described for humans while Hdac6 knockout mice have no gross defects 109 except 
for alternated emotional behaviour 110 and enhanced platelet spreading due to their hyper-
acetylated microtubules while their bleeding tendency was not evaluated 111. Structured 
illumination microscopy (SIM) analysis of acetylated tubulin in combination with F-actin 
(Extended Data Figure 9f) was performed for platelets under basal and activated conditions. 
Non-activated platelets of the propositus show disturbed marginal bands that are 
hyperacetylated (Extended Data Figure 9g). Quantification of platelet spreading on fibrinogen 
showed enhanced spreading for the propositus while platelets from the parents are similar to 
the control (Extended Data Figure 9h). Hdac6 knockout mice have normal platelet counts and 
exhibit normal megakaryopoiesis in contrast to in vitro studies using human MKs with HDAC6 
depletion using shRNA or inhibition using the HDAC6 inhibitor Ricolinostat that resulted in a 
defective proplatelet formation 112. Peripheral haematopoietic stem cells from the propositus, his 
parent and an unrelated control were differentiated to MKs and a significant reduction in 
proplatelet-forming MKs was observed for the propositus while a milder defect was also 
detected for the mother (Extended Data Figure 9i). All MKs from the patient and some cells from 
the mother show absent HDAC6 expression (Extended Data Figure 9j). In contrast to MKs 
treated with HDAC6 inhibitors, we detect obvious microtubule detects in MKs for the patient and 
mother (Extended Data Figure 9k). Proplatelet formation defects have also been observed in 
MKs from GATA1 deficient patients 108 and therefore it is difficult to distinguish between the 
contributions of GATA1 versus HDAC6 deficiency for the MK defect. In contrast, the platelet 
phenotypes observed in the propositus seem to combine a GATA1 defect with low GATA1 
expression, macrothrombocytopenia and fewer alpha granules combined with hyper-acetylated 
microtubules resulting in enhanced platelet spreading due to HDAC6 deficiency. 
 
Details on the functional analysis of the GATA1 enhancer/HDAC6 deletion 
 
PCR and Sanger sequencing to validate the HDAC6 deletion. Genomic DNA was extracted 
from peripheral leukocytes. PCR was performed with the primers flanking the deletion (HDAC6-
F: 5’-catcttcaagaggatcagagg and HDAC6-R: 5’- catagctagacactggtt), generating a PCR 
fragment of 358 bp when the deletion is present. Sanger sequencing of PCR fragments was 
perform using the same primer sets.  
 
Antibodies. The following antibodies were used: rabbit HDAC6 (clone D2E5, Cell Signaling 
technology, Danvers, MA, USA), mouse anti-acetylated tubulin antibody (clone 6-11B-1, Sigma, 
St Louis, MO, USA), mouse anti-alpha-tubulin (A11126, Thermo Fisher Scientific, Waltham, MA, 
USA), rabbit VWF (Dako, Aligent Technologies, Leuven, BE), mouse CD63 and rat GATA1 N6 
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(Santa Cruz Biotechnology, Dallas, TX, USA), rabbit GATA1 (NF that was produced against 
recombinant N-terminal zinc finger, 113, rabbit GAPDH (14C10, Cell Signaling) and integrin beta3 
(sc- 14009; Santa Cruz Biotechnology).  
 
Electron and fluorescent microscopy of platelets and immunoblot analysis. Electron microscopy 
for platelets from the propositus was performed as described 107. Immunostaining of resting and 
fibrinogen spread platelets was performed for platelets from the propositus, parents and an 
unrelated healthy control as previously described 114. Platelet imaging was performed using a 
structured illumination microscope (SIM, Elyra S.1, Zeiss, Heidelberg, D.E). Images were 
analyzed with ZEN Black (Zeiss, Heidelberg, DE). Images were analyzed with ImageJ software 
(National Institutes of Health, Bethesda, Maryland, U.S.A) using the ‘Analyze Particles’ plugin 
for automated analysis. Total protein lysates were obtained from platelets as described 115. 
Protein fractions were resolved by SDS–polyacrylamide gel electrophoresis, and blots were 
incubated with the indicated antibodies. Membranes were next incubated with HRP-conjugated 
secondary antibody, and staining was performed with the ECL detection reagent (Life 
Technologies). Chemiluminescent blots were imaged with the ChemiDoc MP imager, and the 
ImageLab software version 4.1 (Bio-Rad) was used for image acquisition.  
 
Hematopoietic stem cell differentiation assay. CD34+ hematopoietic stem cells (HSC) were 
isolated by magnetic cell sorting (Miltenyi Biotec) from peripheral blood from the propositus, his 
parents and an unrelated control. The recovered (differentiation day 0) CD34+ stem cells were 
cultured in StemSpan SFEM medium with StemSpan CC100 ensuring strong expansion of HSC 
for 3 days (Stem Cell Technologies, Vancouver, C.A). Differentiation was next initiated by 
adding 50ng/ml thrombopoietin (TPO), 25ng/ml stem cell factor and 10ng/ml interleukin 1β 
(Peprotech, Rocky Hill, New Jersey, U.S.A). Proplatelet formation counting (on total 
differentiation day 12) as previously described 114, 79. For immunostaining MK were seeded for 4 
hours on fibrinogen-coated coverslips and stained cells were photographed at 63x magnification 
with a confocal microscope (AxioObserver.Z1, Zeiss, Heidelberg, D.E).  
 
Homozygous deletion of CTCF binding sites in the first intron of LRBA 
LRBA is a member of the gene family of BEACH-domain containing proteins and has been 
recently identified as a novel diagnostic-grade gene for the PID domain 116. Homozygous coding 
mutations causing loss-of-function of LRBA are causal of a syndrome characterized by early 
onset hypogammaglobulinemia with autoimmunity. We noted an unresolved PID case who 
presented with a mild pancytopenia, characterised by mostly neutropenia and autoimmune 
haemolytic anaemia, occasionally complicated by periods of thrombocytopenia (Figure 5h) and 
with a homozygous deletion of a CTCF binding site in an element proximal to the LRBA 
promoter. The clinical features of this PID case are compatible with reduced LRBA function and 
it is thus plausible that the deleted CTCF-binding element is causally implicated in the 
pathologies observed in this patient. 
 
Identifying possibly causal SNVs in elements regulating diagnostic-grade genes 
In order to identify possibly causal non-coding SNVs, we examined rare SNVs with a CADD 
phred score > 20 which overlapped a regulatory element of a diagnostic-grade gene associated 
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with a recessive disorder. Both the cell type in which the element was called and the sample 
had to be labelled with the same domain (Supplementary Table 3). Furthermore, the sample 
had to have a HIGH impact rare variant such as a deletion or premature stop in the body of the 
diagnostic-grade gene. Application of this procedure yielded two candidate SNVs in elements 
regulating AP3B1 and MPL. The SNV in the MPL element was followed up for further analysis. 
 
An SNV in the promoter of MPL, combined with deletion of exon 10 of MPL 
MPL encodes the receptor for the megakaryocyte growth and development factor 117 
thrombopoietin. Coding loss-of-function mutations on both alleles of MPL are causal of chronic 
amegakaryocytic thrombocytopenia (CAMT) 118. CAMT can be categorised as type 1 or type 2 
depending on the severity of the thrombocytopenia and ensuing bone marrow aplasia. The 
bioinformatic approach outlined above highlighted a thrombocytopenic 10-year-old male with a 
single exon heterozygous deletion of MPL (chr1:43,814,723-43,815,177) and a heterozygous 
SNV with a CADD score of 21.8 which is absent from gnomAD. The SNV lies in a strong MK-
specific regulatory element (Figure 5i). Motif analysis using MatInspector 119 predicts binding to 
HIF1 of the wild type sequence (GGACGTGGGGCT) through its very well-characterised 
recognition site “RCGTG”, but not of the mutant sequence (GGACATGGGGCT). The patient 
presented in his first months of life with a rash and a full blood count (FBC) analysis revealed a 
platelet count of 45 x 109/L. This low count was thought to be secondary to viral infection and no 
further investigations were performed at that time. At the age of 4 years, a routine FBC done 
during a consultation for his attention deficit hyperactivity disorder, which was assumed to be 
caused by a delivery-related trauma, showed the low platelet count to be chronic in nature. A 
bone marrow aspirate showed reduced numbers of megakaryocytes, adequate erythroid and 
plentiful myeloid precursor cells and no signs of myelofibrosis. A clinical diagnosis of a CAMT-
like condition was made but could not be genetically confirmed because of a lack of a second 
coding variant with consequences in MPL. The mother, who carries the large deletion 
(Extended Data Figure 10a) and the father of the proband are healthy and have FBC results 
within normal ranges. The MPL regulatory SNV (chr1:43803414 G>A) is in trans of the large 
deletion because it is absent in the mother and therefore was inherited from the father or is a de 
novo variant. Measurement of the level of the MPL protein on the platelets from the proband 
and the mother by flow cytometry using a specific monoclonal antibody showed markedly 
reduced levels of reactivity for the proband compared to controls and the mother. In conclusion, 
absence of the MPL protein due to coding loss-of-function variants on both MPL alleles is 
causal of type 1 CAMT. The case reviewed above has a chronic thrombocytopenia but the other 
blood cell lineages seem unaffected. This clinical phenotype is compatible with the notion that 
the reduced level of MPL protein in this case is sufficient to prevent haematopoietic stem cell 
exhaustion, which is hallmark of type 1 CAMT.  
 
Alternative variant datasets for versions 37 and 38 of the human reference genome 
In order to migrate the 13,187 whole genomes to the human genome reference GRCh38, the 
Genalice high performance NGS secondary analysis suite 120 was deployed. The sequencing 
reads were extracted from the bam files delivered by Illumina and for comparison mapped 
against both assemblies, GRCh37 and GRCh38, using Genalice Map (v2.5) using default 
parameters 121. The mapped reads were stored in a proprietary file format, called Genalice 
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Aligned Reads (GAR). SNVs and indels were subsequently called using the Genalice 
Population calling tool in single sample mode. The variants were collated together in a single 
Genalice Variant Map (GVM) with blocks of reference matching positions and quality metrics 
(i.e. calling quality, genotype likelihoods, etc.). All genomes were processed against either of the 
assemblies in less than 14 days (read mapping: 12 days; genotyping: 2 days) using 10 compute 
nodes (Intel(R) Xeon(R) Gold 6142 CPU, 32x 2.60GHz). Variants were then exported in AVRO 
and standard VCF file format for variant annotation and further downstream analysis. 
 
Appendix  
 
Appendix 1: Neuropathic pain disorders  
Neuropathic pain arises as a consequence of a disease or lesion in the somatosensory nervous 
system 122. A number of extreme neuropathic pain phenotypes, caused by rare high impact 
genetic mutations have recently been described 123. Identification of such mutations has 
implications for diagnosis, genetic counselling and in some cases personalised treatment 124. In 
broader terms such mutations help us understand the pathophysiology of neuropathic pain with 
implications for more common acquired neuropathic pain disorders, such as painful diabetic 
neuropathy 125. Loss of sensation can be caused by inherited sensory neuropathies with 
sensory loss restricted to pain (congenital insensitivity to pain) or also including large fibre 
modalities such as touch (hereditary sensory neuropathy). Mutations in ion channels are 
increasingly recognised as causing functional disorders of somatosensation 123. For instance 
homozygous loss of function mutations in SCN9A, the gene that encodes the sodium channel 
(Nav) 1.7, have been shown to cause congenital insensitivity to pain 126. Conversely, 
heterozygous gain of function variants are associated with a number of inherited pain disorders 
that include inherited erythromelalgia (IEM) 127 and paroxysmal extreme pain disorder (PEPD) 
128. SCN9a variants have also been linked to idiopathic small fibre neuropathy 129. Some of 
these variants are relatively common in the general population and is likely to represent a gene 
environment interaction. 
  
Our goals were to aid genetics diagnosis of patients with NPD within the UK, to determine the 
prevalence of known mutations associated with NPD in relation to distinct clinical presentations 
and finally to discover novel mutations causing NPD. The aim of our study was to determine 
whether genes previously implicated in neuropathic pain caused their clinical presentation. We 
recruited singleton individuals with extreme neuropathic pain phenotypes (both sensory loss and 
gain), all within the UK, from secondary care clinics located in Oxford, London, Salford, and 
Newcastle. We included participants older than 18 years of age with a proven history of life-style 
altering sensory disorder (either pain or loss of sensation) for greater than three months. The 
criteria for case definition for different clinical presentations are shown in Supplementary Table 
1 (NPD Criteria – Diagnostic Criteria). We excluded patients with a known underlying genetic 
cause of chronic pain, e.g. Fabry’s disease and SCN9A congenital erythromelalgia although 
genetic pre-screening for these disorders was not mandatory. Patients with learning disorder 
or/and autistic features sufficient that they could not give either consent or partake in possible 
additional pain phenotyping were also excluded. The outcome measures used for patient 
phenotyping are shown in Supplementary Table 1 (NPD Criteria Outcome Measures). The 
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Neuropathic Pain Special Interest Group (NeuPSIG) of the International Association for the 
Study of Pain (IASP)’s grading for neuropathic pain 6 was used to grade neuropathic pain for all 
study participants recruited.  
A total of 193 study participants, with whole genome sequencing data available, underwent 
neuropathic pain grading. Excluded are five of the participants that were unaffected family 
members and one participant where phenotypic data was not available. 
  

1.  No Neuropathic pain – 8 (4.1%) participants did not report neuropathic pain 
2.  Neuropathic pain unlikely – 1 (0.5%) participant’s history and pain distribution 
was not consistent with neuropathic pain. 
3.  Possible Neuropathic pain – 11 (5.7%) participants reported an appropriate 
history of a relevant lesion or disease, AND pain with a distinct neuroanatomically plausible 
distribution. 
4.  Probable Neuropathic pain – 56 (29.0%) participants satisfied criteria for 
possible neuropathic pain AND had clinical signs in the neuroanatomical distribution of 
neuropathic pain. 
5.  Definite Neuropathic pain – 111 (57.5%) participants satisfied criteria for 
probable neuropathic pain AND a diagnostic test confirmed a lesion of the somatosensory 
nervous system. 

 
Appendix 2: Extreme red cell traits in UK Biobank 
The UK Biobank is a biomedical cohort of approximately half a million participants, recruited in 
the UK between 2006 and 2010 1. The participants, 54% of whom are women, were aged 
between 37 and 73 years at their date of recruitment. Each participant underwent a baseline 
assessment at one of 21 centres across Great Britain, during which 4 ml of EDTA treated 
peripheral whole blood was collected for FBC analysis 12. These blood samples were stored at 4 
degrees centigrade and transported overnight in temperature controlled shipping boxes to the 
UK Biocentre laboratory in Stockport, Greater Manchester, UK, where FBCs were measured 
using a bank of four Beckman Coulter LH-700 instruments. 
 
A GWAS of the FBC traits based on approximately 173,000 of the European ancestry 
participants in the UK Biobank cohort (n~133,000) and the INTERVAL trial (n~40,000) 90 has 
previously identified 582 genetic variants independently associated with quantitative properties 
of mature red blood cells 91. Most of these variants were common, with only 40 having an in 
sample MAF lower than 1%. The GWAS design had limited power to identify associations with 
rare variants for three reasons. Firstly, it relied on the imputation of rare alleles from the 
UK10K/1000 Genomes reference panels 44, 26, which are too small to contain a large proportion 
of the rare haplotypes carried by the hundreds of thousands of GWAS participants. Secondly, in 
an attempt to inhibit spurious associations due to statistical model misspecification, participants 
with extreme phenotype data were deliberately excluded from the association analyses. A 
genetic association with a rare variant can only be detected with high probability if its effect size 
is large, which implies that carriers of rare alleles exhibiting detectable associations were more 
likely than typical study participants to have been excluded from the GWAS analyses. Thirdly, 
the GWAS relied on univariable genetic analyses to identify allelic associations, and these can 
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have less power than methods such as BeviMed, which are able to model jointly the association 
of multiple rare variants in a DNA sequence element 89. 
 
We sought to identify a subset of UK Biobank participants likely to carry rare alleles modulating 
properties of peripheral red blood cells, which could plausibly be identified by whole genome 
sequencing. Our method was to construct a univariable score from the UK Biobank baseline 
mature red cell FBC measurements, which we thought likely to have high rare-variant 
heritability. We then selected participants for sequencing from each tail of the distribution of the 
score. 
 
To construct the score, we used the 65 variants with MAF < 1% that were reported to be 
significantly (P < 8.31 x10−9) associated with at least one of twelve quantitative properties of 
(mature or immature) red cells by 91, as a model for the likely effect of rare alleles on the 
baseline UK Biobank FBC. Figure 4a shows the pairwise relationships between the estimated 
effect sizes of these variants on the red cell FBC parameters MCV, RBC#, HGB and RDW. This 
subset of parameters is minimal in the sense that the other mature red blood cell FBC 
parameters can be calculated deterministically from them. The estimated effect sizes were 
reported by 91 as per allele additive differences in the mean of the rank-inverse standard unit 
normalised trait and are therefore given in units which are comparable across traits. In general, 
MCV and RBC# exhibit a greater range and variance in absolute effect size than HGB and 
RDW. 91 reported that, of all the traits they studied, MCV has the highest estimated common 
variant heritability and that it yielded the second largest number of associated variants with MAF 
< 1%. It seems reasonable to conjecture from this, that MCV also has a relatively high rare 
variant heritability. There is a strong inverse correlation between the effect sizes of alleles 
perturbing MCV and RBC#, suggesting that the effect sizes may measure aspects of the same 
underlying biological mechanism, perhaps the control of the total blood volume proportion of red 
cells (haematocrit). Since we could not identify any other precise systematic relationship 
between aspects of the joint distribution of the four estimated red cell trait effect sizes, we 
decided to restrict our attention to the marginal joint distribution of MCV and RBC# effect sizes 
(highlighted by the red square, Figure 4a). We used Deming regression to estimate the 
approximate linear relationship: 
 

𝛽𝑀𝐶𝑉 = 	−1.69	 × 𝛽𝑅𝐵𝐶#  (1) 
 
between the effect sizes for the two traits. This linear relationship is shown by a red line in 
Figure 4a. 
 
We took the baseline UK Biobank MCV and RBC# parameters and adjusted them to remove the 
effect of various sources of technical and biological variation. A detailed description of the 
adjustments can be found in the the STAR methods section of 91. In brief, the phenotypes were 
firstly adjusted to remove differences between instruments, to remove time dependent 
instrument drifts and to remove the effect of delay time between venepuncture and 
measurement. Data acquired on days where the instrument mean was an outlier for the 
corresponding trait were removed. Subsequently, participants who had a hysterectomy or who 
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had a self-report or medical history containing a record of myelofibrosis, lymphoma, leukemia, 
malignant lymphoma, multiple myeloma, multiple myelofibrosis or myelodysplasia, chronic 
lymphocytic leukemia, chronic myeloid leukemia, acute myeloid leukemia, polycythemia vera, 
polycythemia, a myeloproliferative disorder, essential thrombocytosis, a haematological cancer 
histology report, an unspecified lymphatic or general haematological neoplasm, a 
myelodysplastic syndrome, or an unspecified heme malignancy, monoclonal gammopathy, an 
unspecified hereditary haematological disorder, haemochromatosis, thalassaemia, haemophilia, 
sickle cell anaemia, neutropenia, lymphopenia or pancytopenia were excluded from analysis. 
Finally, the phenotypes were adjusted in a second stage to remove the effects of sex, age, 
menopause status, the interaction of sex and menopause status with age, height, weight and for 
the effects of history and current habits of smoking and alcohol consumption. 
 
We excluded all participants who did not self report their ancestry as one of “British”, “White”, 
“Irish” or “Any other white background” in the UK Biobank baseline assessment questionnaire. 
We also excluded individuals whose genotypes appeared in the interim 2015 genetic data 
release and who were identified as having non-European ancestry by the principal components 
approach reported in 91.  
 
We defined the selection score Si for the ith UK Biobank participant as the (signed) Euclidean 
distance in ℜ3 between the origin and the point P(fi,gi), where P is the orthogonal projection onto 
the line: 
 

𝑔 =	−1.69	 × 𝑓, (2) 
 
where 𝑓8 = 𝑓(𝑅𝐵𝐶#8) and 𝑔8 = 𝑔(𝑀𝐶𝑉8) for functions f and g that Box-Cox transform, 
standardise and centre the technically and biologically adjusted traits RBC# and MCV 
respectively, in the UK Biobank participants not hitherto excluded. In 91 the covariate adjusted 
traits were rank inverse normalised against N(0,1) before the genetic association analyses. 
However, here we preferred to work with Box-Cox transformed traits in order to adjust the 
central part of the data towards a Gaussian without over shrinking outliers, which might reduce 
power. The selection score can be expressed as: 
 

𝑆8 ≡ −1.69 × 𝑔(𝑀𝐶𝑉8) + 𝑓(𝑅𝐵𝐶#8)  
 
and its, centered and standardised distribution in male and post menopausal female UK 
Biobank participants is shown in sub-panel bounded by a dotted line in Figure 4b.  
 
We excluded pre-menopausal females, as candidates for sequencing because of their high 
prevalence of anemia and because of the additional component of non-genetic variation in each 
red cell parameter that is induced by the menstrual cycle. We also excluded individuals with a 
UK Biobank report of an insufficient DNA quantity (less than 4.7ug) to generate a working stock 
of 130ul of 36ng/ul(TRINEAN measured concentration < 36ng/µl, PicoGreen measured 
concentration < 36ng/µl) or with a UK Biobank report of inconsistency between genetic and self 
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reported sex. Finally, we excluded participants with a platelet count below 75x109/l, a white 
blood cell count below 0.5 x109/l or a white blood cell count above 13x109/l. 
 
We partitioned the 316,739 male and post-menopausal female participants with a computed 
score value into six gender specific age groups thresholding at 53.3 years and 62 years. (These 
age groups divide those participants with a score, including the pre-menopausal women, into 
three groups, each of approximately 125,000 participants). Within each of these six sex-age 
groups, we ranked the study participants according to the value of the score. We selected a 
total of 384 individuals from the tail of each score, stratifying the selection by sex-age group so 
that the final selection for each tail sampled each group in proportion to its size. This additional 
stratification was necessary despite the adjustment of the mean of each trait for age and sex to 
ensure reasonable age and sex balance in the tails.  The full blood count of each selected 
participant was reviewed by an expert panel of haematologists to exclude any text-book non-
genetic or somatic pathologies such as bone-marrow failure, polycythemia vera or essential 
thrombocytopenia, which might explain the extreme value of the selection score. A small sample 
of DNA was screened by the Cambridge Blood and Stem-Cell Biobank for the JAK2 mutation 
V617F, a common cause of somatic myeloproliferative disorders. Any participants failing the 
FBC or DNA screen were replaced by the next most extreme individual in the same sex-age 
subgroup.  
 
DNA samples from a total of 416 male and 352 female UK Biobank participants were retrieved 
from the central sample archive and sent to Illumina sequencing. The main panel of Figure 4b 
shows the distribution of the score of the selected individuals for each tail, while Figure 4c is a 
bivariate scatter showing the distribution of RBC# and MCV (after adjustment for technical but 
not biological variation) in the two tails. Of the 768 individuals sent for whole genome 
sequencing one individual from each tail failed Illumina sequencing quality control and two 
distinct individuals from the right tail failed in-house checks for DNA contamination. 
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