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Abstract  

Recently, exploring brain activity based on functional networks during naturalistic stimuli 

especially music and video represents an attractive challenge because of the low signal-to-noise 

ratio in collected brain data. Although most efforts focusing on exploring the listening brain have 

been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or 

magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are 

involved in the brain network activity under naturalistic stimuli. This study exploited cortical 

oscillations through analysis of ongoing EEG and musical feature during free-listening to music. 

We used a data-driven method that combined music information retrieval with spatial 

Independent Components Analysis (ICA) to probe the interplay between the spatial profiles and 

the spectral patterns. We projected the sensor data into cortical space using a minimum-norm 
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estimate and applied the Short Time Fourier Transform (STFT) to obtain frequency information. 

Then, spatial ICA was made to extract spatial-spectral-temporal information of brain activity in 

source space and five long-term musical features were computationally extracted from the 

naturalistic stimuli. The spatial profiles of the components whose temporal courses were 

significantly correlated with musical feature time series were clustered to identify reproducible 

brain networks across the participants. Using the proposed approach, we found brain networks of 

musical feature processing are frequency-dependent and three plausible frequency-dependent 

networks were identified; the proposed method seems valuable for characterizing the large-scale 

frequency-dependent brain activity engaged in musical feature processing.  

Keywords: frequency-specific networks, music information retrieval, EEG, independent 

components analysis. 

 

Introduction  

Understanding how our brain perceives complex and continuous inputs from the real-world has 

been an attractive problem in cognitive neuroscience in the past few decades. Brain imaging 

technology provides an opportunity to address this issue. However, revealing brain states is 

generally more difficult during real-word experiences than those recorded brain activities during 

resting state or simplified static stimuli like controlled and rapidly repeated stimuli (U. Hasson, 

Malach, & Heeger, 2010; Malcolm, Groen, & Baker, 2016; Spiers & Maguire, 2007). Some 

studies have tried to probe brain processes involved in a natural and realistic task. Hasson et al. 

demonstrated consistent and synchronized brain activity patterns across movie viewers with 

functional magnetic resonance imaging (fMRI) (Uri Hasson, Nir, Levy, Fuhrmann, & Malach, 
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2004). After that, Lankinen et al. conducted the similar experiment to examine the intersubject 

correlation with magnetoencephalography (MEG) (K Lankinen, J Saari, Ritta Hari, & M 

Koskinen, 2014; Lankinen et al., 2018). Shou et al. probed the neural activations a real-world air 

traffic control task (Shou, Ding, & Dasari, 2012). The question of how to disentangle stimuli-

induced brain activity from spontaneous activity still remains open for scientific research due to 

the complexity of natural situations. 

Recently, the brain state under the naturalistic stimuli including music and movie has been 

investigated through  fMRI (V. Alluri et al., 2012; V. Alluri et al., 2013; Burunat, Alluri, 

Toiviainen, Numminen, & Brattico, 2014; I. Burunat et al., 2016; Toiviainen, Alluri, Brattico, 

Wallentin, & Vuust, 2014), MEG (Koskinen et al., 2013; K. Lankinen, J. Saari, R. Hari, & M. 

Koskinen, 2014) and electroencephalography (EEG) (Cong, Alluri, Nandi, Toiviainen, Fa, Abu-

Jamous, Gong, Craenen, Poikonen, Huotilainen, et al., 2013; Daly et al., 2014; Daly et al., 2015; 

R. S. Schaefer, Desain, & Farquhar, 2013; I. Sturm, Dahne, Blankertz, & Curio, 2015). Alluri et 

al. explored the neural correlate of music processing as it occurs in a realistic or naturalistic 

environment, where eleven participants attentively listen to the whole piece of music (V. Alluri 

et al., 2012; I. Burunat et al., 2016). They successfully identified brain regions involved in 

processing of musical features in a naturalistic paradigm and found large-scale brain responses in 

cognitive, motor and limbic brain networks during continuous processing of low-level (timbral) 

and high-level (tonal and rhythmical) acoustic features using functional magnetic resonance 

imaging (fMRI). This was among the first approaches at attempting to discover the functional 

brain topology of musical processing by jointly drawing on computational feature extraction, 

behavioral, and brain-activity measures to isolate the variance associated with a number of 

musical features. Burunat et al. studied the replicability of Alluri’s findings using a similar 
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methodological approach and a similar group of participants (Iballa Burunat et al., 2016). 

Unfortunately, all BOLD measurements by fMRI are to some degree confounded since they are 

indirect assessments of brain activity; they relate to blood flow and not to electrical processes 

and are therefore limited by poor temporal resolution due to the protracted hemodynamic 

response (Matthew J Brookes et al., 2014). Soon after, Cong et al used an analogous technique to 

investigate neural rhythms based on ongoing EEG data collected during same music stimuli 

(Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, & Huotilainen, 

2013; Wang et al., 2016). They found the theta and alpha oscillations along central and occipital 

area of scalp topology seems significantly associated with high-level (tonal and rhythmical) 

acoustic features processing. During this period, many other studies tried to detect heard music 

from brain EEG signal using the time structure in music (Rebecca S Schaefer, Farquhar, 

Blokland, Sadakata, & Desain, 2011; Treder, Purwins, Miklody, Sturm, & Blankertz, 2014). 

Also, some researchers explored the brain responses to naturalistic music stimuli using EEG 

(Rogenmoser, Zollinger, Elmer, & Jäncke, 2016; Irene Sturm, Dähne, Blankertz, & Curio, 2015).  

Although, those sensor-level EEG studies analyzed the neural oscillations in human brain during 

music listening, the estimation of brain activity is performed at the sensor-level which impedes 

comparison with the rapidly growing literature on music-listening brain networks using fMRI. In 

addition, the interaction between spatial profiles and spectral bands is not yet fully understood.  

In recent studies, resting state networks (RSNs) have been demonstrated by combining source 

localization with temporal/spatial ICA of the time frequency representation of MEG data (M. J. 

Brookes et al., 2011; Nugent et al., 2017; P. Ramkumar, Parkkonen, & Hyvarinen, 2014) and 

EEG data (Chen, Ros, & Gruzelier, 2013; Sockeel, Schwartz, Pelegrini-Issac, & Benali, 2016), 

in accordance with resting state fMRI networks. Additional studies have demonstrated that brain 
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rhythms in a broad range of frequencies contributed to these networks. Brookes et al. examined 

that different spectral rhythms contributed differently to networks derived by individual ICA 

method (M. J. Brookes et al., 2012). For instance, beta and gamma oscillations contributed 

strongly to the bilateral insular networks, while a bilateral visual network was mainly driven by 

beta rhythms. Brookes et al. found that frequency-dependent network abnormalities may be 

associated with the pathophysiology of schizophrenia (M. J. Brookes et al., 2016). Hillebrand et 

al. found the frequency-specific patterns of information flow in RSNs, which shown direction 

and magnitude of information flow are different across frequencies (Hillebrand et al., 2016). 

Furthermore, Nugent et al. demonstrated differences in the resting state sensorimotor networks 

across frequency bands using a Multiband ICA technique(Nugent et al., 2017). However, these 

previous studies focus on networks under resting state, which is relatively simple to analyze. It is 

not clear whether the networks under real-world experience are frequency-specific.  

Our hypothesis is that spatial profile under naturalistic stimuli differs across frequency bands as 

similarly as in resting states. In this paper, we propose a novel approach that combines music 

information retrieval (MIR) and spatial ICA to probe the spatial spectral patterns under music 

listening. EEG data were collected while participants were listening to a long piece of music. 

Short Time Fourier Transform was applied to EEG data. A three-way data was obtained. Source 

localization based on minimum-norm estimate was performed to get cortical source data. The 

cortical three-way data were rearranged into matrix. Then a complex-valued ICA was adopted to 

extract independent spatial spectral patterns and the time course of the patterns. Five long-term 

musical features were computationally extracted from the musical stimulus. Finally, the music-

induced patterns were disentangled from the spontaneous activity by analysis of correlation 

between time courses of patterns and musical feature time series. Importantly, without any prior 
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assumption, the frequency-dependent networks involved in musical feature processing were 

presented in a purely data-driven way.  

Material and methods 

Data acquisition  

Participants  

Fourteen right-handed and healthy adults aged 20 to 46 years old were recruited to take part in 

the current experiment after signing written informed consent. None of them was reported about 

hearing loss or history of neurological illnesses and none of them had musical expertise. This 

study was approved by the local ethics committee. All participants’ primary language was 

Finnish. More details on these participants can be found from our previous paper (Cong, Alluri, 

Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, Huotilainen, et al., 2013). 

EEG data acquisition  

During the experiment, participants were informed to listen to the music with eyes opening. A 

512s long musical piece of modern tango by Astor Piazzolla was used as the stimulus. Music 

was presented through audio headphones with about 30 dB of gradient noise attenuation. This 

music clip had appropriate duration for the experimental setting, because of its high range of 

variation in several musical features such as dynamics, timbre, tonality and rhythm (V. Alluri et 

al., 2012). The EEG data were recorded according to the international 10-20 system with 

BioSemi electrode caps (64 electrodes in the cap and 5 external electrodes at the tip of the nose, 

left and right mastoids and around the right eye both vertically and horizontally). EEG were 

sampled at a rate of 2048 Hz and stored for further processing in off-line. The external electrode 

at the tip of the nose was used as the reference. EEG channels were re-referenced using a 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509802doi: bioRxiv preprint 

https://doi.org/10.1101/509802


7 
 

common average. The data preprocessing was carried out using EEGLAB (Delorme & Makeig, 

2004). The EEG data were visually inspected for artefacts and bad channels were interpolated 

using a spherical spline model. A notch filter at 50 Hz was applied to remove noise. High-pass 

and low-pass filter with 1 Hz and 30 Hz cutoff frequencies were then applied as our previous 

investigation of the frequency domain revealed that no useful information was found in higher 

frequencies (Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, & 

Huotilainen, 2013). Finally, the data were down-sampled to 256 Hz. In order to remove EOG 

(i.e., eye blinks), independent component analysis (ICA) was performed on EEG data of each 

participant. To additionally remove any DC-jumps occasionally present in the data, we 

differentiated each time series, applied a median filter to reject large discontinuities and 

reintegrated the signals back (Pavan Ramkumar, Parkkonen, Hari, & Hyvärinen, 2012).  

Musical features 

Based on the length of the window used in the computational analyses, the musical features can 

be generally classified into two categories: long-term features and short-term features (V. Alluri 

et al., 2012; Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, 

Huotilainen, et al., 2013). Five long-term musical features including Mode, Key Clarity, 

Fluctuation Centroid, Fluctuation Entropy and Pulse Clarity were examined here. They were 

extracted using a frame-by-frame analysis approach commonly used in the field of Music 

Information Retrieval (MIR). The duration of the frames was 3s and the overlap between two 

adjacent frames 67% of the frame length. The chosen length of the frame was approximately 

consistent with the length of the auditory sensory memory (V. Alluri et al., 2012). This analysis 

process yielded the time series of musical feature at a sampling frequency of 1 Hz, in accordance 

with the short-time Fourier transform (STFT) analysis of EEG data. Thus, both the musical 
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features and temporal courses of EEG had 512 time points. All the features were extracted using 

the MIRtoolbox (Lartillot, Toiviainen, & Eerola, 2008) in MATLAB environment. 

For the completeness of the content, we briefly introduce the five features below. We extracted 

two tonal and three rhythmic features. For the tonal features, Mode represents the strength of 

major or minor mode. Key Clarity is defined as the measure of the tonal clarity. The rhythmic 

features included Fluctuation Centroid, Fluctuation Entropy and Pulse Clarity. Fluctuation 

Centroid is the geometric mean of the fluctuation spectrum, representing the global repartition of 

rhythm periodicities within the range of 0–10Hz (V. Alluri et al., 2012). This feature indicates 

the average frequency of these periodicities. Fluctuation entropy is the Shannon entropy of the 

fluctuation spectrum, representing the global repartition of rhythm periodicities. Fluctuation 

entropy is a measure of the noisiness of the fluctuation spectrum (V. Alluri et al., 2012; Cong, 

Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, Huotilainen, et al., 2013). 

Pulse Clarity, naturally, is an estimate of clarity of the pulse (V. Alluri et al., 2012; Cong, Alluri, 

Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, Huotilainen, et al., 2013). 

Source Localization 

For each subject, the brain’s cortical surface was reconstructed from an anatomical MRI template 

in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). Dipolar current sources were 

estimated at cortical-constrained discrete locations (source points) separated by 15 mm. Each 

hemisphere was modelled by a surface of approximately 2,000 vertices, thus a mesh of 

approximately 4,000 vertices modelled the cortical surface for each subject.  

The measured EEG signals are generated by postsynaptic activity of ensembles of cortical 

pyramidal neurons of the cerebral cortex. These cortical pyramidal neurons can be modelled as 
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current dipoles located at cortical surface (Lin, Belliveau, Dale, & Hamalainen, 2006). The scalp 

potentials generated by each dipole depend on the characteristics of the various tissues of the 

head and are measured by the EEG scalp electrodes. With the geometry of the anatomy and the 

conductivity of the subject’s head, the time course of the dipole’s activity can be assessed by 

solving two consecutive problems: the forward problem and the inverse problem. 

The forward problem is to model the contribution of each dipole to the signals of the EEG 

electrodes by solving Maxwell’s equations, which takes the geometry and conductivity of head 

tissues into account. In this study, a forward solution was computed calculated using the 

symmetric boundary element method (BEM) for each source point while a relative conductivity 

coefficient was assigned to each tissue (with default MNI MRI template). 

To solve the inverse problem, minimum-norm estimate (Lin et al., 2006) was adapted with a 

loose orientation constraint favoring source currents perpendicular to the local cortical surface 

(no noise modelling). When computing the inverse operator (1) the source orientations were 

constrained to be normal to the cortical surface; (2) a depth weighting algorithm was used to 

compensate for any bias affecting the superficial sources calculation; and (3) a regularization 

parameter, 𝜆2 = 0.1  was used to minimize numerical instability, and to effectively obtain a 

spatially smoothed solution. Finally, an inverse operator G of dimensions 𝑁𝑠 × 𝑁𝑐 (where 𝑁𝑠 is 

the number of source points and 𝑁𝑐 is the number of channels:𝑁𝑠 ≫ 𝑁𝑐) was obtained to map the 

data from sensor-space to source-space. Here, we had 𝑁𝑠 = 4000 and 𝑁𝑐 = 64. 
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Spatial Fourier Independent Component Analysis  

Time-frequency data in cortical source space 

Preprocessed EEG data 𝑌0 (𝑁𝑐 channels x 𝑁𝑝 sampling points) were transformed by short-time 

Fourier transform (STFT) to obtain complex-valued time-frequency representation (TFR) data 𝑌1 

(𝑁𝑐 ,𝑁𝑓 ,𝑁𝑡 ). To obtain TFR data in source space, three-way sensor-space TFR data 𝑌1  was 

reorganized as two-way matrix 𝑌̂1  ( 𝑁𝑐 , 𝑁𝑡 × 𝑁𝑓 ). The source-space TFR data 𝑌̂2  was then 

obtained by left-multiplying the linear inverse operator G (𝑁𝑠, 𝑁𝑐) which was computed using 

minimum-norm estimate inverse solution sensor-space data 𝑌̂1,  

𝑌̂2 = G𝑌̂1. 

Two-way data 𝑌̂2 (𝑁𝑠, 𝑁𝑡 × 𝑁𝑓) can be rearranged as a three-way tensor format 𝑌2 (𝑁𝑠, 𝑁𝑡, 𝑁𝑓). 

For application of spatial Fourier ICA, we then rearranged the three-way tensor 𝑌2 as a two-way 

matrix 𝑋0 (𝑁𝑡,𝑁𝑓 × 𝑁𝑠). Thus, each row of 𝑋0 was comprised of the complex-valued short-time 

Fourier coefficients from each source point for specific time points and each column represented 

a time point corresponding to a short-time window. In this study, the Hamming-widow with 3-

second-length and 2-second-overlap of the adjacent windows was selected, resulting in a 

sampling rate of 1 Hz in time dimension. This sampling rate was in consistent with musical 

feature time series (see Musical features). The duration of EEG was 512s, so we had 𝑁𝑡 = 512 

time points. We adopted a 512-point FFT to calculate the STFT resulting in 256 frequency bins 

(Range of frequency: 1-128 Hz) for each window. We selected the range of frequency bins 

covering 1-30 Hz (𝑁𝑓 = 60) for further analysis. 
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Application of complex-valued ICA on reshaped data 

For data 𝑋0, we applied complex-valued ICA (A. Hyvarinen, Ramkumar, Parkkonen, & Hari, 

2010) and treated each row as an observed signal assumed to be a linear mixture of unknown 

spatial spectral pattern. Since the original data (𝑋0 ) dimension was relatively high for the 

complex ICA calculation, data dimension reduction was required in the preprocessing step of 

ICA. A common approach of data dimension reduction is principal component analysis (PCA) 

which is linear. Here we extended PCA to the complex domain by considering complex-valued 

eigenvalue decomposition (Li, Correa, Rodriguez, Calhoun, & Adali, 2011). The choice of 

model order was based on previous studies (Abou‐Elseoud et al., 2010; Smith et al., 2009), 

which suggested the number of a dimension slightly larger than the expected number of 

underlying sources. In this study, we tried different model orders and found that 20 was a 

reasonable order, which preserved much of the information in the data and reduced the 

dimensionality of the results. Then we extracted 20 independent components using complex-

valued FastICA algorithm which applied ICA to STFT of EEG data in order to find more 

interesting sources than with time-domain ICA (A. Hyvarinen et al., 2010). This method is 

especially useful for finding sources of rhythmic activity. After complex-valued ICA, a mixing 

matrix 𝐴̂ (𝑁𝑡, 𝑁𝑖𝑐 = 20 is number of components) and estimated source matrix 𝑆̂ were obtained. 

Each column of 𝐴̂ represented the temporal course for each independent component (IC). The 

ICs in the rows of 𝑆̂  ( 𝑁𝑖𝑐 , 𝑁𝑓 × 𝑁𝑠 ) represented spatial spectral patterns, which can be 

decomposed into the spatial power map and power spectra.  

Spatial map, spectrum and temporal course of ICs 

By reshaping each row of 𝑆̂ for each IC, we obtained a matrix (𝑁𝑓 , 𝑁𝑠), which meant there was a 

Fourier coefficient spectrum for each cortical source point. To obtain and visualize the spatial 
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map of the IC, we computed the average of the squared magnitude of the complex Fourier 

coefficients across those frequency bins. Since the distribution of mean squared Fourier 

amplitude over the whole brain is highly non-Gaussian, we did not apply conventional z-score-

based thresholding; instead, we applied a threshold to display for each component map only 

source points with the top 5% squared Fourier amplitude (Pavan Ramkumar et al., 2012). Then 

we analyzed the correlation coefficient of the spatial maps in those frequency bins and those 

spatial maps were similar. To visualize and obtain the spectrum of each IC, we calculated the 

mean of the Fourier power spectrum across those source points exceeding the 95th percentile 

(Pavan Ramkumar et al., 2012). Finally, we extracted the absolute values of the column of 

mixing matrix 𝐴̂ corresponding to the row of the estimated IC as the time course, which reflected 

fluctuations of the Fourier amplitude envelope for the specific frequency and spatial profile.  

Stability of ICA decomposition 

To examine the stability of ICA, we applied 100 times ICA decomposition for each subject with 

different initial conditions. For the real-valued case, ICASSO toolbox (Himberg, Hyvarinen, & 

Esposito, 2004) has been used to evaluate stability among multiple estimates of the fastICA 

algorithm (Aapo Hyvarinen, 1999). All the components estimated from all runs were collected 

and clustered based on the absolute value of the correlation coefficients among the squared 

source estimates of ICASSO. Finally, the stability index Iq was computed for each component. 

Iq reflects the isolation and compactness of a cluster (Himberg et al., 2004). Iq is calculated as 

follows: 

Iq = 𝑆̅(𝑖)𝑖𝑛𝑡 − 𝑆̅(𝑖)𝑒𝑥𝑡 ,   i = 1, … , J, 
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where 𝑆̅(𝑖)𝑖𝑛𝑡 denotes the average intra-cluster similarity; 𝑆̅(𝑖)𝑒𝑥𝑡 indicates average inter-cluster 

similarity and J is the number of clusters. The Iq ranges from ‘0’ to ‘1’. When Iq approaches ‘1’, 

it means that the corresponding component is extracted in almost every ICA decomposition 

application. This indicates a high stability of the ICA decomposition for that component. 

Otherwise, it means the ICA decomposition is not stable. Correspondingly, if all the clusters are 

isolated with each other, ICA decomposition should be stable. In general, there is no established 

criterion upon which to base a threshold for cluster quality. Given the preliminary nature of this 

investigation, we consider the decomposition is stable if the Iq is greater than 0.65. 

In this study, the ICASSO toolbox was modified to be available for the complex-valued case as 

well. The correlation matrix was used as the similarity measure for clustering in real-valued 

ICASSO. For the complex case, since the ICs were complex-valued, we just considered the 

correlation matrix among the magnitude ICs to perform the clustering (Li et al., 2011). Then, we 

took the Iq as the criterion to examine stability of the ICA estimate. 
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Fig. 1. Diagram of steps for spatial ICA. Preprocessed EEG data 𝒀𝟎 (𝑁𝑐 channels x 𝑁𝑝 sampling points) 

was transformed by short-time Fourier transform (STFT) to obtain time-frequency representation (TFR) 

data 𝒀𝟏 (𝑁𝑐, 𝑁𝑓, 𝑁𝑡). Source-space data 𝒀𝟐 (𝑁𝑠,𝑁𝑓,𝑁𝑡) were obtained by left-multiplying inverse operator 

𝐆 to sensor-space data 𝒀𝟏.Reshape three-way data  𝒀𝟐 to matrix data 𝑿𝟎 (𝑁𝑡, 𝑁𝑠 × 𝑁𝑓). Complex-valued 

ICA was done on this matrix. The squared absolute values of the columns of mixing matrix provide the 

time course of Fourier-power and the rows of source matrix were decomposed into the spatial power map 

and spectrum (see text). 

 

Testing for stimulus-related networks 

After ICA decomposition, we obtained 20*14=280 ICs (14 subjects, 20 components for each 

subject). Now the challenge is to determine which one of these represents the genuine brain 

responses. In all ICA based methods, it is a general question that which independent components 

need to be retained or which component just reflects noise. Here, we examine which components 

were modulated significantly by the musical features. We computed the correlation (Pearson’s 
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correlation coefficient) between the time courses of musical features and the time courses of 

those ICs (the dimensionality of both them is 512 points) in order to select stimulus-related 

activations. We used the Monte Carlo method and permutation tests presented in our previous 

research (V. Alluri et al., 2012; Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, 

Craenen, Poikonen, Huotilainen, et al., 2013) to calculate the threshold of significant correlation 

coefficient. In this method, a Monte Carlo simulation of the approach was performed to 

determine the threshold for multiple comparisons. We kept those ICs whose time courses were 

significantly correlated (p<0.05) with the time courses of musical features for further analysis.  

Cluster analysis 

The selected ICs had been represented by spatial map, spectrum and temporal course. Since 

spatial ICA was carried out on individual level EEG data, we needed to examine the inter-subject 

consistency among participants. In this study, we focused on the spatial pattern emerging in the 

process of freely listening to music, so a group level data analysis was performed by clustering 

spatial maps of the selected ICs to evaluate the consistency among the participants. For reliable 

clustering, we applied a conventional z-score-based normalization to each spatial map. All 

spatial maps of the screened components significantly correlated with musical features were 

clustered into M clusters to find common spatial patterns among most of participants. Here for 

simplicity, a conventional k-means cluster algorithm was used with the Kaufman Approach (KA) 

for initializing the algorithm. We used the minimum description length (MDL) to determine the 

number of clusters M. Afterwards we countered the number of subjects involved in ICs in each 

cluster. If the number of subjects in one cluster is less than half of the all subjects, this cluster 

would be discarded for the reason that such a cluster does not reveal information shared among 

enough participants. For the retained clusters, the spatial-spectral-temporal information was 
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obtained, which was represented by the centroid of the cluster, the spectra of ICs and the 

numbers of subjects whose temporal courses were involved in this cluster. Figure 2 shows the 

flow of group level analysis. 
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Fig. 2. Diagram of cluster analysis. Left column: The spatial maps, time courses and spectra of extracted 

IC from all subjects (SMICN denotes number #N components from subjects #M). Middle column: One 

example cluster. The spatial maps, time courses and spectra of retained ICs after correlation analysis with 

musical feature. Right column: Clustered spatial map, corresponding spectrum, and the distribution across 

musical feature. 

 

Results 

Musical Features  

Five musical features were extracted by MIRtoolbox (Olivier Lartillot, 2007) with 3s time-

widow and 2s overlap, resulting in 1 Hz sampling rate of temporal course. They are Fluctuation 

Centroid, Fluctuation Entropy, Key Clarity, Mode and Pulse Clarity. The time series of these 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/509802doi: bioRxiv preprint 

https://doi.org/10.1101/509802


17 
 

features had a length of 512 samples, which matched the length of the time course of the EEG 

components. Figure 3 shows their temporal courses. 

0 100 200 300 400 500
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Time courses of musical features

 

Fig. 3. Time course of five musical features 

Stability of ICA decomposition 

We extracted 20 ICs using modified ICASSO with 100 runs for each subjects’ data, then we 

obtained the stability index Iq. Figure 4 shows the magnitude of Iqs for each participant, greater 

than 0.7 for most ICs. The 20 ICs were separated with each other for every participant from the 

view of clustering. Thus, the ICA estimate was stable and the results of ICA decomposition in 

this study were satisfactory for each participant data to further analysis. 
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Fig. 4. Iq of each component extracted. Different curves represent different participants 

Interesting clusters: frequency-specific networks  

After 85 ICs whose spatial maps were significantly correlated with musical features were 

selected, we set the number of clusters as five by performing MDL to estimate the optimal model 

order. Then the spatial maps of ICs were clustered into five clusters. Three clusters representing 

frequency-specific networks were chosen since the number of subjects in the cluster is more than 

half of the all subjects. Figure 5 demonstrates one of these clusters including the centroid of all 

spatial maps (Fig. 5A), the distribution of number of subjects across musical features (Fig. 5B) 

and the spectrum of the ICs in this cluster (Fig. 5C). Then we computed the correlation 

coefficients among spatial maps in each cluster to evaluate the performance of clustering. Figure 

8 shows the inter-cluster similarity. We computed the mean of the correlation coefficients in 

each cluster and the corresponding standard deviation (SD). For cluster#1, the mean is 0.642 and 

the corresponding standard deviation (SD) is 0.1238. For cluster#2, the mean is 0.7125 and SD is 
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0.0572. For cluster#3, the mean is 0.8084 and SD is 0.0747. This indicates that the spatial 

patterns are similar across the participants. In the Table 1, we listed the participants whose EEG 

data were correlated with every musical feature in each cluster.  

Beta-specific network  

Figure 5 shows results of the Beta-specific brain networks engaged in processing music features. 

The spatial map displays that musical features were associated with increased activation in the 

bilateral superior temporal gyrus (STG). The spectrum of ICs in this cluster illustrates the beta 

rhythm (focusing on 20 Hz) was involved in generating this network. Thus, relatively large-scale 

brain region generated by beta rhythm was activated in the bilateral STG and the magnitude of 

activation in right hemisphere was a little stronger than left hemisphere. This Beta-specific 

network was found in seven subjects during music free-listening (see the first row of Table 1). 

Fluctuation Centroid were associated with this brain networks among subjects 2, 4, 5, and 12. 

The brain networks of subjects 1, 2, 3 and 13 were correlated with Key feature. For Fluctuation 

Entropy, Pulse Clarity and Mode, there was one subject involved in this cluster respectively. In 

addition, the number of ICs correlated with the musical features was more than the number of 

participants since there were 20 ICs for each subject. 
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Fig. 5. Cluster#1: Beta-specific networks. A) The centroid of the spatial maps in the cluster, which 

reflected a spatial pattern across most of participants. The bilateral superior temporal gyrus (STG) was 

activated (from left to right: left hemisphere, top view, right hemisphere). B) The number of ICs and 

subjects involved in the cluster were distributed across musical features. C) The spectra of each 

components were located in delta or beta band. Different curves represent different ICs. 

Alpha-specific network  

Figure 6 displays relatively large brain activity in the bilateral occipital lobe according to the 

spatial map. As can be seen, the oscillations of this pattern were dominated by alpha rhythm 

(focusing on 10 Hz) with few ICs located in Delta band. There were eight participants appearing 

alpha-specific occipital networks under free-listening to music. The second row of the Table 1 

shows the subjects involved in the networks linked with each musical feature.  
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Fig. 6. Cluster#2: Alpha-Delta-specific networks. A) The centroid of the spatial maps in the cluster, 

which reflected a spatial pattern across most of participants. As can be seen that the bilateral occipital 

cortex was activated (from left to right: left hemisphere, top view, right hemisphere). B) The number of 

ICs and subjects involved in the cluster were distributed across musical features. C) The spectra of each 

components were located in delta or beta band. Different curves represent different ICs. 

Delta-Beta-specific network 

Figure 7A illustrates increased activity linked with musical features in bilateral prefrontal gyrus 

(PFG). The spectrum (Fig. 7C) shows both beta and delta oscillations recruited these areas across 

participants. The delta-beta-specific networks were found in eight subjects. Mode was associated 

with this brain networks among subjects 2, 3, 4, 6, 7 and 9. The networks of subjects 4, 5, 7, 9 

and 11 were correlated with Fluctuation Centroid (see the third row of Table 1).  
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Fig. 7. Cluster#3: Alpha-Beta-specific networks. A) The centroid of the spatial maps in the cluster, which 

reflected a spatial pattern across most of participants. As can be seen that the bilateral prefrontal cortex 

was activated (from left to right: left hemisphere, top view, right hemisphere). B) The number of ICs and 

subjects involved in the cluster was distributed across musical features. C) The spectra of each 

components were located in delta or beta band. Different curves represent different ICs. 
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Fig. 8. Correlation coefficients matrix among spatial maps of the ICs in each cluster. The mean 

correlation coefficient in cluster#1 is 0.642 and the corresponding standard deviation (SD) is 0.1238. For 

cluster#2 the mean is 0.7125 and SD is 0.0572. For cluster#3, the mean is 0.8084 and SD is 0.0747. 
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Table 1. Participants involved in each cluster across musical features among 14 subjects (from 1 to 14) 

Cluster 

Musical features 

Total subjects Fluctuation 

Centroid 

Fluctuation 

Entropy 
Key Clarity Mode Pulse Clarity 

#1 2 4 5 12 2 1 2 3 13 4 5 7 

#2 1 8 10 14 8 11 13 7 8 14 2 8 11 14 1 10 13 8 

#3 4 5 7 9 11 3 6 5 6 9 2 3 4 6 7 9 7 8 

 

Discussion 

In this study, we investigated spatial spectral profiles of brain networks during music free-

listening. To this end, we proposed a novel method combing spatial ICA, source localization and 

music information retrieval. EEG data were recorded when participants listened to a piece of 

music freely. First, we applied short-time Fourier transform to preprocessed EEG data. After this, 

an inverse operator was obtained using source localization and the sensor-space data was 

mapped to source-space data. Then complex-valued ICA was performed to extract spatial 

spectral patterns. The stability of ICA estimate was evaluated using a complex-value ICASSO. 

Meanwhile, the temporal evolutions of five long-term musical features were extracted by the 

commonly used MIRtoolbox. Following this, the spatial spectral ICs were chosen by correlating 

their temporal course with the temporal course of musical features. To examine the inter-subject 

consistency, a cluster analysis was applied to spatial patterns of the retained ICs. Overall, our 

results highlighted the frequency-dependent brain networks during listening music freely. The 

results are consistent with previous findings published in other studies (V. Alluri et al., 2012; 

Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, Huotilainen, et al., 

2013; Janata et al., 2002).  
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It was found that beta-specific brain networks in the bilateral STG emerged from dynamic 

processing of musical features (see Fig. 5). The bilateral STG were mostly activated during 

music listening, which was involved in long-term musical features processing. It was interesting 

to note that the beta oscillations were enhanced in this bilateral spatial profile (see Fig. 5C). This 

spatial spectral pattern appeared more related with Fluctuation Centroid and Key processing than 

Fluctuation Entropy, Mode and Pulse Clarity (see Fig. 5B). The same areas were found in 

previous studies where timbre-related features were correlated with activations in large areas of 

the temporal lobe using fMRI (V. Alluri et al., 2012). Besides, early MEG studies demonstrated 

that cortical rhythm activity in beta band activity (15-30Hz) is tightly coupled to behavioral 

performance in musical listening and associated with predicting the upcoming note events 

(Doelling & Poeppel, 2015). Our findings indicate that the specific beta rhythms appearing in the 

STG play an important function in music perception, which means the interplay between beta 

oscillations with the STG emerges during listening to a continuous and naturalistic music. We 

also observed alpha oscillatory visual networks (see Fig. 6), which is in line with our previous 

study (Cong, Alluri, Nandi, Toiviainen, Fa, Abu-Jamous, Gong, Craenen, Poikonen, Huotilainen, 

et al., 2013). Alpha-band oscillations play an important role in basic cognitive process, which is 

linked to suppression and selection of attention (Klimesch, 2012). The delta rhythms of few 

subjects had enhancement in this visual network, which is not yet understood. The alpha-specific 

power over visual cortices was larger when attention was focused on the auditory stimuli which 

is in line with those discussed by (Barbara F. Händel, 2011). A delta-beta oscillatory network in 

prefrontal cortex were also observed during listening to music (see Fig. 7). Helfrich et al. argued 

that the prefrontal cortex provides the structural basis for numerous higher cognitive functions 

and oscillatory dynamics of prefrontal cortex provide a functional basis for flexible cognitive 
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control of goal-directed behavior (Helfrich & Knight, 2016). Besides, prefrontal cortex has the 

function of entrainment as a mechanism of top-down control (Helfrich & Knight, 2016). Our 

findings provided the evidence that the higher cognitive function were involved in continuous 

and naturalistic music. Janata et al. identified an area in the rostromedial prefrontal cortex as a 

possible brain units for tonal processing (Janata et al., 2002). In addition, some studies 

demonstrated that oscillations in the delta and beta bands were instrumental in predicting the 

occurrence of auditory targets (Arnal, Doelling, & Poeppel, 2015; Doelling & Poeppel, 2015). 

That may explain why the delta-beta oscillations in this study appears in prefrontal cortex.  

However, most of these studies investigated one pattern of the spatial spectral profile and did not 

examined the interplay between spatial brain networks and spectral profile. In contrast, we 

studied the interactions between brain region and cortical oscillations and found the brain 

networks during music listening were frequency-specific. In terms of our proposed approach for 

analysis of frequency-specific networks during naturalistic music listening, we can credibly find 

the spatial spectral patterns elicited by musical stimulus. There are some related approaches 

using spatial ICA in a variety of specific techniques to investigate the RSNs under MEG data. 

Nugent et al. proposed a method named as MultibandICA to derive frequency-specific spatial 

profile in RSNs; Hilbert transform was first applied to MEG data to extract six frequency bands 

(delta, theta, alpha, beta, gamma, high gamma) and the six bands data were concatenated in 

certain dimensionality; ICA was then performed to concatenated data (Nugent et al., 2017). 

Similar methods were proposed  in (Sockeel et al., 2016). Besides, there are some other spatial 

ICA approaches including spatial Fourier ICA (SFICA) (P. Ramkumar, Parkkonen, Hari, & 

Hyvarinen, 2012) and envelope Fourier ICA (eFICA) (P. Ramkumar et al., 2014). Those 

methods did not analyze the stability of ICA decomposition and they just considered the resting 
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state without analyzing external stimulus features. Another important asset of our study is that 

the clustering was applied to the spatial maps to examine the inter-subject consistency in 

proposed method. The correlation coefficients were then computed in each cluster. We observed 

that the individual spatial spectral profiles in every retained cluster were similar but the 

corresponding time courses were different. This is different from analysis of event-related 

potential (ERP) where temporal ICA components sharing identical spatial profiles might be 

similar. The differences might be resulted from different responses of participants under real-

word experiences. In the future, we will attempt to develop group spatial ICA to analyze group-

level data where the individual data are concatenated in time dimension. 

Conclusion 

In this study, we introduced a novel approach for exploiting the spectral-spatial structure of brain 

during naturalistic stimulus. A complex-value ICA applied to source-space time-frequency 

representation of EEG data. Following this, a modified ICASSO was performed to evaluate the 

stability of ICA estimate and a cluster analysis was applied to examine the inter-subject 

consistency. The identified networks involved in music perception were in line with those 

previous studies. Further, we found that brain networks under music listening were frequency-

specific and three frequency-dependent networks associated with processing musical features 

were observed. 
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Appendix A 

The features were extracted from the stimulus on a frame-by-frame basis (see (Vinoo Alluri & 

Toiviainen, 2010) for more details). A brief description of each of the acoustic features is 

presented below. A detailed explanation can be found in the user manual of the MIRToolbox 

(Lartillot & Toiviainen, 2007).  

Mode: strength of major of minor mode.  

Key Clarity: the strength of the estimated key, computed as the maximum of cross-correlations 

between the chromagram extracted from the music and tonality profiles representing all the 

possible key candidates. 

Fluctuation centroid: geometric mean of the fluctuation spectrum representing the global 

repartition of rhythm periodicities within the range of 0–10 Hz, indicating the average frequency 

of these periodicities. 

Fluctuation entropy: Shannon entropy of the fluctuation spectrum (Pampalk et al., 2002) 

representing the global repartition of rhythm periodicities. Fluctuation entropy is a measure of 

the noisiness of the fluctuation spectrum. For example, a noisy fluctuation spectrum can be 

indicative of several co-existing rhythms of different periodicities, thereby indicating a high level 

of rhythmic complexity. 

Pulse Clarity: the strength of rhythmic periodicities sound, representing how easily the 

underlying pulsation in music can be perceived. 
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