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Summary 14 

The recently unveiled extent of cellular heterogeneity demands for single-cell investigations of 15 

intracellular metabolomes to reveal their roles in intracellular processes, molecular 16 

microenvironment and cell-cell interactions. To address this, we developed SpaceM, a method 17 

for in situ spatial single-cell metabolomics of cell monolayers which detects >100 metabolites in 18 

>10000 individual cells together with fluorescence and morpho-spatial cellular features. We 19 

discovered that the intracellular metabolomes of co-cultured human HeLa cells and mouse 20 

NIH3T3 fibroblasts predict the cell type with 90.4% accuracy and revealed a short-distance 21 

metabolic intermixing between HeLa and NIH3T3. We characterized lipid classes composing 22 

lipid droplets in steatotic differentiated human hepatocytes, and discovered a preferential 23 

accumulation of long-chain phospholipids, a co-regulation of oleic and linoleic acids, and an 24 

association of phosphatidylinositol monophosphate with high cell-cell contact. SpaceM provides 25 

single-cell metabolic, phenotypic, and spatial information and enables spatio-molecular 26 

investigations of intracellular metabolomes in a variety of cellular models. 27 
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Introduction 33 

Multicellular organisms contain a multitude of cells of distinct and diverse functions, 34 

morphologies, and molecular compositions. Each single cell has a unique intracellular 35 

metabolome, a dynamic repertoire of metabolites and lipids involved in virtually all cellular 36 

processes. Aside with metabolites and lipids serving as building blocks and energy sources 37 

within the cell, recent discoveries unveiled their roles in signaling (Wellen and Thompson, 38 

2012), epigenome regulation (Sharma and Rando, 2017), immunity (Buck et al., 2017), 39 

inflammation (Murphy and O’Neill, 2018), host-microbe interactions (Sharon et al., 2014), and 40 

cancer (Pavlova and Thompson, 2016). At the same time, the progress of single-cell technologies 41 

revealed the extent and biological functions of cellular heterogeneity (Altschuler and Wu, 2010) 42 

within tissues, organs (Marioni and Arendt, 2017), tumors (Patel et al., 2014), and even among 43 

monoclonal cells in culture (Lee et al., 2014; Pelkmans, 2012; Russell et al., 2018). The 44 

discovered critical roles of metabolism and the growing awareness of a hidden world beneath 45 

population averages created an urgent need to investigate intracellular metabolism at the single-46 

cell level (Rubakhin et al., 2013; Zenobi, 2013). In the recent years, the sensitivity of mass 47 

spectrometry-based metabolite detection has improved substantially opening novel avenues to 48 

metabolomics of either single cells or small groups of cells (Do et al., 2017; Guillaume-Gentil et 49 

al., 2017; Ibáñez et al., 2013; Merrill et al., 2017) and even at a subcellular level (Passarelli et al., 50 

2017). However, despite these methods successfully demonstrated detection of metabolites in 51 

individual cells, analytical and computational challenges precluded studies of spatio-molecular 52 

organization and cellular heterogeneity, and prevented discovering the links between 53 

intracellular metabolomes, cellular phenotypes and spatial organisation of cells.  54 
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To bridge this gap, we designed SpaceM, a method for spatial single-cell metabolomics of cell 55 

monolayers that integrates MALDI-imaging mass spectrometry with bright-field and 56 

fluorescence microscopy. Integration with microscopy enables associating metabolites with 57 

fluorescence and morphological cell properties (fluorescent reporter intensity, area, compactness, 58 

shape) as well as with spatial features quantifying multi-cellular organization. The integration 59 

was enabled by a method for precise detection of parts of cells sampled by MALDI laser with the 60 

help of sequential microscopy, novel image analysis, and a novel cell-ablation marks 61 

normalisation strategy. Using the False Discovery Rate-controlled metabolite annotation, and 62 

novel methods for unbiased selection of intracellular metabolites and for filtering out poor 63 

quality cells allowed us to perform high-throughput analyses with >100 metabolites detected in 64 

>10000 individual cells, with a high reproducibility between replicates. We validated SpaceM by 65 

investigating metabolomes of co-cultured HeLa and mouse fibroblasts cells as well as of 66 

differentiated human steatotic hepatocytes stimulated with pro-inflammatory factors that 67 

provided rich metabolic, phenotypic, and spatial information.  68 
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 69 

Figure 1. SpaceM method for spatial single-cell metabolomics of cell monolayers by 70 

integrative microscopy and MALDI imaging mass spectrometry. The experimental part of the 71 

workflow includes cell culturing, pre-MALDI and post-MALDI microscopy and histology, and 72 

MALDI imaging mass spectrometry. The data integration part includes associating of MALDI 73 

laser ablation marks with individual cells, strategies for normalization, selecting intracellular 74 

metabolites, and cell filtering (see Figure S1 for a detailed workflow). SpaceM outputs a single-75 

cell spatio-molecular matrix providing rich information for a variety of analyses, in particular to 76 

characterise cell types, associate single-cell metabolomes with a fluorescent phenotype, 77 
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interrogate changes of single-cell metabolomes upon perturbations, and discover spatio-78 

molecular associations. 79 

 80 

Results 81 

The SpaceM method 82 

SpaceM relies on using Matrix Assisted Laser Desorption Ionization (MALDI)-imaging mass 83 

spectrometry, a spatially-resolved mass spectrometry technology for detection of a wide range of 84 

molecules (Baker et al., 2017). MALDI-imaging is increasingly used for spatial metabolomics 85 

(Palmer et al., 2016) and was demonstrated to achieve the femtomolar-levels sensitivity 86 

(Soltwisch et al., 2015). This, together with soft ionisation preventing excessive in-source 87 

molecular fragmentation makes it a perfect choice for single-cell metabolomics as demonstrated 88 

by others (Do et al., 2017; Ibáñez et al., 2013). The experimental part of SpaceM combines 89 

MALDI-imaging with microscopy as well as with collecting supporting information to integrate 90 

these two sources of data (Figure 1; for a detailed workflow see Figure S1). The cells for 91 

SpaceM are cultured on a labtek chamber glass slide in a monolayer, with the cell confluence 92 

sufficient to allow cells to interact between each other but at the same time preventing the growth 93 

of cells on top of each other. After washing, cells are fixed to halt enzymatic activity, stained 94 

with a fluorescent dye with the staining protocol compatible with metabolomics, and dried in a 95 

desiccator following regular cell preparation protocols. SpaceM requires the Hoechst (or any 96 

similar) staining for nuclei detection. For investigation of the steatotic hepatocytes, we also used 97 

the lipophilic LD540 staining to detect lipid droplets (Spandl et al., 2009). Then, bright-field and 98 

fluorescence microscopy images of cells are collected with the following two aims in mind.  99 
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First, the cell segmentation of the microscopy images provides cell outlines and enables cell 100 

localization. Second, microscopy provides rich phenotypic information about single-cell 101 

fluorescence, immunochemistry and spatio-morphological properties of the cells. In the next 102 

experimental step, MALDI-imaging is applied to the dried cells to collect mass spectra across 103 

cells and extracellular areas. MALDI-imaging procedure starts with application of an ionisation-104 

enhancing matrix. Similar to MALDI-imaging of tissues, we used a robotic sprayer for enhanced 105 

extraction, high spatial resolution, and high reproducibility. MALDI-imaging generates big 106 

datasets with millions of mass-to-charge channels. For finding metabolic signals in this data, we 107 

exploited the False Discovery Rate-controlled metabolite annotation implemented as the 108 

METASPACE cloud software (http://metaspace2020.eu) (Palmer et al., 2017). METASPACE is 109 

an essential step as it reduces millions of mass-to-charge (m/z)-values to ~100 metabolite 110 

annotations, filters out signals representing matrix and contaminants, ensures quality control and 111 

represents metabolite images a user-friendly way. In the last experimental step, we performed 112 

post-MALDI microscopy to determine which cells were sampled by the MALDI-imaging laser 113 

and to associate MALDI-imaging spectra with the cells. Next, we performed data integration 114 

with the first step associating ablation marks with individual cells. We detected MALDI laser 115 

ablation marks in post-MALDI microscopy images using a customized 2D Fourier 116 

Transformation image analysis method that exploits similarities between ablation marks and the 117 

regularity in spacings between them. Then, we obtained positions of the MALDI-imaging 118 

ablation marks within the cell areas by co-registering pre-MALDI microscopy images 119 

(containing cell outlines) with post-MALDI microscopy images (containing ablation marks 120 

outlines) (Figure S2). For a majority of cells, a cell was sampled with just one ablation mark. In 121 

our benchmarking experiment with HeLa cells and NIH3T3 fibroblast (described later), 72.25%, 122 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

8 

23.8%, 2.8%, 0.9% cells were sampled with 1, 2, 3, 4 ablation marks, respectively. To integrate 123 

metabolic profiles from several ablation marks co-sampling the same cell as well as to reduce the 124 

confusion of co-sampled cells, we developed a cell-ablation marks normalization strategy 125 

(Figure 2). The normalization provides the metabolite intensity normalized by the area that is a 126 

natural readout for metabolite concentration. Next, we developed a strategy to distinguish 127 

intracellular from extracellular metabolites by requiring an intracellular metabolite intensities to 128 

be highly correlated with the cell spatial distribution. Finally, similar to cell filtration strategies 129 

in single-cell RNA-seq (Ilicic et al., 2016), we filter out poor-quality cells with low numbers of 130 

metabolite annotations with the cutoff determined as the 5%-percentile of the numbers of 131 

annotations for all cells in an experiment. 132 

 133 

Figure 2. Normalization strategy for assigning metabolic intensities to individual cells. The 134 

intensity assigned to a cell for a given metabolite is calculated as a weighted mean of the 135 

metabolite intensities from the ablation marks sampling that cell. To increase the contribution of 136 

ablation marks which mainly sample the cell of interest, the weight of each ablation mark is 137 

proportional to the overlap of the ablation mark and the cell. To reduce the contribution of 138 

ablation marks which mainly sample extracellular areas, the weight of each ablation mark is 139 

reversely proportional to its extracellular sampling area. Ablation marks sampling 140 

predominantly extracellular areas are filtered out (as the illustrated here ablation mark III). 141 
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area(an) stands for the area of ablation mark an; sampling area(an) stands for the intracellular 142 

area of ablation mark an; area(ck) stands for the area of cell ck; all areas are computed in 143 

microscopy pixels. 144 

Ultimately, SpaceM provides a single-cell spatio-molecular matrix that, for each cell, comprises 145 

a multiplex readout of the cell metabolic profile, fluorescence intensity, morphological features, 146 

and spatial features (Figure 1). This information enables statistical analysis, phenotype-147 

metabolome correlation, and/or spatio-molecular interrogation of single cells in the genuine 148 

spatial context. 149 

SpaceM predicts cell types with single-cell resolution 150 

For validation of the method, we evaluated whether SpaceM can predict the cell type of 151 

spatially-heterogeneous co-cultured human HeLa cells and mouse NIH3T3 fibroblasts (Figure 152 

3). We considered six samples (two replicates of co-cultures, and two replicates of control 153 

monocultures for each cell type). HeLa and NIH3T3 cells constitutively expressed H2B-mCherry 154 

and GFP, respectively, making them easily discernible by fluorescence microscopy. Automated 155 

assignment of the cell type was done using a linear separating boundary between mCherry and 156 

GFP fluorescence intensities (Figure 3A). Overall, metabolic profiles of 88 metabolites with an 157 

FDR≤10% in at least one sample were obtained for 1624 cells in co-cultures (958 HeLa and 666 158 

NIH3T3 cells) and 2197 cells in monocultures (1603 HeLa and 594 NIH3T3 cells). Support 159 

Vector Machine classification of the single-cell metabolic profiles with the 10-fold cross-160 

validation for unbiased choice of the Gaussian kernel gamma predicted the cell type with 90.4% 161 

accuracy for the co-cultured cells. To evaluate the richness of the detected metabolic profiles, we 162 

used only a random subset of all 88 metabolites and were able to consistently predict the cell 163 
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type in co-cultures with 87.6% accuracy even when using only a half of all detected metabolites 164 

(Figure 3B). This indicates the richness of the detected intracellular metabolomes and its 165 

biological relevance in the context of cell type classification. Moreover, by applying the 166 

statistical t-test we have identified the molecular markers of each cell type in co-cultures, with 167 

the phosphatidylinositols PI(34:1), PI(34:2) found to be the most statistically significant and 168 

exhibiting the highest fold change in HeLa cells.  169 

In order to assess whether the metabolic profiles can predict the cell type with a single-cell 170 

resolution, we evaluated a case of a fibroblast surrounded by HeLa cells (Figure 3D). As shown 171 

in Figure 3E, its cell type was predicted correctly. The phosphoethanolamine PE(40:6), the 172 

fibroblast marker for NIH3T3 with the highest fold change (Figure 3F) is exhibiting a higher 173 

intensity in the fibroblast compared to the surrounding HeLa cells. Interestingly, the visualization 174 

of the intensities of the most significant HeLa marker PI(34:1) shows high cell-cell heterogeneity 175 

among the HeLa cells (Figure 3G), confirming that it is a combination of several metabolites that 176 

enables prediction of the HeLa cell type. 177 
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 178 

Figure 3. SpaceM can predict the cell type of co-cultured HeLa cells and NIH3T3 fibroblasts 179 

based on their intracellular metabolomes, with single-cell resolution. A: Automated assignment 180 

of the cell type for co-cultured HeLa and NIH3T3 cells (n=3821) was done using a linear 181 

separating boundary between mCherry and GFP fluorescence intensities. B: Using single-cell 182 

metabolic profiles, we could predict the cell type with 90.4% accuracy; even when using only 183 

half of the detected metabolites, we could predict the cell type with 87.6% accuracy on average 184 

indicating the richness and the relevance of the detected metabolomes; Support Vector Machine 185 

with 10-fold cross validation was used for classification; the plot shows the median accuracy for 186 

1000 random repetitions when subsampling the metabolites, with the grey area showing the 187 

confidence intervals of ± one standard deviation. C: Volcano plot (log2 of the fold change 188 

HeLa/NIH3T3 vs. -log10 of the t-test p-value) showing differential properties 88 detected 189 

metabolites and lipids. D: Area of the co-cultured cells showing an NIH3T3 cell surrounded by 190 

HeLa cells; the sampled cells are outlined according to their assigned type. E: SpaceM 191 

demonstrates single-cell resolution allowing correct prediction the cell type of the NIH3T3 cell 192 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

12 

surrounded by HeLa cells. F-G: Single-cell metabolite images for two markers highlighted in 193 

Figure 2E: phosphoethanolamine PE(40:6) and phosphatidylinositol PI(34:1) validated using 194 

LC-MS/MS (Data S1); despite the single-cell metabolite images exhibiting visually-noticeable 195 

heterogeneity, the full metabolic profile let predict the cell type with a high accuracy indicating 196 

the richness of the detected metabolomes and their relevance for each cell type. 197 

 198 

Intermixing of metabolomes of co-cultured HeLa and NIH3T3  199 

Intriguingly, the detected intracellular metabolomes of co-cultured cells were different from 200 

metabolomes of their monocultured counterparts (Figure 4). The co-culturing was optimized to 201 

achieve high spatial heterogeneity so that cells of one type have neighbors of another type 202 

(Figure 4A-B). We observed that upon co-culturing, the single-cell metabolomes of one cell type 203 

become more similar to the single-cell metabolomes of another cell type as compared to their 204 

monocultured counterparts (Figure 4C). The values of the metabolic discriminant do not overlap 205 

between the monocultured HeLa and NIH3T3 (Figure 4C, with the 90% confidence interval 206 

shown monocultured cells of each type). However, for the co-cultured cells, 39.2% of NIH3T3 207 

cells (and 48.2% of HeLa cells) exhibit the values of the metabolic discriminant in the mixing 208 

region between the cell types or even take the values within the confidence interval of the other 209 

type. This observation of metabolic intermixing between co-cultured cells was further supported 210 

by results from predicting the cell type based on single-cell intracellular metabolomes. Whereas 211 

we could predict the cell type of co-cultured cells with 90.4% accuracy, for the monocultured 212 

cells we could predict their cell type with a higher accuracy of 96.6%. 213 

Furthermore, we discovered that the metabolic intermixing between cells of two types happens 214 

locally and can be considered a short-distance effect. The extent of the metabolic intermixing for 215 
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NIH3T3 cells depends on the presence of HeLa in their close vicinity (Figure 4D). We estimated 216 

that the metabolic intermixing is the strongest at the distance of 58 µm for NIH3T3 and 107 µm 217 

for HeLa, with NIH3T3 affected most (rs=0.43, -log10(p-value)=17.5 compared to rs=-0.18, -218 

log10(p-value)=3.8). We evaluated whether the observed metabolic intermixing can be observed 219 

either due to metabolite delocalization during sample preparation or due to co-ablation of cells. 220 

Sample preparation is known to be a key to achieve high spatial resolution MALDI-imaging. 221 

Particularly critical is the application of the MALDI matrix, since it can cause metabolite 222 

delocalization either during matrix crystallization as crystals can contain analytes from the whole 223 

crystal footprint, or due to metabolite leakage while spraying the matrix solution. We have 224 

developed a strategy to quantify metabolite delocalization (Figure 4G) that showed that most of 225 

metabolites (65 of 88) are well-localized. The delocalized metabolites such as 226 

lysophosphoethanolamine LPE(18:0) (see Figure G, cf. well-localized LPE(18:1)) showed only 227 

minor levels of delocalization with median distance outside of cells <5 µm. Importantly, even 228 

when using only well-localized metabolites, SpaceM could predict the cell type with 88.9% 229 

accuracy. The fact that the cell type prediction accuracy did not increase after considering 230 

localized metabolites only suggests that delocalization does not explain the observed intermixing 231 

between the cell types. Next, we evaluated whether co-ablation of cells can be a reason for the 232 

observed metabolic intermixing. We considered only the cells which had uniquely-associated 233 

ablation marks and excluded 878 cells which were co-sampled (having co-sampling ablation 234 

marks, Figure 4H). Still, considering both well-localized metabolites and cells without co-235 

sampling ablation marks only (444 HeLa, 332 NIH3T3) we could predict the cell type with 236 

90.7% accuracy. The lack of the difference in the prediction accuracy (cf. 90.4% for all 237 

metabolites and all cells) suggests that co-sampling of cells does not explain the observed 238 
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metabolic intermixing. In summary, this data indicates that the metabolic intermixing might be a 239 

short-distance biological effect when a cell of one type has neighbors of another type in close 240 

vicinity and that NIH3T3 cells are stronger affected than HeLa cells. 241 

 242 

Figure 4. Metabolic intermixing of co-cultured HeLa and NIH3T3 fibroblasts. A: Illustration 243 

of the spatial heterogeneity of co-cultured HeLa (H1B-mCherry, red) and NIH3T3 (GFP, green). 244 

B: Quantification of the spatial heterogeneity showing that, for each cell type, individual cells 245 

are surrounded by cells of other type (on average, an NIH3T3 cell has 47% HeLa among 10 246 

closest neighbors, a HeLa cell has 26% NIH3T3). C: Less pronounced difference between HeLa 247 

and NIH3T3 cells in co-cultures compared to their monocultured counterparts suggests 248 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

15 

metabolic intermixing between the cell types, here visualized with the values of the Linear 249 

Discriminant Analysis (LDA) discriminant of the single-cell metabolic profiles; the cells are 250 

colored and plotted against its cell type and whether they were cultured in co- or mono-culture; 251 

the cell type for co-cultured cells was determined using their fluorescence; the vertical bars 252 

indicate the 90%-confidence intervals for each monocultured cell type. D: The metabolomes of 253 

NIH3T3 cells are affected most when they have HeLa cells in close vicinity with distance 254 

between cell centers of 50-100 µm, whereas the average diameter of a HeLa cell equal to 6.7 255 

(+/- 1.7) µm and of NIH3T3 equal to 8 (+/- 2.47) µm. E: Illustration explaining the calculation 256 

of the distance of the metabolic intermixing effect, per cell type: For each cell, we consider a 257 

neighborhood of particular radius, and calculate a fraction of cells of the other type in this 258 

neighborhood. The radius for which this property is most correlated (for NIH3T3 cells) or anti-259 

correlated (for HeLa cells) with the metabolic discriminant (LDA) corresponds to the distance of 260 

the intermixing effect. F: NIH3T3 cells are most affected by HeLa at the distance of 58 µm; 261 

HeLa cells are mainly affected by NIH3T3 cells at the distance of 120 µm, with the correlation 262 

coefficient and p-values indicating the smaller extend of this effect compared to NIH3T3. G: 263 

Evaluation of the metabolite delocalization confirmed that the metabolic intermixing cannot be 264 

explained by the metabolite delocalization between neighboring cells. The scatterplots for 265 

ablation marks for lysophosphoethanolamines LPE(18:1) (i) and LPE(18:0) (iii) show how their 266 

metabolite intensities depend on the distance to the nearest cell boundary (negative for 267 

intracellular ablation marks, positive for extracellular ablation marks). LPE(18:0) exemplifies a 268 

delocalized metabolite with the high metabolite intensities observed at the extracellular ablation 269 

marks at the distances of <50 µm from cells. LPE(18:1) exemplifies a well-localized metabolite 270 

detected predominantly in the intracellular ablation marks only. ii) a histogram of the 271 
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delocalization scores for all metabolites showing that most of the metabolites are well-localized; 272 

moreover, when considering only well-localized metabolites, SpaceM predicts the cell type with 273 

the classification accuracy 88.9% suggesting that despite a minority of metabolites (23 out of 88) 274 

having positive delocalization scores, the metabolic intermixing between the cell types is not 275 

explained by the delocalization. H: We confirmed that the metabolic intermixing is not due to the 276 

co-sampling of cells (when an ablation mark samples more than one cell e.g. as illustrated with 277 

red outlines), since even after considering only well-localized metabolites and excluding co-278 

sampled SpaceM could predict the cell type with 90.7% accuracy (cf. 90.4% for all metabolites 279 

and cells). *** denotes p-values<0.001; N.S. stands for non-significant. 280 

SpaceM discovers accumulation of long-chain lipids in steatotic hepatocytes 281 

Next, we used SpaceM to investigate the identity of intracellular metabolomes in differentiated 282 

human hepatocytes (dHepaRG). During the non-alcoholic fatty liver disease (NAFLD) 283 

hepatocytes are known to accumulate lipid droplets (LDs), which in the context of inflammation 284 

and necro-inflammation can lead to development of macrovesicular steatosis (Ringelhan et al. 285 

2018; Wolf et al. 2014). We could recapitulate macrovesicular steatosis using human or murine 286 

hepatocytes in vitro (Wolf et al. 2014). In particular, the pro-inflammatory cytokine TNFα is 287 

known factor promoting steatotic phenotype in hepatocytes (Jung and Choi 2014; Nakagawa et 288 

al. 2014). We noticed that the macrovesicular steatosis exhibits a high cell-cell heterogeneity 289 

(Figure 5A, Figure S3) and set to characterize the molecular composition of the LDs in steatotic 290 

hepatocytes. 291 

We cultured monolayers of differentiated human hepatocytes dHepaRG, stimulated them with 292 

TNFα in combination with oleic and palmitic acids, and measured LD accumulation using the 293 

lipophilic fluorescent dye LD540 (Spandl et al., 2009). After applying SpaceM, we detected 167 294 
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metabolites (at an FDR≤10%) in 2370 cells. Principal component analysis (PCA) of the single-295 

cell metabolic profiles revealed a significant correlation between the captured metabolome and 296 

the LD540 lipid fluorescence (Figure 5B). Triglycerides (TGs), diglycerides (DGs), and 297 

phosphatidylcholines (PCs) were identified as the key constituents of the LDs (Figure 5C). This 298 

is in line with neutral lipids, mainly DGs and TGs, known to compose the core of hepatic LDs, 299 

whereas polar lipids, primarily PCs, to compose the surface (Gluchowski et al., 2017; Ress and 300 

Kaser, 2016). Figure 5D shows a single-cell scatterplot for the most correlated lipid TG(50:1) 301 

visualizing statistically significant (with p-value<0.001) correlation of intensities of this lipid 302 

with the extent of the macrovesicular steatosis quantified with the LD540 fluorescence. 303 

Interestingly, for PCs, sphingomyelins, and phosphoethanolamines, the LD540 fluorescence was 304 

found to be positively correlated with the number of carbons suggesting that LDs in steatotic 305 

hepatocytes preferentially accumulate long-chain species of these phospholipids (Figure 5E). 306 

The opposite effect (negative correlation) was observed for di- and triglycerides albeit not 307 

significant (Figure 5F).  308 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

18 

 309 

Figure 5. Single-cell analysis of the molecular composition of lipid droplets (LDs) in steatotic 310 

hepatocytes stimulated with TNFα (n=2370). A: Cell-cell heterogeneity of macrovesicular 311 

steatosis (LDs accumulation) in differentiated human hepatocytes stimulated with TNFα in 312 

combination with oleic and palmitic fatty acids; the LD540 lipophilic staining highlights 313 

intracellular lipid droplets; Hoechst highlights nuclei; the yellow/blue arrows indicate cells with 314 

high/low steatosis. B: Positive Spearman correlations (rs) the single-cell principal components 315 

of the z-scores of the single-cell metabolic profiles between the log10 of LD540 fluorescence 316 

prove that the metabolic profiles represent lipid accumulation. C: Accumulation of various lipid 317 

classes in LDs as measured by the single-cell Spearman correlations between LD540 318 

fluorescence and intensities of 167 detected lipid species; tri- (TG), di-glycerides (DG), and 319 

phosphocholines (PC) are the most correlated that is in line with them known to compose the 320 

core (TG, DG) and surface (PC) of hepatic LDs. D: Single-cell scatterplot of the most-correlated 321 

triglyceride TG(50:1), validated using LC-MS/MS (Data S1). E: For phosphocholines, 322 
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sphingomyelins (SMs), and phosphoethanolamines (PEs), the LD540 fluorescence is 323 

significantly and positively correlated with the number of carbons (#C) suggesting that steatotic 324 

hepatocytes accumulate long-chain versions of these phospholipids; the number of carbons is 325 

computed as an average per fatty acid chain to be comparable between lipid classes. F: The 326 

opposite effect (negative correlation) was observed for di- and triglycerides albeit not 327 

significant. *** indicates significance with p-value ≤ 0.001. 328 

SpaceM discovers intracellular co-regulation of oleic and linoleic acid 329 

We previously found that mice fed a diet enriched with oleic and palmitic fatty acids developed 330 

key features of human metabolic syndrome, nonalcoholic steatohepatitis (NASH), and NASH-331 

derived hepatocellular carcinoma (Wolf et al., 2014). To investigate on the single-cell level how 332 

the metabolome and lipidome of human hepatocytes is affected by different pro-inflammatory 333 

factors, we analyzed hepatocytes cultured under the following conditions: (i) CTRL, untreated 334 

cells, (ii) FA, cells stimulated with oleic and palmitic fatty acids (opFAs), (iii) LPS, cells 335 

stimulated with a pathogen-associated molecular pattern lipopolysaccharide and opFAs and (iv) 336 

TNFα, cells stimulated with TNFα and opFAs. SpaceM obtained metabolic profiles of 136 337 

metabolites for 22258 cells in total with a batch correction applied to three randomized technical 338 

replicates per condition (Table S1, Figure S4). LD540 staining of differentiated, stimulated 339 

human hepatocytes revealed lipid accumulation and macrovesicular steatosis (Figs. 5A, S6, S8). 340 

PCA of single-cell metabolic profiles indicates the captured differences in the metabolomes of 341 

untreated and stimulated cells (Figure 6A). The metabolic shifts between different conditions 342 

reflected the expected levels of response to the stimuli as (i) opFAs used for stimulation in the 343 

FA condition were also supplemented in the LPS and TNF condition, (ii) TNFα specifically 344 

induced the strongest TNF-receptor signaling whereas (iii) LPS only secondarily induces TNF 345 
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secretion and TNFR signaling at lower levels (Beutler, 2004). We investigated the contributions 346 

of individual metabolites to the principal components and found that, as expected, cells cultured 347 

with oleic acid accumulated intracellular oleic acid as compared to the untreated cells (Figure 348 

6B). Not all molecules showed elevated accumulation with the increase of the stimuli; see e.g. 349 

PIP(38:5) in Figure 4C which exhibits similar intensities between CTRL and FA with a clear 350 

increase in the TNF and even more in the LPS condition. Interestingly, opposite to oleic acid, 351 

linoleic acid (the second of the opFAs stimuli in the FA, LPS, TNF conditions) exhibits 352 

decreased levels in the stimulated cells (Figure 6D). Importantly, there is a clear correlation 353 

between the levels of the oleic and linoleic acids across all cells (Figure 6E). A similar effect of 354 

the inverse relation between oleic and linoleic acids levels was reported in the livers of mice fed 355 

a high-fat diet (da Silva-Santi et al., 2016). However, the bulk analysis could not discern whether 356 

the effect occurs in different cell subpopulations or is concerted within the same cells. Our 357 

single-cell analysis shows that the effect happens indeed within the same cells thus suggesting 358 

intracellular co-regulation of oleic and linoleic acid levels. 359 

  360 
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 361 

Figure 6. Single-cell statistical analysis of steatotic differentiated human hepatocytes 362 

dHepaRG stimulated with the fatty acids, LPS, and TNFα (n=22258). A: PCA of z-scores of 363 

the single-cell profiles of 136 metabolites; biplot vectors visualize contributions of individual 364 

metabolites; gradient-colored arrows illustrate the metabolomes transitions from the untreated 365 

cells (CTRL, n=5654) to the cells cultured with oleic and palmitic fatty acids (FA, n=4972), with 366 

LPS and the fatty acids (LPS, n=5062), or with TNFα and the fatty acids (TNFα, n=6570). B-D: 367 

Single-cell metabolite intensities mapped onto the PCA plot and the Tukey box plots per 368 

condition (25%-75% percentiles, whiskers at 1.5x distance of the interquartile range); only cells 369 

with non-zero metabolite intensity are shown; see Figure 14 for AMP and glutathione. E: Single-370 

cell scatterplot for intensities of linoleic vs. oleic acids showing an inverse relationship in 371 

intracellular levels of these fatty acids upon stimulation and their tight and condition-372 

independent correlation; the centers of masses and fitted lines are plotted. Oleic acid, linoleic 373 

acid, and PIP(38:5) were validated using LC-MS/MS (Data S1). 374 

 375 

 376 
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SpaceM discovers association of PIP(38:5) with high cell-cell contact 377 

Finally, we investigated the spatio-molecular organization of human hepatocytes (Figure 7A-D). 378 

LD540-fluorescence microscopy revealed lipid accumulation within groups of cells that display 379 

high cell-cell contact (Figure S5, S6). Among all the detected metabolites, phosphatidylinositol 380 

phosphate PIP(38:4) (although not validated with LC-MS/MS) and PIP(38:5) were most highly 381 

associated with cell-cell contact (Figure 7B, Figure S7). PIPs are precursors of PIP3, a signaling 382 

phospholipid in the plasma membrane, which might explain their elevation within adjacent cells 383 

in a locally-concerted manner. Not all detected metabolites displayed such an association: AMP 384 

showed no correlation (Figure 7C) whereas oleic acid showed a negative correlation (Figure 7D). 385 

Thus, integrating fluorescent, morphological, spatial, and molecular information can be a 386 

powerful approach to explore multi-cellular phenomena (Bray et al., 2016).  387 

  388 
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 389 

Figure 7. Single-cell statistical analysis of steatotic differentiated human hepatocytes 390 

stimulated with pro-inflammatory factors (n=22258). A: TNFα hepatocytes with areas of local 391 

crowding; the red LD540 fluorescence intensity indicates the accumulation of lipid droplets from 392 

low steatosis to macrovesicular steatosis. B-D: Single-cell molecular images for PIP(38:5), 393 

AMP, and oleic acid. Next to PIP(38:4), PIP(38:5) is the second most correlated molecule with 394 

cell-cell contact, indicating its potential concerted elevation within adjacent cells. Oleic acid, 395 

linoleic acid, AMP, glutathione, and PIP(38:5) were validated using LC-MS/MS (Data S1). E-F: 396 

Illustration of a part of spatio-molecular matrix for five selected cells that represents single-cell 397 

phenotypic information (LD540 fluorescence quantifying the extent of the macrovesicular 398 

steatosis), morpho-spatial features (including cell-cell contact), and metabolite intensities. 399 
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Discussion 400 

Here, we presented SpaceM, a novel method for the spatial single-cell analysis of intracellular 401 

metabolomes of cultured cells. SpaceM not only detects metabolites in individual cells using 402 

MALDI but, critically, integrates MALDI analysis with microscopy and is supplied with data 403 

analysis strategies for metabolite annotation, intensities normalization, selection intracellular 404 

metabolites and filtering out poor quality cells. The method demonstrated to be robust and 405 

reproducible, allowing us to analyze several conditions and replicates, obtaining metabolic 406 

profiles of around 100 metabolites from over 30.000 cells. 407 

We benchmarked the method by analysing the co-cultured human HeLa cells and mouse 408 

NIH3T3 fibroblasts. The single-cell metabolic profiles detected by SpaceM were rich enough to 409 

predict the cell type with 90.4% accuracy with the single-cell resolution. Surprisingly, we 410 

detected metabolic intermixing of different cell types upon co-culturing, a yet unreported 411 

biological phenomenon. Our investigations indicated that the observed intermixing is a short-412 

distance effect, namely, its extent depends on the presence of cells of other type in close vicinity. 413 

We carefully considered all other confounding factors and outruled sampling inaccuracies or 414 

metabolite delocalization. All our results indicate that intracellular metabolomes of cells of one 415 

type are indeed influenced by the neighboring cells of another type, with NIH3T3 cells affected 416 

stronger than HeLa cells. 417 

For molecular detection, SpaceM exploits MALDI-imaging thus inheriting the advantages of this 418 

technique, in particular the capacity for untargeted metabolomics. We demonstrated it by 419 

detecting profiles encompassing 88 (for HeLa and NIH3T3) and 136 (for dHepaRG) metabolite 420 

annotations on the level 2 according to the Metabolomics Standards Initiative (Sumner et al., 421 
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2007). The use of METASPACE for metabolite annotation was instrumental in the 422 

interpretation, quality control, and fast access to the metabolite images of the collected MALDI-423 

imaging data, as METASPACE efficiently reduces millions of mass-to-charge values to tens of 424 

metabolite annotations in a False Discovery Rate-controlled manner. SpaceM is not limited to 425 

lipids, fatty acids and such small molecules as AMP or glutathione (Figure S8, Data S1) but can 426 

be extended to other molecular classes by using another MALDI-imaging protocol. In the HeLa-427 

NIH3T3 co-culture benchmarking experiment, even when using just a half of the 88 detected 428 

metabolites, we could predict the cell type with 87.6% accuracy that affirms the richness of the 429 

metabolic profiles detected by SpaceM. 430 

SpaceM was enabled by MALDI-imaging achieving the single-cell spatial resolution. However, 431 

it is almost impossible to sample highly-confluent cell monolayers without co-ablating several 432 

cells at once. Moreover, the sample preparation for MALDI-imaging, particularly matrix 433 

application, can negatively affect the spatial resolution. Thus, we set to prove the single-cell 434 

nature of the method, especially because it was essential to exclude possible technical reasons for 435 

the observed metabolic intermixing between HeLa and NIH3T3. For this, we developed a 436 

strategy to consider for each metabolite its delocalization outside the cell perimeter. This led to 437 

revelation that, first, the extent of delocalization is metabolite-specific, and second, even for the 438 

minority of metabolites characterized as delocalized, the median delocalization is comparable to 439 

the average size of a single cell. Moreover, in our benchmarking experiment, discarding 440 

delocalized metabolites did not affect the accuracy of the cell type prediction much. Altogether, 441 

these novel delocalization analyses confirm the single-cell nature of the SpaceM method. We 442 

hypothesize that the delocalization happens during spraying the MALDI matrix solution but do 443 

not have yet a definite answer what makes some metabolites delocalized while the majority of 444 
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metabolites were detected well-localized within the cell perimeter. For example, 445 

lysophosphoethanolamine LPE(18:1) was found to be well-localized whereas the structurally 446 

similar but saturated LPE(18:0) was found to be delocalized. 447 

Compared to other reported single-cell metabolomics methods, e.g. microwells (Ibáñez et al., 448 

2013) or microsampling (Guillaume-Gentil et al., 2017) approaches, SpaceM analyzes cells in 449 

situ in their native spatial context, ensures minimal unwanted perturbation, and preserves 450 

information about the microenvironment and spatial organization of cells. In contrast to micro- 451 

and nano-sampling methods, SpaceM is also a high-throughput method able to analyze over 452 

10000 cells and at the same time, as we illustrated, detecting rich metabolic profiles. Compared 453 

to a microscopy-guided laser ablation approach (Do et al., 2017), SpaceM uses unbiased 454 

sampling that facilitates discovery of cell populations which cannot be discriminated by 455 

microscopy, helps distinguish intracellular from extracellular signals, and also capitalizes on a 456 

softer MALDI ionization better suited for biomolecules. Compared to ultra-high spatial 457 

resolution approaches (Passarelli et al., 2017), SpaceM makes possible a high throughput 458 

analysis of large populations of cells to investigate their heterogeneity and to discover rare 459 

molecular phenotypes. The combination of these strengths makes SpaceM not only a single-cell 460 

but also a spatial method. We demonstrated the spatial capacity of SpaceM by discovering short-461 

distance effect of metabolic intermixing between HeLa and NIH3T3 cells and by associating 462 

PIPs with high cell-cell contact. 463 

We expect SpaceM to be broadly applicable to any adherent cells cultured in a monolayer, 464 

avoiding growing on top of each other that can lead to increased co-sampling. In our experience, 465 

cell culturing for SpaceM is relatively straightforward and can be evaluated following 466 

conventional cell biology practices by paying attention to the cell count, viability and 467 
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confluence. SpaceM allows for the determination of cells that are different in their response to 468 

changes in the microenvironment, which enables the identification of novel molecular 469 

mechanism involved in critical biological processes. 470 

SpaceM contributes to the growing field of single-cell -omics methods by providing the missing 471 

capacities for spatio-molecular in situ analysis. Future experiments will aim to translate SpaceM 472 

to the level of tissue sections. Our method will be particularly useful to investigate health and 473 

disease phenomena associated with metabolic reprogramming, spatial organization and/or 474 

cellular heterogeneity such as differentiation, infection, drug metabolism, immunity, and cancer. 475 
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Methods 615 

Co-culturing of HeLa and NIH3T3 cells 616 

HeLa Kyoto H2B-mCherry and NIH3T3-GFP cells were cultured at 37 °C with 5% CO2, and 617 

were maintained in high glucose DMEM (1X Pen/Strep) (Gibco/ThermoFisher Scientific, 618 

Bremen, Germany) supplemented with 10% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin 619 

(Gibco) and 1 mM sodium pyruvate (Gibco). Cells were trypsinized with 0.25% trypsin-EDTA 620 

(Gibco) and split 1:10 twice a week. Two technical replicates for the co-cultures and one 621 

replicate for monoculture were used. Trypsinized cells were counted and cells were seeded on 4-622 

well-glass labtek chamber slides (Lab-Tek II, CC2) (ThermoFisher Scientific). In the co-culture 623 

experiment, equal number of cells of each cell type was added into each well (4x105 cells/well). 624 

After 48h of incubation cells were washed with PBS. After washing, the cells were fixed for 15 625 

min with 4% paraformaldehyde (Sigma Aldrich, Darmstadt, Germany) at room temperature. 626 

Then the cells were stained with DAPI (1µg/ml) (ThermoFisher Scientific) in PBS for 20 min at 627 

room temperature. 628 

Hepatocytes culturing and stimulation 629 

HepaRG cell culture and differentiation was performed as described earlier (Gripon et al., 2002). 630 

Differentiated HepaRG (dHepaRG) cells were cultured on 4-well-glass chamber slides (Lab-Tek 631 

II, CC2, ThermoFisher Scientific, Bremen, Germany) (5.5x104 cells/well). The cells were 632 

stimulated with the fatty acids (opFAs): oleic acid (66 µM) and palmitic acid (33 µM), opFAs 633 

and tumor necrosis-alpha (TNFα) with the final concentration of 50 ng/ml (Recombinant Human 634 

TNF-alpha, and Systems), or opFAs and lipopolysaccharide (LPS) (100 ng/ml) (LPS from 635 

E.coli) (Sigma Aldrich) in Williams E Medium (William’s Medium E, with stab. glutamine, 636 
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without Phenol Red, with 2,24 g/l NaHCO3) (PAN Biotech) for 24 h. Cells grown in Williams E 637 

Medium without supplement for 24 h were considered as a negative control. For each of those 638 

four conditions, cells were seeded in three different wells which were considered as technical 639 

replicates (Table S1). After washing, cells were fixed for 15 min with 4% paraformaldehyde 640 

(Sigma Aldrich) at room temperature. Then the cells were washed and stained with Hoechst 641 

(1µg/ml) (Hoechst 33342) (ThermoFisher Scientific) and LD540 (0.1 µg/ml) (Spandl et al., 642 

2009) in PBS for 30 min at room temperature. After washing, cells were stored in dH2O at 4 °C 643 

for one night maximum.  644 

Preparing cells for imaging 645 

The plastic walls of the labtek were removed and the cells were dried in a Lab Companion™ 646 

Cabinet Vacuum Desiccator for 16h at room temperature and -0.08 MPa. After complete 647 

desiccation of the cells, pen marks are manually drawn on the glass slide using a black alcohol 648 

pen model 140s black (Edding, Ahrensburg, Germany) to keep track of the glass slide orientation 649 

and for image registration. The marks were drawn on the same side as the cells. Cells are kept at 650 

4 °C until analysis. For the following experiments, the samples were analyzed by the microscopy 651 

and MALDI-imaging mass spectrometry following a randomized experimental design (Table 652 

S1). 653 

 654 

 655 

Pre-MALDI bright-field and fluorescence microscopy of cells 656 

Fixed cells were sequentially observed with the camera Nikon DS-Qi2 (Nikon Instruments) with 657 

the Plan Fluor 10x (NA 0.30) objective (Nikon Instruments) mounted on the Nikon Ti-E inverted 658 
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microscope (Nikon Instruments) in bright-field and fluorescence (620 nm and 460 nm). The 659 

pixel size was 0.73 µm. The microscope was controlled using the Nikon NIS Elements software. 660 

The tiled acquisition of each cell culture area was performed using the JOB functionality of the 661 

NIS software. Stitching of tiled frames was performed using the FIJI stitching plugin (Preibisch 662 

et al., 2009). 663 

MALDI imaging mass spectrometry 664 

Relative humidity and temperature levels in the mass spectrometry room were monitored and 665 

controlled during the whole experiment and were within 44%-63% and 21.1-23.7 °C (Table S1). 666 

For the analysis of the lipid droplets (Figure 3), the 2,5-dihydroxybenzoic acid (DHB) matrix 667 

(Sigma Aldrich) 15mg/ml dissolved in 70% acetonitrile was applied onto the dried cells on the 668 

labtek slides by using a TM-Sprayer robotic sprayer (HTX Technologies, Carrboro, NC, USA). 669 

Spraying parameters were as following: temperature=100 °C, number of passes=8, flow 670 

rate=0.07 ml/min, velocity=1350 mm/min, track spacing=2 mm/min, pattern=CC, pressure=10 671 

psi, gas flow rate=5 l/min, drying time=15 sec, nozzle height=41 mm. The estimated matrix 672 

density was of 0.00311 mg/mm2. For investigating the molecular trends within all four 673 

considered conditions (Figure 4), the matrix 1,5-diaminonaphthalene (DAN) (Sigma Aldrich) 674 

10mg/ml dissolved in 70% acetonitrile was applied onto the dried cells on the labtek slides by 675 

using the same TM-Sprayer robotic sprayer. Spraying parameters were as following: 676 

temperature=90 C°, number of passes=8, flow rate=0.07 ml/min, velocity=1350 mm/min, track 677 

spacing=3 mm/min, pattern=CC, pressure=10 psi, gas flow rate=2 l/min, drying time=15 sec, 678 

nozzle height=41 mm. The estimated matrix density was of 0.001383 mg/mm2. For MALDI 679 

imaging mass spectrometry, the glass slides with the dried cells on them were mounted onto a 680 

custom slide adaptor and loaded into the AP-SMALDI source (Transmit, Giessen, Germany). 681 
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The MALDI laser focus was optimized manually using the source cameras with the focused 682 

beam diameter estimated to be between 15.0 and 43.0 µm (mean equal to 29.9 µm, standard 683 

deviation equal to 8 µm). The x-y step size (distance between the centers of ablation marks) was 684 

set to 50 µM. For each pixel, the spectrum was accumulated from 30 laser shots at 60 Hz. 685 

Negative mode MS analysis was performed in the full scan mode in the mass range of 200-1100 686 

m/z (resolving power R=140000 at m/z 200) using an QExactive Plus mass spectrometer 687 

(ThermoFisher Scientific). MS parameters in the Tune software (version 2.5 Build 2042, 688 

ThermoFisher Scientific) were set to the spray voltage of 4.10 kV, S-Lens 80 eV, capillary 689 

temperature 250 C. The data was converted from the RAW format into the imzML format 690 

containing only centroided data using the ImageQuest software, v.1.1.0 (ThermoFisher 691 

Scientific). Metabolite annotation was performed using the METASPACE cloud software 692 

(http://metaspace2020.eu) implementing the bioinformatics methods for False Discovery Rate-693 

controlled annotation published by us earlier (Palmer et al., 2017) with the m/z tolerance of 3 694 

ppm and FDR of 10%, 20%, and 50% against the HMDB metabolite database v2.5 (Wishart et 695 

al., 2009). 696 

Post-MALDI microscopy to detect MALDI ablation marks 697 

The cells were imaged in bright-field microscopy after MALDI-imaging using the same 698 

microscopy setup and parameters as described earlier in the pre-MALDI microscopy section to 699 

define the positions of the ablation marks with respect to the fiducial marks. 700 

Association of laser ablation marks with single cells 701 

This is the key part of the method as it solves the challenge that single cells are not visible in the 702 

post-MALDI microscopy images due to the opaque layer of MALDI matrix covering cells. Here, 703 

ablation marks left by the MALDI laser were associated with single cells in three steps: a) cells 704 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

37 

segmentation in the pre-MALDI microscopy images, b) detection of laser ablation marks in post-705 

MALDI microscopy images, c) matching between ablation marks and MALDI mass spectra and 706 

d) co-registration of pre- and post-MALDI microscopy images to overlay the ablation marks 707 

with the segmented single cells.  708 

In step a), cells were segmented using a custom pipeline in the CellProfiler software (Carpenter 709 

et al., 2006) where the DAPI staining channel was used to generate seeds for a region growing 710 

algorithm detecting cells boundaries in the LD540-staining channel. In step b), we first denoised 711 

the bright-field microscopy images by applying a low-pass filter in the 2D Fourier frequency 712 

domain, in particular to exploit both the regular distances between ablation marks as well as the 713 

repeated shape of the ablation mark itself. Then, we applied a contrast-enhancing filter (using the 714 

clip function from the Python module numpy) and Otsu’s thresholding method (Otsu, 1979) to 715 

binarize the image (using the imbinarize function in Matlab). Then, we applied morphological 716 

image analysis operations of closing and then opening to fill in the holes in the image and to 717 

remove individual noisy pixels (using the imclose and imopen functions in Matlab). This 718 

provided estimations of the centers of mass of each ablation mark (Figure S9). In step c), we fit a 719 

theoretical rectangular grid to the ablation marks. The numbers of X- and Y- grid steps were 720 

defined as set up during the MALDI acquisition. The center of the acquisition region was 721 

considered as the center of the grid. The orientation of the grid with respect to the post-MALDI 722 

microscopy image was optimized by finding an angle which resulted in the best overlap between 723 

the grid lines and the detected ablation marks. The X- and Y-spacing of the grid were optimized 724 

by minimizing the distance between the grid nodes and the center of mass of the nearest neighbor 725 

ablation mark. Then, only ablation marks which were the nearest neighbors to the grid nodes 726 

were taken and re-indexed (Figure S10). This provided X- and Y-coordinates for each ablation 727 
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mark associated with a collected MALDI spectrum. In order to improve estimations of the 728 

ablations marks areas used later for normalization, their segmentation was further improved by 729 

applying a custom region-growing algorithm implemented in Python. In step d), co-registration 730 

of pre- and post-MALDI microscopy images was done based on the pen marks drawn on the 731 

edge of the wells used as fiducials. We first segmented the pen marks in both pre- and post-732 

MALDI bright-field microscopy images using Otsu’s intensity thresholding method. Then, we 733 

used the basin-hopping optimization algorithm (Python implementation from the scipy package 734 

v0.18.1) to find the best linear transformation matching the coordinates of the edges of the pen 735 

marks between the pre- and post-MALDI images (Figure S10). The optimal linear 736 

transformation was applied to the post-MALDI microscopy images to map the ablation marks to 737 

the pre-MALDI microscopy images. The initial assessment of the co-registration quality and 738 

overlaying of the metabolite intensities was performed in the `ili web app at http://ili.embl.de 739 

(Protsyuk et al., 2018).  740 

Single-cell intensity normalization 741 

A normalized intensity of each metabolite in a single cell was constructed as follows. For each 742 

cell, we considered all ablation marks overlapping with the cell area and selected the associated 743 

ablation marks which overlap with the cell by over than 30% of their ablation area. The 744 

metabolite intensities coming from an ablation mark were normalized by dividing them by the 745 

ratio of the sampling area (defined as the number of pixels of the intersection of the ablation 746 

mark and any cell region) to the area of the ablation mark. Finally, for each cell its normalized 747 

metabolite intensities were calculated as the weighted average normalized intensities of the 748 

associated ablation marks where the weights are defined as the ratio of the shared pixels (Figure 749 

2). In order to account for the variations in permeabilization efficiency between the biological 750 
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replicates, single-cell LD540 fluorescence intensities were normalized by dividing them by the 751 

median DAPI intensity (median over a well). 752 

Selecting intracellular metabolites 753 

We selected metabolite annotations corresponding to intracellular metabolites as follows. First, 754 

for each ablation mark we assigned to it the inside-cells label having values either of zero or one 755 

based on whether the mark has any overlap with any cell. Then, for each metabolite ion image, 756 

its intensities were binarized to zero-one values by selecting a threshold leading to the highest 757 

Pearson correlation with the inside-cells labels. The threshold value was found using the basin-758 

hopping optimization algorithm. In order to consider only intracellular metabolites for further 759 

analysis, we selected those metabolite annotations whose binarized ion images were correlated 760 

with the inside-cells labels with the Pearson correlation higher than 0.25. For the stimulated 761 

dHepaRG experiment where three replicates for each of four conditions were obtained, we 762 

considered the metabolite annotations which were shared by at least three samples (out of 12 763 

overall) that led to 136 annotations. For each metabolite annotation, we pulled the ion images 764 

with the m/z tolerance of 3ppm from the imzML files. 765 

Cell filtering and batch correction 766 

We filtered out 5% of cells with the lowest metabolite yield, namely the cells which had most 767 

zero-valued metabolites annotations, following the approach well-accepted in single-cell 768 

transcriptomics (Grün and van Oudenaarden, 2015) (Figure S11). In the stimulated HepaRG 769 

experiment, this filtered out 1240 cells out of 23498 overall. In the stimulated HepaRG 770 

experiment, to compensate for the batch effect between the biological replicates within each 771 

condition, we applied the combat batch correction algorithm (Fortin et al., 2017) originally 772 
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developed for single-cell transcriptomics data using its open-source Python implementation 773 

neuroCombat available at https://github.com/ncullen93/neuroCombat (Figure S4).  774 

Cell type classification for the co-culture experiment 775 

The assignment of the cell type based on the constitutive fluorescence of the cells (mCherry for 776 

HeLa, GFP for NIH3T3) was done by finding a separating linear boundary between the two 777 

populations (Figure 2A). The resulting cell types provided the ground truth labels for the Linear 778 

Discriminant Analysis (LDA) performed using the Python scikit-learn LDA implementation 779 

(version 0.19.1). 780 

LC-MS/MS validation of METASPACE annotations 781 

Sample preparation: Lipids and fatty acids were extracted using the Folch method (Folch et al., 782 

1957) with chloroform:methanol (2.5:1). For lipidomics analysis, the dried samples were 783 

reconstituted in isopropanol:methanol (1:1) and injected 10uL into the LC-MS system. For 784 

metabolomics analysis, metabolites were extracted in 80% methanol and directly injected 20uL 785 

into the LC-MS system.  786 

LC-MS/MS methods for lipidomics: All LC-MS/MS analyses were performed on a Vanquish 787 

Ultra-High Performance Liquid Chromatography (UHPLC) system coupled to a Q-Exactive Plus 788 

High Resolution Mass Spectrometry (HRMS) (ThermoFisher Scientific) with an electrospray 789 

ionization (ESI) source operated in either positive or negative mode. The separation of lipids and 790 

fatty acids was carried out using an Agilent Poroshell EC-C18 column (3 x 50 mm; 2.7 µM) 791 

maintained at 40 oC at the flow rate of 0.26 ml/min. The mobile phase consisted of solvent A 792 

(acetonitrile−water (4:6)) and solvent B (isopropyl alcohol−acetonitrile (9:1)), which were 793 

buffered with either 10 mM ammonium acetate (for negative mode) or 10mM ammonium 794 
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formate acidified with 0.1% formic acid (for positive mode). The UHPLC gradient was set at 795 

20%, 20%, 45%, 52%, 66%, 70%, 75%, 97%, 97%, 20%, 20% of solvent B at the time points 0, 796 

1.5, 4, 5, 7, 8, 10, 12, 15, 16, 19 min, respectively. Fatty acids and lipids were detected with the 797 

HRMS full scan at the mass resolving power R=35000 in the mass range of 100-1500 m/z. The 798 

data-dependent tandem (MS/MS) mass scans for five most intense ions (TOP5) were obtained 799 

along with full scans using higher energy collisional dissociation (HCD) with normalized 800 

collision energies of 20, 30 and 40 units at the mass resolving power R=17500. The MS 801 

parameters in the Tune software (ThermoFisher Scientific) were set as: spray voltage of 4 kV, 802 

sheath gas 30 and auxiliary gas 5 units, S-Lens 65 eV, capillary temperature 320 oC and 803 

vaporization temperature of auxiliary gas was 300 oC. 804 

LC-MS/MS methods for metabolomics: LC-MS/MS metabolomics analysis was carried out 805 

using an Xbridge BEH Amide column (100X 2.1 mm; 2.5 µM) maintained at 40 oC at the flow 806 

rate of 0.3 ml/min. The mobile phase consisted of solvent A (7.5 mM ammonium acetate with 807 

0.05% NH4OH) and solvent B (acetonitrile). The UHPLC gradient was set at 85%, 85%, 10%, 808 

10%, 85%, 85% of solvent B at the time points 0, 2, 12, 14, 14.1, 6 min, respectively. 809 

Metabolites were detected with HRMS full scan at the mass resolving power R=70000 in mass 810 

range of 60-900 m/z. The data-dependent MS/MS mass scans were obtained along with full scans 811 

using HCD of normalized collision energies of 10, 20 and 30 units which were at the mass 812 

resolving power R=17500. The MS parameters in the Tune software (ThermoFisher Scientific) 813 

were set as: spray voltage of 4 kV (for negative mode 3.5 kV), sheath gas 30 and auxiliary gas 5 814 

units, S-Lens 65 eV, capillary temperature 320 oC and vaporization temperature of auxiliary gas 815 

was 300 oC. Data was acquired in the full scan mode and MS/MS mass spectra for TOP5 816 

precursor ions.  817 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 2, 2019. ; https://doi.org/10.1101/510222doi: bioRxiv preprint 

https://doi.org/10.1101/510222
http://creativecommons.org/licenses/by/4.0/


 

42 

LC-MS/MS validation of METASPACE annotations: LC-MS/MS validation of lipid and 818 

metabolite METASPACE annotations was performed either by comparing retention times, exact 819 

m/z (MS) and fragmentation pattern (MS/MS) spectra with authentic standards or by matching 820 

MS/MS spectra with the EMBL Metabolomics Core Facility (MCF) spectral library (available at 821 

http://curatr.mcf.embl.de/) and public spectral libraries (LipidBlast, LIPID MAPS and mzCloud). 822 

The details of annotation validation are summarized in Supplementary Data S1. The structural 823 

annotation procedure for head groups (HD) and fatty acid side chains (SD) is described in details 824 

in (Palmer et al., 2017). 825 

Data visualization 826 

All plots were generated in Python, version 3.6.2, by using the packages matplotlib 2.1 and 827 

seaborn 0.8.1. The Python package scikit-learn 0.19.1 was used for the Principal Component 828 

Analysis. 829 

Data availability 830 

All metabolite and lipid annotations and images are publicly available at the METASPACE 831 

online knowledgebase (URL for the co-cultured and mono-cultured HeLa and NIH3T3 cells 832 

from Figure 2, URL for the dHepaRG cells from Figure 3, URL for the dHepaRG cells from 833 

Figure 4). 834 

 835 

 836 

 837 

 838 

 839 
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Supplementary Figures  840 

 841 

Supplementary Figure S1. Detailed workflow of the SpaceM method, see Figure 1 for a 842 

visualization of the workflow supplemented with visual elements. 843 

 844 
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 845 

Supplementary Figure S2. Registration workflow of pre- and post-MALDI microscopy images. 846 

The area where MALDI-imaging was applied is shown in green. The features of the pen marks 847 

used as fiducials are shown in blue (for pre-MALDI microscopy images) or red (for post-848 

MALDI microscopy images). 849 

 850 

 851 

Supplementary Figure S3. Lipid accumulation, also known as macro-vesicular steatosis, in 852 

dHepaRG hepatocytes both inherently as well as under stimulation with: oleic and palmitic fatty 853 
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acids (FA), LPS in combination with the fatty acids, TNFα in combination with the fatty acids 854 

(yellow for LD540, blue for DAPI) to highlight the localization around nucleus. Each subplot 855 

shows two illustrative examples of cells.  856 

 857 

 858 

Supplementary Figure S4. Batch correction of variability between technical replicates in the 859 

stimulated dHepaRG experiment by using the combat algorithm. The plots show a PCA plot of 860 

the single-cell metabolic profiles with cells color-coded according to the replicate. A: Before 861 

batch correction, B: after batch correction.  862 

 863 
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 864 

Supplementary Figure S5. Swarming plots of single-cell LD540-fluorescent intensities of 865 

stimulated dHepaRG cells for each condition indicating increased lipid accumulation upon 866 

stimulation with FAs, LPS, and TNFα.  867 

 868 

 869 

Supplementary Figure S6. Scatter plot of the LD540 fluorescent intensity and cell-cell contact 870 

for one replicate of dHepaRG cells stimulated with TNFα in combination with oleic and linoleic 871 

acid (n=1830), with the Spearman rs 0.34, p-value 9.18e-4. The LD540 intensities were 872 

thresholded at the 95% percentile. Red dots visualize average values for regularly-spaced bins of 873 

LD540 fluorescence intensity.  874 
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 875 

Supplementary Figure S7. Observed relationship between local crowding and intracellular 876 

metabolite intensity. One dot represents one cell. Red dots represent average intensities for 877 

regular bins of local crowdedness. The data are coming from one replicate of the TNFα condition 878 

(1830 cells). 879 

 880 
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 881 

Supplementary Figure S8. Mapping of intensities of the small molecules glutathione and AMP 882 

onto the principal components of z-scores of the single-cell metabolic profiles of dHepaRG cells 883 

from the CTRL, FA, LPS, and TNFα conditions (similar to Figure 3B-D).  884 

 885 

 886 

887 
Supplementary Figure S9. Illustration of the procedure for detection of laser ablation marks in 888 

post-MALDI microscopy images. 889 

 890 
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 891 

Supplementary Figure S10. Illustration of the procedure for fitting a theoretical rectangular 892 

grid to the ablation marks segmented in the post-MALDI microscopy images. The three 893 

parameters of the grid are estimated using the ablation marks coordinates. In A, the angle is 894 

estimated by counting the number of non overlapping ablation marks coordinates projections of 895 

the X axis for different rotation angle. The minimum number of projection is reached for an 896 

alignment angle with the projection axis. In B, the center of the grid is estimated from the 897 

extrema of the ablation mark coordinates. The spacing of the grid nodes is estimated in C by 898 

measuring the mean distance to the nearest ablation mark to each grid node. The chosen grid 899 

node spacing is leads to smallest mean distance to the ablation mark coordinates. The re-900 

indexing in D is done by choosing the closest ablation mark coordinates from the grid nodes 901 

constructed using the parameters defined before (the grid nodes are shown in red, their nearest 902 
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ablation mark coordinates are shown in black). In E, the ablation mark coordinates are color 903 

coded by their index. An illustration of the different steps for fitting a grid onto the ablation mark 904 

coordinates as well as the re-indexing is shown in F. In G, the re-indexed ablation mark are 905 

shown. and re-indexing them to associate each detected ablation mark with a MALDI spectrum. 906 

 907 

 908 

Supplementary Figure S11. Filtering out poor quality cells for the dHepaRG experiment 909 

(Figure 4). The cells with low number of METASPACE annotations (less than the 5% lower 910 

percentile of the distribution) were removed. 911 

 912 

 913 

 914 
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Supplementary Table 916 

 Matrix application MALDI-imaging 

Sample 
(“Condition”_ 

“Replicate 
number”) 

Date; Time 
Room 

temperature 
(oC) 

Room 
humidity 

(%) 
Date; Time 

Room 
temperature 

(oC) 

Room 
humidity 

(%) 

FA_1 22.06.17; 1.40pm 23.1 58 22.06.17; 2.01pm 23.1 50 

LPS_1 22.06.17; 4.10pm 23.2 60 22.06.17; 4.30pm 23.7 49 

FA_2 24.06.17; 12.40am 21.9 52 24.06.17; 1.00pm 23.3 47 

LPS_2 24.06.17; 3.50pm 21.9 53 24.06.17; 4.10pm 23.5 47 

Untreated_1 25.06.17; 6.30am 21.9 52 25.06.17; 7.00am 23 48 

TNFa_1 25.06.17; 12.15am 22.1 60 25.06.17; 3.30pm 23.6 51 

FA_3 25.06.17; 6.30am 21.9 58 25.06.17; 10.00am 23.1 47 

TNFa_2 25.06.17; 9.15am 21.9 60 25.06.17; 9.35am 23.1 52 

Untreated_2 25.06.17; 12.41pm 21.5 55 25.06.17; 4.00pm 23.1 47 

Untreated_3 25.06.17; 12.41pm 21.5 55 25.06.17; 1.00pm 23.1 46 

LPS_3 28.06.17; 2.59pm 21.1 63 28.06.17; 6.30pm 23.3 48 

TNFa_3 30.06.17; 2.30pm 21.1 50 30.06.17; 6.41pm 22.6 44 

Supplementary Table S1. Experimental design and ambient conditions for matrix application 917 

and MALDI-imaging analysis of dHepaRG samples. 918 

  919 
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Supplementary Data (attached as a separate file) 920 

Supplementary Data S1. LC-MS/MS validation of METASPACE metabolite annotations. 921 

Summary and detailed information about LC-MS/MS validation of METASPACE annotations 922 

including MS/MS and chromatographic information. 923 

 924 
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