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Abstract4

Biomedical researchers are generating high-throughput, high-dimensional single-cell5

data at a staggering rate. As costs of data generation decrease, experimental design is mov-6

ing towards measurement of many different single-cell samples in the same dataset. These7

samples can correspond to different patients, conditions, or treatments. While scalability of8

methods to datasets of these sizes is a challenge on its own, dealing with large-scale exper-9

imental design presents a whole new set of problems, including batch effects and sample10

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/237065doi: bioRxiv preprint 

https://doi.org/10.1101/237065
http://creativecommons.org/licenses/by/4.0/


comparison issues. Currently, there are no computational tools that can both handle large11

amounts of data in a scalable manner (many cells) and at the same time deal with many12

samples (many patients or conditions). Moreover, data analysis currently involves the use13

of different tools that each operate on their own data representation, not guaranteeing a14

synchronized analysis pipeline. For instance, data visualization methods can be disjoint15

and mismatched with the clustering method. For this purpose, we present SAUCIE, a deep16

neural network that leverages the high degree of parallelization and scalability offered by17

neural networks, as well as the deep representation of data that can be learned by them to18

perform many single-cell data analysis tasks, all on a unified representation.19

A well-known limitation of neural networks is their interpretability. Our key contribu-20

tion here are newly formulated regularizations (penalties) that render features learned in21

hidden layers of the neural network interpretable. When large multi-patient datasets are fed22

into SAUCIE, the various hidden layers contain denoised and batch-corrected data, a low23

dimensional visualization, unsupervised clustering, as well as other information that can24

be used to explore the data. We show this capability by analyzing a newly generated 180-25

sample dataset consisting of T cells from dengue patients in India, measured with mass26

cytometry. We show that SAUCIE, for the first time, can batch correct and process this27

11-million cell data to identify cluster-based signatures of acute dengue infection and cre-28

ate a patient manifold, stratifying immune response to dengue on the basis of single-cell29

measurements.30

1 Introduction31

Vast amounts of high-dimensional, high-throughput, single-cell data measuring various aspects32

of cells including mRNA molecules, proteins, epigenetic marks and histone modifications are33

being generated via new technologies. Furthermore, the number of samples included in large-34

scale studies of single-cell data for comparing across populations or disease conditions is rapidly35

increasing. Processing data of this dimensionality and scale is an inherently difficult prospect,36

especially considering the degree of noise, batch effects, artifacts, sparsity and heterogeneity37

in the data [1, 2]. However, this effect becomes exacerbated as one tries to compare between38

samples, which themselves contain noisy heterogeneous compositions of cellular populations.39

Deep learning offers promise as a technique for handling the size and dimensionality of40

modern biological datasets. However, while work has been done in training networks to per-41

form certain supervised tasks such as predicting binding [3, 4] or classifying patients [5], deep42

learning has been underutilized for unsupervised exploratory tasks. In this paper, we develop a43

deep learning framework that focuses on unsupervised data exploration. Our key insight is that44

the layers of a deep neural network form representations of the data, and that if those layers are45

properly constrained (via architectural choices and regularization), they can be used to extract46

task-oriented features of the data.47

We base our approach on the autoencoder [6–8]. An autoencoder is a neural network that48

learns to recreate its own input via a low-dimensional bottleneck layer that learns representa-49
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tions of the data and enables a denoised reconstruction of the input from them [9–13]. Since50

autoencoders learn their own features, they can reveal structure in the data without defining or51

explicitly learning a similarity or distance metric in the original data space as other dimension-52

ality reduction methods do (for instance, PCA uses covariance and diffusion maps [14] utilize53

affinities based on a kernel choice). We use this approach to construct SAUCIE, a Sparse Au-54

toencoder for Unsupervised Clustering, Imputation, and Embedding, which is aimed to enable55

exploratory tasks via its design choices.56

SAUCIE is a multilayered deep neural network, whose input layer is fed single-cell mea-57

surements, such as mass cytometry or single-cell RNA sequencing, of an individual cell. Then,58

SAUCIE gradually reduces the dimensionality of the dataset by taking the data through nar-59

rower and narrower hidden layers. We see that the output or reconstruction layer of SAUCIE60

gives similarly denoised and imputed data as the manifold denoising method MAGIC [15] on a61

1.3 million single-cell RNA sequencing dataset from embryonic mouse brain. In other words,62

SAUCIE effectively learns the manifold of the data in a similar way to data diffusion [16]63

methods. Thus, SAUCIE can leverage the power of manifold learning, which has shown to be64

key for analyzing single-cell data [17] in a scalable fashion. Manifold learning methods are65

traditionally difficult to scale due to the computational complexity of kernel computation and66

eigendecomposition operations. Deep learning comes to the rescue here by being amenable to67

GPU speedup and parallelization of matrix operations.68

As SAUCIE reduces input dimensionality, regularizations on different layers reveal differ-69

ent representations of the data: for visualization, batch correction, clustering, and denoising.70

In order to achieve these representations we use customized regularizations in each layer. We71

use the architectural choice of having a two-dimensional bottleneck layer to provide a visual-72

ization of the data. We develop a novel batch-level maximal mean discrepancy (MMD)-based73

penalty constraint to remove batch effects in the embedding layer. A customized sparse encod-74

ing layer featuring our novel information-dimension (ID) regularization provides an automated75

clustering of the data with no parametric assumptions on the shape or number of clusters. All76

regularizations balance against reconstruction accuracy, which is the basic penalty in an au-77

toencoder that steers the network convergence away from trivial solutions. Furthermore, this78

penalty ensures that the final layer of the network provides reconstructed measurements that79

are denoised; in the case of single-cell RNA sequencing data, this layer also naturally imputes80

missing values.81

Guiding the internal representations of the data to be effective at each of these disparate82

tasks together fit SAUCIE into the field of multitask learning. Results in multitask learning have83

generally shown that optimizing multiple tasks over the same latent representation is helpful in84

increasing the reliability and consistency of various algorithms. We apply the same approach85

here by having the representation (or data manifold) learned by SAUCIE be jointly optimized86

for multiple tasks. Further, SAUCIE itself forms a near complete analysis of the data. The87

clustering layer in SAUCIE for instance, actually performs clustering, and clusters are read out88

from this layer. This is in contrast to other methods that simply use the autoencoder for coming89

up with a reduced dimensional representation, which is then fed to other (generally unscalable)90
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algorithms, for example scVI which outputs a latent layer that then needs another clustering91

algorithm [18].92

We apply SAUCIE to a twenty-million cell mass cytometry dataset with 180 samples from93

forty subjects in a study of the dengue flavivirus [19]. SAUCIE is the only method that is able to94

batch correct 180 samples and then cluster them in such a way that subpopulation proportions95

become comparable prima facia. This obviates the need for approaches such as first clustering96

samples separately and then performing “meta-clustering” as with the Phenograph method, or97

other methods that cannot operate uniformly on combined data of this size (the problems of98

which are illustrated in Figure S10). We are also able to tune the granularity of clustering with99

SAUCIE in order to get a clustering that is informative of the differences between conditions.100

SAUCIE results show that acute subjects are characterized by enrichment in distinct subpopula-101

tions of CD4-CD8- γδ T cells and cells involved in Type I interferon signaling. When subjects102

are measured in convalescence, there is an increase in CD4+Foxp3+ T reg cells.103

Thus, SAUCIE provides a unified representation of data where different aspects or features104

are emphasized in different layers, forming a one-step data analysis pipeline. This unified105

analysis uncovers a cell-space manifold as well as a sample-space manifold, thus enabling a106

multilevel analysis of complex experimental design where the samples are stratified on the basis107

of their cell-level features. We additionally evaluate SAUCIE extensively on all of its designed108

tasks using ten public single-cell datasets.109

2 Results110

2.1 The SAUCIE Architecture and Layer Regularizations111

To enable unsupervised learning in a scalable manner, we base our method on the autoencoder.112

Autoencoders learn to recreate their input at the output layer, but via a low-dimensional infor-113

mational bottleneck layers which are forced to learn meaningful structure-preserving represen-114

tations of the data. However, a key challenge is to extract meaning from this representation.115

Specifically, we seek representations in hidden layers that are useful for performing the various116

analysis tasks associated with single cell data. Here, we introduce several design decisions and117

novel regularizations to our autoencoder architecture (Figure 1) in order to constrain the learned118

representations for four key tasks:119

1. visualization and dimensionality reduction,120

2. batch correction,121

3. clustering, and122

4. denoising and imputation.123

For each task, dedicated design decisions are used to produce the desirable result.124
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Clustering: First, to cluster the data, we introduce the information dimension regularization125

that encourages activations of the neurons in a hidden layer of the network to be binarizable.126

The idea is that if we can obtain a “digital” binary encoding, then we can easily turn these127

codes into clusters. As Figure 2A shows, the network without regularizations tends to store its128

information in a distributed, or “analog” way. With the ID regularization the activations are all129

near 0 or 1, i.e., binary or “digital”, and thus amenable to clustering by simple thresholding-130

based binarization. As seen in Figure 3A, this leads to a clustering of the cells that effectively131

represents the data space. Thus, the ID regularization achieves an analog-to-digital conversion132

that enables interpretation of the representation as data groups or clusters corresponding to each133

binary code. A previous work in the same vein, Binary Connect, has shown the promise in en-134

couraging networks to learn in ways that are easy to binarize. That work differs from SAUCIE135

though, in that they learn binary weights rather than binary activations, along with the goal136

being to improve computational efficiency rather than achieve a clustering of the data [20].137

Batch Correction: Batch effects are generally systematic differences found in biological data138

measured under different experimental runs, largely due to ambient conditions such as temper-139

ature, machine calibration or day-to-day variation in measurement efficiency. Thus, measure-140

ments even from very similar systems, such as blood cells of the same patient, appear to have141

a shift or difference between two different experimental runs. To solve this problem, we in-142

troduce a maximal mean discrepancy (MMD) correction that penalizes differences between the143

probability distributions internal activations of samples. Previous work has attempted batch cor-144

rection by minimizing MMD. However, those models assume that batch effects are minor and145

simple shifts close to the identity function, which is often the case [21]. Moreover, minimizing146

MMD alone only removes any and all differences between batches. In contrast, the additional147

autoencoder reconstruction penalty in SAUCIE forces it to preserve the original structure in148

each batch, balancing the goals of, on one hand, making the two batches alike while on the149

other hand not changing them. We note that this notion of a biological batch (data measured or150

run together) is distinct from the mini-batches used in stochastic gradient descent to train neural151

networks and the two should not be confused. The term batch is exclusively used to describe152

biological batches and when training with stochastic gradient descent the term mini-batches is153

used.154

Figure 4 shows that analyzing data before batch correction can lead to misleading results,155

as artificial variation from batch effects can drown out the relevant variation within the biology156

that we are interested in. Penalizing MMD directly on the input space would be a flawed way157

of addressing batch effects because it would require making the assumption of (and thus being158

sensitive to the choice of) meaningful distance and similarity measures on the input points.159

Since the data is noisy and possibly sparse, by instead penalizing MMD on an internal layer160

of the network, we can correct complex, highly nonlinear batch effects by aligning points on a161

data manifold represented in these layers.162
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Imputation and denoising Next, we leverage the fact that an autoencoder does not recon-163

struct its input exactly, but instead must learn a lower dimensional representation of the data,164

and decode this representation for data reconstruction. This means the reconstructions are de-165

noised versions of the input and are thus naturally solutions to the dropout and other noise166

afflicting much real-world data, especially single cell RNA-sequencing data. The gene-gene167

relationships plotted in Figure 3C illustrate the ability of SAUCIE to recover the meaningful168

relationship between genes despite the noise in the data.169

Visualization Finally, we design the informational bottleneck layer of the autoencoder to be170

two dimensional, which lets it serve as a visualization and nonlinear embedding of the data.171

Because the network must reconstruct the input accurately from this internal representation, it172

must compress all the information about a cell into just these two dimensions, unlike methods173

like PCA or Diffusion Maps, which explicitly leave some variation unmodeled. Consequently,174

the information stored is also global, meaning points close together in the SAUCIE visualization175

are more similar than points that are farther apart, which is not true beyond small neighborhoods176

in a local method like tSNE. The ability to flexibly learn and accurately reflect the structure in177

the data with SAUCIE is demonstrated in Figure 3B.178

Considered together, these customized regularizations and architectural choices make SAUCIE179

ideally suited for the exploratory data analysis when presented with single-cell biological data.180

Further, SAUCIE is entirely self-contained and not require any external algorithms that may not181

be able to process the scale of multisample single-cell data.182

2.2 Comparison to other methods183

We begin by offering an extensive comparison between SAUCIE and other (generally special-184

ized) methods at each of these tasks in turn. We find that SAUCIE performs as well as, or185

even better than, specialized algorithms, which are much less scalable, for each individual task.186

Moreover, SAUCIE performs all tasks on a unified representation leading to visualizations that187

are coherent with clusters and cluster expression.188

Throughout the comparisons on each of the tasks, we use two artificial datasets (simulation189

from mixtures of Gaussians and the canonical MNIST handwritten digit dataset), along with190

ten different single-cell datasets. Five datasets are CyTOF: the dengue dataset we extensively191

evaluate later in the manuscript, T cell development data from [22], renal cell carcinoma data192

from [23], breast tumor data from [24], and iPSC data from [25]. Five datasets are scRNA-seq:193

mouse cortex data, retinal bipolar cells from [26], hematopoiesis data from [27], mouse brain194

data from [28], and the 10x mouse megacell demonstration from [29].195

2.2.1 Clustering196

To evaluate the ability of SAUCIE to find meaningful clusters in single-cell data, we compare197

it to several alternative methods: minibatch kmeans [30], Phenograph [31], and another neural198
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network approach called Single-cell Variational Inference (scVI) [18]. While we compare to199

scVI as it and SAUCIE are both neural networks, we emphasize a fundamental difference be-200

tween the two: scVI only returns a latent space, which must then be visualized or clustered by201

another outside method, while SAUCIE explicitly performs these tasks. Since kmeans needs to202

be told how many clusters there are ahead of time (k), we use the number of clusters identified203

by Phenograph as k. We look at the following datasets: MNIST handwritten digits for which204

there are ground truth labels, artificially generated Gaussians rotated into high dimensions, and205

public single-cell datasets for which we have curated cell clusters as presented by the authors:206

[26], [23], [28], [27], and [22].207

In addition to analyzing the clusters visually (Figure S2), we also quantitatively assess clus-208

ter performance of the methods by computing modularity and silhouette scores [30] on the209

generated clusters and ground truth labels (Table 1). For MNIST, we find that just as we would210

expect given they are both non-Euclidean clustering methods that do not need a specified num-211

ber of clusters, SAUCIE and Phenograph are the most comparable, with their having the high-212

est modularities, similar silhouette scores, and very similar visual appearance. Next, we look at213

an artificially generated dataset of four two-dimensional Gaussian point clouds with different214

means rotated into 100 dimensions. We find that SAUCIE is the only method that automatically215

identifies exactly four clusters, which was the underlying number of clusters in the generation216

model. This illustrates why optimizing modularity, like Phenograph does, is not necessarily the217

best heuristic to follow, as it adds additional complexity to the clustering in order to increase218

the modularity score, resulting in too many clusters. Likewise, scVI did not identify the four219

clusters, which is unsurprising as the data did not fit its parametric model appropriate for gene220

counts.221

We also examine clustering performance on five public single-cell datasets to evaluate the222

ability of SAUCIE to cluster real biological data: from [26], [23], [28], [27], and [22].223

Visual inspection reveals that SAUCIE produces clusters that are qualitatively coherent on the224

embedding. Quantitatively, the modularity scores of its clusters corroborate this evaluation. As225

shown in Table 1 the average modularity score across datasets is 0.8531. In a wide variety of226

data from both CyTOF and scRNA-seq measurements, SAUCIE is able to produce clusters that227

reasonably represent the data qualitatively, quantitatively, and by comparison to other methods.228

2.2.2 Batch correction229

We assess our ability to remove batch-related artifacts with SAUCIE by comparison to two230

published batch correction methods that have been specifically designed to remove batch ef-231

fects in single-cell data. The first, Mutual Nearest Neighbors (MNN) [32], uses mutual nearest232

neighbors on a k-nearest neighbors graph to align two datasets, and the second, Canonical Cor-233

relation Analysis [33], finds a latent space in which the two batches are aligned. To evaluate234

the performance of these methods and SAUCIE, we use several different datasets with varying235

degrees of batch artifacts. We note that SAUCIE is the only method capable of scaling batch236

correction to hundreds of samples as we do in the next section. Nonetheless, here we compare237
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performance on datasets small enough for the alternative methods to handle.238

To quantitatively assess the quality, we apply a test we term the mixing score (similar to that
of [34]):

mixing score =
Nb1

Nb2

∗ Σxj∈KNN(xi)

(
1batch(xi)=batch(xj)

)
(1)

where Nb1 and Nb2 are the number of points in the first and second batch respectively. This239

score calculates for each point the number of nearest neighbors that are in the same batch as240

that point, accounting for the difference in batch sizes. In perfectly mixed batches, this score241

is 0.5, while in perfectly separated batches it is 1.0. As batch correction should not only mix the242

batches but also preserve their shape as best as possible, we quantify the distortion between the243

original and batch corrected data using Procrustes, which finds the error between the optimal244

alignments of the two batches by linear transformation [35]. These numbers are reported in245

Table 2. While the other methods each have some datasets that violate their assumptions and246

thus they perform poorly, SAUCIE performs as well or better at each of the wide variety of247

datasets.248

First, we generated two batches, each consisting of two ten-dimensional Gaussian point249

clouds with different means. We then rotated this into 1000 dimensions to simulate realistic250

single-cell data. Visual inspection shows that CCA appears to align the batches (i.e., the batch251

label is well mixed), however it distorts the original shape of the data, creating more distinct252

clusters per batch than originally existed. MNN pulls the batches closer together but does not253

fully mix them. SAUCIE appears to successfully align the two batches while at the same time254

preserving the original data structure shape without distortion. SAUCIE scores as well as the255

alternative methods at the mixing score, while only SAUCIE can easily scale this performance256

to hundreds of batches.257

Next, we look at the CyTOF measurements of spike-in data where the same blood sample258

has been measured twice on different days. Since they are technical replicates, the difference259

between them confirms that there are batch effects in this data that need to be corrected. We ex-260

pect perfect alignment after batch correction. We can observe well-aligned batches for SAUCIE261

and MNN, however CCA does not remove any batch effect. As before, SAUCIE scores well262

both in the mixing score and the Procrustes score.263

Then, we evaluate nontechnical replicates of scRNA-seq data from developing mouse cor-264

tex. While the batch effect is the dominant signal in the data, we do not expect perfect align-265

ment, as there are also possible differences between the time points that we expect to remain266

(the two samples are from embryonic day 14.5 and 17, respectively). CCA partially aligns the267

two batches. However, batch effect remains the strongest signal in the embedding and the shape268

of the data has been distorted: there now appear to be more clusters than were present origi-269

nally in the data. SAUCIE and MNN, however, well align the two batches, but like in previous270

datasets, MNN appears to also remove much of the population structure of the data. SAUCIE271

both preserves the original population structure of each sample and aligns them. This is also272

reflected in the nearest neighbor values, which are 0.544, 0.689, and 0.902, respectively.273
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SAUCIE is also able to correct varying degrees of batch effect on public datasets from [23],274

[24], and [22]. With an average mixing score of 0.518 across the datasets, SAUCIE effectively275

aligns each different pair appropriately, due to its combination of reconstruction penalty and276

batch correction term. Both on scRNA-seq and CyTOF data, SAUCIE can integrate different277

samples for later downstream analysis.278

2.2.3 Visualization279

To evaluate the SAUCIE visualization and its ability to provide a faithful low-dimensional data280

representation, we provide an extensive comparisons of this visualization to other frequently281

used methods. We make use of artificial datasets where the underlying structure is known, as282

well as real biological datasets that have been extensively characterized previously, so we have283

prior understanding of the structure we expect to see in the visualization (Figure S4).284

The first three datasets come from a continuous artificially-generated tree structure with285

different amounts of Gaussian noise added to it. All seven of the branches are recovered by286

SAUCIE, tSNE, and PHATE. However, without enough noise, tSNE shatters branches, mis-287

leadingly showing them as different clusters. PCA, Monocle2, and Diffusion Maps correctly288

display the continuous tree-like nature of the data. However, in the two dimensions that are289

shown, they do not capture all of the branches.290

In the tree generated using diffusion limited aggregation (DLA), we have a more compli-291

cated tree than in the previous examples. Only SAUCIE and PHATE effectively illustrate this292

branching structure, while PCA places spherical clouds with many branches overlapping, and293

Monocle2 and Diffusion Maps collapse several of the branches together. tSNE shatters the294

different branches into one or more clusters, losing the continuous nature.295

Next, to evaluate the ability of the various embedding methods to handle intersecting mani-296

folds, we generated a dataset of three intersecting half circles. Both SAUCIE and PCA preserve297

the circular shape as well as the intersecting positions. The other methods either distort the298

curvature of the data, shatter the trajectory, or remove the intersecting nature of the data.299

To evaluate the ability of SAUCIE and the existing visualization methods to recover under-300

lying structure we embed the MNIST dataset where there are true labels that correspond to the301

digit each image represents. We find that these different digits are well represented by SAUCIE,302

tSNE, and PHATE. In PCA, Monocle2, and Diffusion Maps, only some of the digits are distinct303

in the two dimensions that are shown, with the others being erroneously blended.304

Another dataset where we have ground truth is a synthetic Gaussian mixture model (GMM).305

Here, four shifted Gaussians represented in the GMM dataset show the ability of each method306

to capture the distinct clusters present in the data. Diffusion Maps collapses all of the data into a307

single point in the two dimensions shown, while Monocle2 places the clusters closer or farther308

to each other erroneously. Additionally, PCA, Monocle2, and Diffusion Maps do not capture the309

spherical structure of the data. SAUCIE, tSNE, and PHATE all capture this structure effectively.310

In [27], the authors performed an extensive characterization of hematopoiesis in mouse bone311

marrow and identified different cell types as shown in the colors in the embedding. SAUCIE312
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produces a visualization that reflects branching structure that is consistent with PHATE. Mon-313

ocle2 and Diffusion Maps collapse the trajectories into a single branch while tSNE shows them314

as contiguous clusters.315

The data from [22] describes a system of T cell development in the mouse thymus in which316

T cells develop from CD4-CD8 double negative phenotype into double positive and then branch317

out into CD4+/CD8- and CD4-/CD8+. We therefore expect the embedding to show a continuous318

trajectory that then branches into two. This is the case for SAUCIE and PHATE. While tSNE319

shows the two directions, it does not optimally show the continuous progression. PCA and320

Monocle2 show a continuous progression but fail to show the branch point. Diffusion Maps321

fails to accurately capture any meaningful structure at all.322

Next we looked at the dataset of [25] with induced pluripotent stem cells that were measured323

in CyTOF over the course of several days, denoted by different colors. We expect the time324

points to correlate with the embedding as cells gradually change phenotype over time. We can325

see that SAUCIE, PHATE, tSNE, and Diffusion Maps show this significant separation. PCA326

and Monocle2 show the least separation across time.327

In [26], we examine retinal bipolar cells, along with the different subtypes identified by the328

authors. We expect the embedding to reflect these different populations that they identified. We329

can see that PHATE, tSNE, and SAUCIE are able to show all of the different clusters within the330

two dimensional embedding. PCA, Monocle2, and Diffusion Maps show some of the structure331

but clearly do not show all of the distinctions between cell types.332

In [28], we look at mouse neural cells, which were also accompanied by different neural333

cell types that are reflected by different colors in the embeddings. Again we find that SAUCIE,334

PHATE, and tSNE show all the expected cell types and that PCA, Monocle2, and Diffusion335

Maps only capture some of the structure within the two dimensions that are shown.336

In addition to the previous extensive qualitative evaluation, we also measure the quality of337

the visualizations with a quantitative metric taken from [36]. In line with to their method’s338

precision and recall metrics, we compute a neighborhood around each point in both the original339

data space and the embedding space, and compare the neighbors of each. An embedding with340

high recall has most of a point’s original-space neighbors in its embedding-space neighborhood.341

Similarly, an embedding with high precision has most of the point’s embedding-space neighbors342

in its original-space neighborhood. As directed by the authors’ algorithm, we gradually increase343

the size of the neighborhood and report the area-under-the-curve (AUC) for the precision-recall344

curve. These results are in Table 3, where SAUCIE has the highest average score of 0.9342,345

averaged across all datasets.346

2.2.4 Imputation347

We analyze the SAUCIE imputation and its ability to recover missing values by implicitly in-348

terpolating on a data manifold in several ways. First, Figure S5 shows several relationships349

from the scRNA-seq data of the 10x mouse megacell dataset affected by severe dropout. This350

dataset consists of 1.3 million cells, and SAUCIE was the only method in the comparison to351

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 3, 2019. ; https://doi.org/10.1101/237065doi: bioRxiv preprint 

https://doi.org/10.1101/237065
http://creativecommons.org/licenses/by/4.0/


be able process the full dataset. Moreover, it was able to do this in just 44 minutes. Addition-352

ally, because training a neural network only requires small minibatches in memory at one time,353

we were able to do this without ever loading the entire large dataset into memory all at once.354

Thus, to enable this comparison, we subsampled the data by taking one of the SAUCIE clusters355

consisting of 4172 cells.356

For this comparison, we measure against several popular imputation methods for scRNA-357

seq data: MAGIC, which is a data diffusion based approach, scImpute, which is a parametric358

statistical method for imputing dropouts in scRNA-seq data, and Nearest Neighbors Completion359

(NN Completion), which is an established method for filling in missing values in a general360

application of high-dimensional data processing.361

In Figure S5, we show six relationships of the mouse megacell dataset for the original data362

and the different imputation methods. We observe that the original raw data is highly sparse,363

which can be seen by the large number of values on the axes where one of the variables is364

exactly zero. Note that most cells have one or both genes missing. This is a problem because365

this prevents us from identifying trends that exist between the genes. After imputation with366

SAUCIE, we can observe that the sparse character of the data has been removed, with values367

filled in that reveal underlying associations between the gene pairs. These associations are368

corroborated by MAGIC, which imputes similar values to SAUCIE in each case. MAGIC369

is a dedicated imputation tool that is widely used, so SAUCIE matching the relationships it370

found gives confidence in the ability of SAUCIE to impute dropout effectively. The resulting371

imputation in scImpute does not look significantly less sparse from the original and we do not372

see continuous trends emerge. NN Completion appears to desparsify the data, but the resulting373

trends all look similar to each other (i.e., positively correlated). This suggests that it does not374

correctly identify the underyling trends, as we would expect different genes to have different375

relationships. While scRNA-seq is highly sparse, the undersampling affects all entries in the376

matrix, including the nonzero values. As such, manifold-based methods like SAUCIE and377

MAGIC are more suited for finding these true relationships because they denoise the full dataset378

as opposed to just filling in zeros.379

Due to the fact that ground truth values for the missing counts in this single-cell data are380

not known, we further test the accuracy of the imputation abilities of SAUCIE with an artifi-381

cially constructed experiment. We first leverage the bulk RNA sequencing data of 1076 cells382

from [37], because it accurately captures the relationships between genes due to it not being383

sparse (as opposed to generating our own synthetic data from a parametric generating function384

that we have the ability to choose, where we can create the relationships). We then simulate385

increasing amounts of dropout and compare the imputed values returned by each method to the386

true values we started with. To simulate dropout in a manner that reflects the underlying mech-387

anisms of inefficient mRNA capture, we remove molecules instead of just setting values for388

genes to zero. As a result, the level of dropout is conditional upon expression level, reflecting389

the dropout structure of single-cell RNA sequencing data. The results are reported in Figure S6,390

where SAUCIE compares favorably to other methods, recovering the true values accurately391

even after as much as 99% dropout. The dataset for this experiment consisted of just 1076 cells,392
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which allowed us to compare to the methods that cannot process larger datasets, but even on393

a dataset of this size SAUCIE gave a more than 100-times speedup over NN Completion and394

600-times speedup over scImpute.395

2.2.5 Runtime Comparison396

In order to showcase the scalability of SAUCIE, we compare to a host of other methods on a397

subset of our newly generated CyTOF dataset consisting of over 11 million cells existing in 35398

dimensions. We display the runtimes of each method on a random sample of N points, with399

N = 100, 200, 400, 800, . . . , 11000000 in Figure S1. For each step, the method was given a400

timeout after 24 hours. Points where a method stopped scaling in Figure S1 are marked with401

an ‘x’.402

SAUCIE performs visualization, batch correction, imputation, and clustering in its run,403

while each of the other methods only performs one of these tasks. Moreover, SAUCIE does404

not just compute simple linear functions on the data, but instead performs complex non-linear405

transformations in the process. Despite its complexity, it also scales very well with the ex-406

tremely large dataset sizes, which can be further improved by simply adding more independent407

GPUs for calculations. Each additional (relatively inexpensive) GPU can offer a near linear408

increase in computation time, as opposed to more CPUs which offer diminishing returns in par-409

allelizability. All experiments were run on a single machine with just one GPU, meaning these410

results could still benefit even more from this potential for scalability. For further details on411

how the runtime experiment was performed, see the Methods section.412

Among the batch correction methods, there are no other methods that correct multiple413

batches simultaneously. However even when we restrict to pairwise comparisons, SAUCIE414

is the only method that comes close to handling this amount of data. CCA and MNN both stop415

scaling in the tens of thousands of cells. In the group of imputation methods, scImpute and NN416

completion also stop scaling in the tens of thousands, while MAGIC stops scaling in the hun-417

dreds of thousands. For visualization, PCA was the only method faster than SAUCIE, which418

is unsurprising because calculating it using fast randomized SVD is quick, but it gives a sim-419

ple, strictly linear blurry views of the data, in contrast to SAUCIE’s nonlinear dimensionality420

reduction. The other more complex visualization methods do not scale to these dataset sizes:421

Diffusion Maps, PHATE, tSNE, and Monocle2 all stop scaling before even reaching the full422

eleven million cells. For clustering, kmeans is the only one faster than SAUCIE, due to using423

its minibatched version. However, it still assumes circular clusters in the Euclidean space and424

comes with the intrinsic flaw that the number of clusters must be known ahead of time, which is425

not possible in any realistic setting like ours where we are performing exploratory data analysis426

on a large new dataset. Phenograph and scVI do not scale to the full dataset, either. Despite427

being another neural network method, scVI cannot scale to these larger sizes because it only428

produces a latent space that then must be clustered with another method. This requirement then429

becomes its bottleneck, emphasizing the importance of SAUCIE performing all tasks directly430

instead of acting as a pre-processing step for other methods.431
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SAUCIE is the only method that can efficiently batch correct, impute and denoise, visualize,432

and cluster datasets of this size, while using a nonlinear manifold representation of the data.433

2.3 Analysis of immune response to dengue infection with SAUCIE434

Next, we demonstrate an application of SAUCIE as an important tool enabling exploratory anal-435

ysis of a new “big” dataset that consists of single-cell CyTOF measurements of T cells from436

45 subjects including a group acutely infected with the dengue virus and healthy controls from437

the same endemic area [19]. While dengue is estimated to affect sixty million people yearly438

and cause ten thousand deaths, like other tropical diseases, it remains understudied. Moreover,439

dengue is especially challenging since there are several different serotypes with complex inter-440

actions between them. Specifically, there are four strains that have very different characteristics.441

While infection with a particular strain may provide some immunity towards reinfection with442

that same strain, an antibody dependent enhancement results in faster uptake of another strain443

upon reinfection [38]. Drugs have proven difficult to develop for dengue. Further, vaccine444

development has also been challenging in the case of dengue. Recently, the WHO has ruled445

that the dengue vaccine of Senofi Pasteur only be administered to patients who are infected446

for the second (or subsequent) time [39]. This is because the vaccine itself is thought to leave447

patients vulnerable to very severe reinfections. So unlike other viruses, the dengue virus appar-448

ently leaves patients more vulnerable the second time. These types of complex effects require449

deep and detailed analysis of both infected and convalescent patients at the single cell level to450

understand the immune response.451

We applied SAUCIE to the single-cell CyTOF data of T cells collected in an area endemic452

for dengue virus infection [19] to study general T cell compartment composition, variability453

and changes in the variability after convalescence. We believe that the dengue data is an ideal454

test case for SAUCIE, because the samples are shipped from India and samples were collected455

over a period of months and were assesed over different experiment days [19]. Thus, there is a456

pressing need for batch correction and data cleaning as well as uniform processing, clustering457

and meta-analysis of patient stratification. As part of the study, cells from additional patient458

groups beyond the acutely infected were also measured: healthy people unrelated to the subjects459

as a control and the same acute subjects at a later convalescent time point. Primary research460

questions include understanding profile of the acute subjects and how they differ from the other461

groups. Across all groups, there are 180 samples resulting in over twenty million cells with462

results analyzed on 35 different protein markers, a massive amount of data that would cause463

difficulties in most standard analytic frameworks.464

2.3.1 Batch correction465

Beyond the sheer size of the total dataset, due to the large number of distinct samples in the466

experiment there are significant batch related artifacts effects, stemming from day-to-day dif-467

ferences, instruments, handling and shipping of the samples. While there are true biological468
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differences between the individual samples, to identify those true differences in the samples we469

have to remove differences that are caused by these technical variables.470

Differences that are highly associated with the day they were run on the cytometry instru-471

ment can be seen by grouping all of the samples together by run day and examining their472

marker-by-marker abundances. Each run day has twelve samples chosen such that each day473

has samples from each experimental condition, so any differences between the samples from474

each day are batch effects. As shown in Figure S3, these difference exist in the spike-in controls475

as well as the samples, confirming their identity as batch effect and not true variation.476

Figure S7 shows four markers with extreme batch effects: TCRgd, IL-6, IFNg, and CD86.477

These batch effects would normally mean only samples within each run day could be compared478

to each other, as comparisons between samples from different run days would be dominated by479

the differences in the run days. Instead, the SAUCIE batch correction removes these undesirable480

effects by combining the samples from each day and aligning them to a reference batch, here481

chosen to be Day 1. Figure S7 shows that after SAUCIE the differences between run days482

disappear so that now what it means to be low or high in a marker is the same for each day.483

Before, the cells with the lowest IFNg in samples from Day 3 would still be considered IFNg+484

while the cells with the highest IFNg in samples from Day 1 would still be IFNg-. After batch485

correction with SAUCIE, these can be directly compared.486

The challenge of batch correction is to remove differences due to artifacts while preserving487

biological differences. We reason that to prevent removing true biological variation, the ‘shape’488

of the data (but not its position and scale) within each day must be preserved. We define the489

shape of the data as any moment beyond the first two - mean and variance. We examine this in490

detail by considering a run day with the most significant batch effects, Day 2. In Figure S3C,491

the SAUCIE visualization shows that the reference and nonreference batches are completely492

separated. When MMD regularization is added in SAUCIE, though, these two batches are fully493

overlapped. In Figure S8, we examine the twelve individual samples that were run on Day 2.494

Initially, we see that this confirms our idea that the differences between days are batch effects,495

because each sample measures high in IL-6 and CD86. So the differences between samples496

run on Day 1 and Day 2 in CD86 abundance is not dominated by having more of a certain497

sample type in Day 2. Instead, all samples in Day 2 have been shifted higher. As desired, after498

batch correction, the mean of each marker is reduced to the level of the reference-batch mean.499

Crucially, the relationship of samples in Day 2 relative to each other is preserved. The samples500

with the highest IL-6 in Day 2 are still Samples 3, 9, and 11 while the samples with the lowest501

are still Samples 4, 5, and 6. SAUCIE has just changed what it means to be high or low for502

samples in this day such that it reconciles what it means to be high or low for samples in the503

reference day.504

In conclusion, the batch correction and denoising ability of SAUCIE has transformed the505

data into a form that is amenable to biological discovery. We investigate this in the next section.506
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2.3.2 Differential cluster proportions between subjects507

We first obtain the clusters characteristic of each group and then further analyze them for marker508

enrichments as single cell versions of blood biomarkers [40]. For the clustering considered here,509

we use a coarse-grained clustering obtained with a coefficient for ID regularization of 0.1. This510

was chosen by scanning across values of 0.01, 0.1, 0.2, 0.3, 0.4, and 0.5, and choosing the511

clustering that yielded the best modularity. If other granularities are desired, lower coefficients512

could be used and the impact of this parameter on the number of clusters is shown in Figure S9.513

The two regularizations λd and λc affect the number of clusters that result. For a given value514

of λd, as λc increases, the number of clusters decreases (coarser granularity). Higher values of515

λd yield more clusters (finer granularity). Notably, these results are robust and yield reasonable516

results for varying values of the two regularizations. These two together act as knobs that can517

be tuned to get the desired granularity of clustering. The methods section further discusses how518

these regularizations affect the number of clusters.519

For the SAUCIE clustering, we focus on T cells as particularly relevant to the immune pro-520

cess and an abundant subset of the data (eleven million total cells), looking for clusters that521

are over- or under-represented in the cells of each group. We look for clusters that behave dif-522

ferently in the acute compared to the convalescent time points. These would then represent a523

population of cells that might have an important role in the process, which could be further in-524

vestigated. To understand what cell population this is, we examine the marker abundance profile525

for the cluster. The mean for each cluster and marker is shown in the heatmap in Figure 6B.526

We find twenty total clusters within the T cell populations, five of which are CD8 T cells527

and thirteen of which are CD4 T cells. In addition, interestingly, there are six clusters of CD4-528

CD8- T cells, where four are γδ T cells. These have been noted as a characteristic of reaction to529

viral infections [41–45]. There are twelve clusters representing effector memory cells and nine530

regulatory T cells that are CD4+Foxp3+. Two of the clusters are naive T cells.531

Several of these populations are indicative of differences between acute, convalescent, and532

healthy subjects, and can be used for characterizing the nature of the reaction of each of these533

groups, as we do below.534

1. γδ T cells are a relatively rare type of T cells, but SAUCIE is still able to identify them.535

Despite their rarity, they appear to have significance in identifying different populations,536

which emphasizes the importance of this attribute of SAUCIE. These cells signal espe-537

cially strong earliy in immune response, particularly skin and mucosal immunity. They538

have less variable TCR sequences than αβ T cells [46]. These cells are a bridge between539

T cells and myeloid cells, as they have some innate immune activity, where they express540

CD11c and CD86. They can bind to lipid antigens. Clusters 0 and 3 (consisting of 7% of541

the total cells) shows upregulation of CD57. This is an indication of terminal differentia-542

tion. CTLA-4 and CD38 are also high, so these are highly activated cells and potentially543

dysfunctional. We see that these clusters are highest in the acute subjects and lowest in544

the healthy subjects. Out of the fifteen subjects that were measured both as acute subjects545

and later in convalescence, thirteen had more of these cells during their acute infection.546
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2. We find another group of γδ T cells that are CD45RO and CD45RA positive (cluster 2,547

consisting of 1% of the total cells), but not yet fully terminally differentiated, so these548

could be transitional between naı̈ve and effector memory. The effector memory cells549

express less IFNb. As this cluster is more expressed in the healthy subjects, it indicates550

that even these subjects may have had some exposure to dengue. There is a lack of an551

inflammatory state, i.e., low in IFNb and Perforin, so we expect that these are actually552

memory cells instead of effector cells. It makes more sense then that these populations553

are more expressed in convalescent and healthy subjects.554

3. We also find another population of CD4+ T cells (clusters 3-15, consisting of 45% of the555

total population) that are not expressing any inflammatory markers or activation markers,556

and these are higher in the convalescent and healthy subjects, while being very low in557

the acute subjects. These look to be other memory cells that may characterize these558

convalescent subjects. In fact, out of the fifteen subjects with acute-convalescent paired559

measurements, eleven had more of these cells during convalescent measurement. These560

have signs of recent activation as they do not have CD69, which is an early activation561

marker, nor any of the cytokines like IFNg, IFNb, or IL-6.562

4. Additionally, we find a population of CD8+ effector cells (cluster 15, which consists of563

3% of the total cells) that are highly expressed in the acute subjects. These cells also564

express CD57 and CD38, but are not γδ as the previous populations were. These appear565

to be more differentiated and are likely not transitional, as the previous ones were, either.566

We can also visualize the cell-level cluster proportions on a patient manifold (Figure 5B). There,567

we see that cluster proportions arranged on this manifold reveal clusters that are changing across568

the space. This analysis indicates clearly that cluster 1 is representative of acute subjects and569

cluster 5 is representative of the healthy subjects. Furthermore, we can evaluate the same in-570

dividual when measured after acute infection, and then later at a convalescent time point (Fig-571

ure 5C). Viewed in this way, we see that cluster 11 is also more present in most subjects when572

they came in with an acute infection than at the convalescent time point.573

2.3.3 Visualization574

SAUCIE can process all cells from all subjects to construct a cellular manifold and extract its575

features. First, we visualize this manifold using the 2-D visualization layer. Figure 6A is divided576

into two embeddings that show the cell manifolds for acute and healthy subjects separately.577

As can be seen, there is a characteristic change in the manifold that becomes apparent when578

comparing the embeddings side-by-side. The acute subjects have cell populations distinctly579

missing that are present in the healthy subjects.580

After characterizing the nature of the cellular space in the aggregate, we can additionally581

analyze manifolds formed by the distributions of T lymphocytes within each patient separately.582

As each patient has a heterogeneous population of cells, including with different total numbers583
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of cells, it becomes a challenge to define a meaningful measure of similarity between the indi-584

viduals. Here we are able to leverage the manifold constructed by the SAUCIE embedding and585

calculate MMD (a distribution distance) between the distribution of cells in the latent space for586

each pair of subjects. With a measure of similarity between each pair of patients, we can now587

construct a manifold not of the cells but also of the subjects (Figure 5A).588

2.3.4 Comparison to existing method589

We next compare the SAUCIE pipeline of batch correcting, clustering, and visualizing single-590

cell data from a cohort of subjects to an alternative approach called metaclustering [47]. We591

first cluster each sample individually with Phenograph. Then, we represent each cluster as592

its centroid and use Phenograph again on the clusters to obtain metaclusters. We examine593

the pipelines on ten of the 180 samples here, where the metaclustering approach took forty594

minutes. We note that the SAUCIE pipeline took 45 minutes to process all 180 samples, while595

the metaclustering approach would take 12 hours to process all of them. Figure S10 shows596

tSNE embeddings of the cluster centroids where the size of the cluster is proportional to the597

size of the point. Coloring by sample, we see that the metaclusters have identified batch effects.598

Metacluster 0 is only composed of samples 1, 3, 4, and 5. These samples have no clusters in any599

other metacluster, and none of the other samples have any cluster in this metacluster. Examining600

the gene expression heatmap, we see that metacluster 0 has separated cells with high CD86601

values, which were shown earlier to be batch effects. Moreover, the metaclusters are very602

heterogeneous internally with respect to gene expression. This is a results of metaclustering603

the cluster centroids, as the metaclusters then have no information about the individual cells604

comprising that centroid.605

In contrast, Figure S11 shows the SAUCIE pipeline on these ten samples. The cluster606

proportions show that each cluster is fully mixed with respect to the samples, as opposed to607

the sample-segregated metaclusters of the previous approach. Similarly, the clusters are more608

homogeneous internally, meaning they actually keep similar cells together, as opposed to the609

metaclusters, which lost this information when each cluster was represented by only its centroid.610

Finally, we find that SAUCIE effectively compares cells across subjects, while the metacluster-611

ing approach still fails at patient-to-patient comparisons, instead only identifying batch effect612

variation. This emphasizes the importance of multitask learning using a unified representation613

in SAUCIE.614

3 Discussion615

We presented SAUCIE, a neural network framework that streamlines exploratory analysis of616

datasets that contain a multitude of samples and a large volume of single cells measured in each617

sample. The key advantage in SAUCIE is its ability to perform a variety of crucial tasks on618

single-cell datasets in a highly scalable fashion (utilizing the parallelizability of deep learning619

with GPUs) without needing to call external algorithms or processing methods. As a result,620
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SAUCIE is able to process multisample data in a unified way using a single underlying repre-621

sentation learned by a deep autoencoder. Thus, different samples can be visualized in the same622

coordinates without batch effects via the embedding layer of the neural network, and cluster623

proportions can be directly compared, since the whole dataset is decomposed into a single set624

of clusters without requiring cluster matching or metaclustering. These unified representations625

can be readily used for inter-sample comparisons and stratification, on the basis of their under-626

lying cell-to-cell heterogeneity.627

Mathematically, SAUCIE presents a new way of utilizing deep learning in the analysis of628

biological and biomedical data by directly reading and interpreting hidden layers that are regu-629

larized in novel ways to understand and correct different aspects of data. Thus far, deep learning630

has primarily been used in biology and medicine as a black-box model designed to train clas-631

sifiers that often mimic human classifications of disease or pathology. However, the network632

internal layers themselves are typically not examined for mechanistic understanding. SAUCIE633

is leading a new wave of deep learning models that obtain information from internal layers634

of a deep network. Deep autoencoding neural networks essentially perform nonlinear dimen-635

sionality reduction on the data. As such they could be used “off-the-shelf” for obtaining new636

coordinates for data in a reduced-dimension space, to which other algorithms can be applied.637

However, in SAUCIE we aim to go further to structure the reduced dimensions in specifically638

interpretable ways using novel regularizations. Our information-theoretic regularization en-639

courages near-binary activations of an internal layer, thus making the layer amenable to directly640

output encoded cluster identifications. We believe that this is just the first foray into what could641

be a vast number of such regularizations that can offer interpretability of specialized layers in642

neural networks, thus turning these “black boxes” into “glass boxes.”643

The ability to stratify patients on the basis of their single-cell subpopulations, which can644

emerge as features in deep neural networks, can be key to a new generations of biomarkers that645

can be used in diagnosis and treatment. Traditionally, biomarkers are proteins or antibodies that646

are circulating in blood, which signals the presence of infection or other conditions. However,647

immune cells are highly plastic and can evolve or activate in specific ways in response to dis-648

ease conditions in different patients. Here, we showcase the heterogeneity of immune cells in649

response to acute dengue infection in a large patient cohort. We see that specific subpopula-650

tions are enriched in the acute conditions, as opposed to convalescent or healthy controls. We651

showed with our dengue dataset it is possible discover cell populations, even rare ones that are652

indicative of patient and experimental conditions. Other datasets comprising of large patient653

cohorts measured at single-cell resolution are underway already in many hospitals and clinical654

trials. In the future, we are confident that this capability will be useful in many studies includ-655

ing immunotherapy, autoimmunity, and cancer, where there are immune subsets that emerge in656

response.657
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Figure 1: The pipeline for analyzing single-cell data in large cohorts with SAUCIE. Many
individual patients are separately measured with a single-cell technology such as CyTOF or
scRNA-seq, producing distinct datasets for each patient. SAUCIE performs imputation and
denoising, batch effect removal, clustering, and visualization on the entire cohort with a unified
model and is able to provide interpretable, quantifiable metrics on each subject or group of
subjects.
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Figure 2: Regularizations and architecture choices in SAUCIE. A) the ID regularization
applied on the sparse encoding layer produces digital codes for clustering B) the informational
bottleneck, i.e. a smaller embedding layer, uses dimensionality reduction to produce denoised
data at the output C) the MMD regularization removes batch artifacts D) the within cluster
distance regularization applied to the denoised data provides coherent clusters.
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Figure 3: A comparison of the different analysis tasks performed by SAUCIE against other
methods. A) A comparison of clustering performance shown on PHATE. SAUCIE compares
well to the other methods, producing a coherent clustering. Neither Phenograph nor scVI pro-
duces clusters that look coherent. B) A comparison of SAUCIE’s visualization. PCA produces
a blurry visualization. Diffusion maps shows a much simplified structure. tSNE shatters the
space. SAUCIE produces a result similar to PHATE, revealing the structure in the data. C) A
comparison of imputation. SAUCIE recovers complex nonlinear shapes of gene-gene relation-
ships.
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Figure 4: Demonstration of SAUCIE’s batch correction abilities. A) SAUCIE batch correc-
tion balances perfect reconstruction (which would leave the batches uncorrected) with perfect
blending (which would remove all of the original structure in the data) to remove the technical
variation while preserving the biological variation. B) The effect of increasing the magnitude
of the MMD regularization on the dengue data. Sufficient MMD regularization is capable of
fully removing batch effect. C) Results of batch correction on the synthetic GMM data (top)
and the dengue data (bottom) shows that SAUCIE better removes batch effects than MNN and
better preserves the structure of the data than CCA.
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Figure 5: SAUCIE produces patient manifolds from single-cell cluster signatures. Top row)
The patient manifold identified by SAUCIE cluster proportions, visualized by kernel PCA with
acute, healthy, convalescent, and all subjects combined from left to right. The healthy manifold
overlaps with the convalescent manifold to a much higher degree than the acute manifold. Mid-
dle row) The same patient manifold shown colored by each patient’s cluster proportion. Cluster
1 is more prevalent in acute, cluster 3 in healthy, cluster 5 is ubiquitous, and cluster 9 is rare and
in acute patients. Bottom row) A comparison of the cluster proportion for acute (X-axis) versus
convalescent (Y-axis) for patients that have matched samples.
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Figure 6: SAUCIE identifies and characterizes cellular clusters, whose proportions can be
used to compare patients. A) The cell manifolds identified by the two-dimensional SAUCIE
embedding layer for the T lymphocyte subsets from acute, healthy, and convalescent subjects.
B) A heatmap showing clusters along the horizontal axis and markers along the vertical axis.
Cluster sizes are represented as a color bar beneath the heatmap. C) Cluster proportions for
acute, convalescent, and healthy patients.
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4 Methods658

4.1 Computational Methods659

In this section we explain the SAUCIE framework in greater detail including the philosophy660

behind using autoencoders for learning the cellular manifold, details of the regularizations used661

in different layers of SAUCIE to achieve particular data analysis tasks as well as training and662

implementation details. Finally, we discuss the emergent higher level organization of the patient663

manifold as a result of the cellular manifold of the subjects learned by SAUCIE.664

4.1.1 Multitask manifold learning665

A popular and effective approach for processing big high-dimensional data in genomics, as well666

as other fields, is to intuitively model the intrinsic geometry of the data as being sampled from667

a low dimensional manifold – this is commonly referred to as the manifold assumption [17].668

This assumption essentially means that local regions in the data can be linearly mapped to669

low dimensional coordinates, while the nonlinearity and high dimensionality in the data comes670

from the curvature of the manifold. Typically, a notion of locality is derived from the data with671

nearest-neighbor search or adaptive kernels to define local neighborhoods that can approximate672

tangent spaces of the manifold. Then, these neighborhoods are either used directly for opti-673

mizing low dimensional embeddings (e.g., in TSNE [48] and LLE [49]), or they are used to674

infer a global data manifold by considering relations between them (e.g., using diffusion geom-675

etry [14,15,50,51]). In the latter case, the data manifold enables several applications, including676

dimensionality reduction [14, 51], clustering [50, 52–54], imputation [15], and extracting latent677

data features [55–57].678

The characterization of the intrinsic data geometry as a data manifold is also closely related679

to the underlying approach in SAUCIE. Indeed, neural networks can be considered as piecewise680

linear approximations of target functions [58]. In our case, we essentially approximate the data681

manifold coordinate charts and their inverse with the autoencoder architecture of SAUCIE.682

The encoder training identifies local patches and maps them to low dimensional coordinates,683

while sewing these patches together in this embedding to provide a unified visualization. The684

decoder learns the linear relation between these intrinsic coordinates and the tangent spaces of685

the manifold, positioned in the high dimension. This also results in a projection of data points on686

the manifold (via its tangent spaces), which creates a denoising effect similar to the diffusion-687

based one used recently in MAGIC [15]. Finally, the clustering layer in SAUCIE is trained to688

recognize and aggregate similar data regions to ensure an appropriate granularity (or resolution)689

of the identified neighborhoods and prevent excessive fragmentation of the manifold. For more690

discussion regarding the relations between deep learning and manifold learning we refer the691

reader to [2, 16, 59].692

While tools using the scaffold of manifold learning have emerged for various tasks in single693

cell data analysis, there is currently no unified manifold model that provides all of the necessary694

tasks in a scalable fashion. For example, MAGIC [15] uses manifold learning to impute the695
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data, but does not address embedding, visualization, or clustering. Diffusion pseudotime [55]696

provides an organization of the data to infer latent temporal structure and identifies trajectories,697

but it does not deal with imputation, clustering, or visualization. Furthermore, manifold learning698

methods do not work well across batches and typically just focus on single batches. Thus, their699

construction may suffer from batch effects and be dominated by the geometry between batches700

rather than their biology, as demonstrated by the example of Phenograph in Figure S10.701

To address these shortcomings, SAUCIE performs all operations on a unified manifold ge-702

ometry, which is learned implicitly by a deep multitasking neural network. It utilizes the scala-703

bility of deep learning to process high throughput data and construct a manifold that is jointly704

optimized for multiple tasks; namely, clustering, visualization, imputation, and batch correc-705

tion. Therefore, the tasks themselves respect the manifold assumption and have the associated706

advantages, such as robustness to noise, while also agreeing with each other on a coherent707

underlying structure of the data.708

4.1.2 SAUCIE architecture709

SAUCIE consists of three encoding layers, an embedding layer, and then three decoding layers.710

The default number of neurons per hidden layer in the encoder used were 512, 256, and 128711

with a symmetric decoder. The GMM dataset, being simpler, was clustered with layers of 50,712

30, and 10. For batch correction, the best results were achieved with layer sizes of 1024, 512,713

and 256. The ID regularization was applied to the final decoder layer, which uses a ReLU. The714

two-dimensional embedding layer uses a linear activation, while all other layers use a leaky715

rectified linear activation with 0.2 leak. The coefficients λd and λc were chosen depending on716

the dataset, with the best values generally being λd twice λc. Their magnitude was guided by the717

effect of these two knobs on the granularity (shown in Figure S9). Training was performed with718

minibatches of 256, mean-squared-error for the reconstruction error function, and the optimizer719

chosen is ADAM with learning rate 0.001.720

4.1.3 Batch correction and MMD Regularization721

A major challenge in the analysis of single-cell data is dealing with so-called batch effects that
result from technical variability between replicates of an experiment. Combining replicates of-
ten results in technical and experimental artifacts being the dominant source of variability in the
data, even though this variability is entirely artificial. This experimental noise can come in the
form of dropout, changes of scale, changes of location, or even more complicated differences
in the distributions of each batch. It is infeasible to parametrically address all of the poten-
tial differences explicitly, for example, by assuming measurements are drawn from a Gaussian
distribution. Instead of addressing specific explicit models of noise, SAUCIE minimizes a dis-
tance metric between distributions. The batch correction term Lb calculates the Maximal Mean
Discrepancy (MMD) [60] between batches, as

Lb = Σi6=refMMD(Vref , Vi),
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where Vref is the visualization layer of one of the replicates, arbitrarily chosen to be considered722

as a reference batch. MMD compares the average distance from each point to any other point723

in its own batch, with the distance to points in the other batch. MMD is zero only when two724

distributions are equal. Thus minimizing this metric encourages SAUCIE to align the batches.725

MMD has been used effectively to remedy batch effects in residual networks, but here SAUCIE726

uses it in a feedforward autoencoder and combines it with other tasks of interest in biological727

exploratory data analysis [21].728

The choice of reference does not affect the degree to which two distributions can be aligned,729

but a reference batch is necessary because the encoding layers of a standard network will be730

encouraged to embed different batches in different places in the visualization layer. It does this731

because the decoder is required to make its reconstruction X̂ match the original data inX , which732

includes the batch effects. To remedy this, the decoder in SAUCIE is required to reconstruct the733

reference batch exactly as usual, but other batches must only be reconstructed to preserve the734

points normalized by mean and variance. Consequently, the MMD regularization term will be735

minimized when batches are aligned, and the decoder need only be able to reconstruct the exact736

values of the reference batch and the relative values of the non-reference batches. The non-737

reference batches will be aligned to the reference batch in a way that preserves their internal738

structure as best as possible.739

4.1.4 Regularizations and Post-processing for clustering740

Information Dimension Regularization We consider the task of clustering data points by741

interpreting the sparse layer B in the network as encoding cluster assignments. We note that742

a common activation function used to introduce nonlinearities in neural networks (including743

SAUCIE) is the Rectified Linear Unit (ReLU), and it provides a natural threshold for binarizing744

neuron activation to be either zero or one. These units are either “off” at or below zero or745

“on” for any positive value, so a small positive value ε can be used a threshold to binarize the746

activations in B. This results in an interpretable clustering layer that creates ‘digital’ cluster747

codes out of an ‘analog’ hidden layer, thus providing a binary code for each input point of the748

network. These binary codes are in turn used as cluster identifiers in order to group data points749

with the same code into a single cluster.750

In order to automatically learn an appropriate granularity of clusters, we developed a novel751

regularization that encourages near-binary activations and minimizes the information (i.e., num-752

ber of clusters) in the clustering layer. Our regularization is inspired by the von Neumann (or753

spectral) entropy of a linear operator [61], which is computed as the Shannon entropy of their754

normalized eigenvalues [62, 63]. This entropy serves as a proxy for the numerical rank of the755

operator [51], and thus provides an estimation of the essential dimensionality of its range. In756

our case, we extend this notion to the nonlinear transformation of the neural network by treat-757

ing neurons as our equivalent of eigenvalues, and computing the entropy of their total activation758

over a batch. We call this entropy ‘information dimension’ (ID) and the corresponding ID reg-759

ularization aims to minimize this entropy while still encoding sufficient information to allow760
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reconstruction of the input data points.761

The ID regularization is computed from the clustering layer activations in B by first com-
puting the activation of each neuron j as aj =

∑n
i=1Bij , then normalizing these activations to

form an activation distribution ~p = ~a/ ‖~a‖1, and finally computing the entropy of this activation
distribution as

Lc(B) = −
k∑
j=1

pj log pj.

By penalizing the entropy of neuron activations, this regularization encourages a sparse and762

binary encoding. This counters the natural tendency of neural networks to maximize the amount763

of captured (i.e., encoded) information by spreading activations out across a layer evenly. By764

forcing the activations to be concentrated in just a few distinct neurons, different inputs end up765

being represented with rather similar activation patterns, and thus naturally clustered. When766

combined with the reconstruction loss, the network will retain enough information in the sparse767

layer for the decoder to reconstruct the input, keeping similar points in the same cluster.768

Intracluster distance regularization The digital codes learned by SAUCIE create an oppor-769

tunity to interpret them as clusters, but these clusters would not necessarily be comprised of770

only similar points. To emphasize that inputs only be represented by the same digital code if771

they are similar to each other, SAUCIE also penalizes intracluster pairwise distances. Beyond772

suffering reconstruction loss, using the same code for points that are far away from each other773

will now incur an even greater loss.774

This loss is calculated as the euclidean distance between points with the same binary code:

Ld(B, X̂) =
∑

i,j:bi=bj

‖x̂i − x̂j‖2

where x̂i, x̂j and bi, bj are the i-th and j-th rows of X̂ and B, respectively.775

Since ID regularization is minimized by using the same code to represent all inputs, this776

term acts as an opposing balance. Intracluster distances are minimized when all points are in a777

cluster by themselves. Together with the reconstruction penalty, these terms encourage SAUCIE778

to learn clusters that are composed of as many points as possible that are near to each other.779

An additional benefit of clustering via regularization is that not only is the number of clusters780

not needed to be set a priori, but by changing the value of λc the level of granularity of the781

clustering can be controlled, so both coarse clustering and fine clustering can be obtained to782

further add insight into the underlying structure of the data.783

Cluster merging As the binarized neural network may not converge to the ideal level of
granularity due to the many possible local optima in the loss landscape, we process the SAUCIE
clustering with a cluster merge step to fix the ideal level of granularity everywhere. The cluster
merging is performed by calculating MMD between clusters in the SAUCIE latent space and
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merging all clusters i, j ∈ C, where C is the set of all clusters, such that both of the following
equations hold

argmin
ξ∈C

MMD(i, ξ) = j (2)

argmin
ξ∈C

MMD(j, ξ) = i (3)

This merging finds clusters that would be a single cluster in another granularity and fixes them784

to a single cluster.785

4.1.5 Patient Manifold Visualization786

In addition to the cell-level manifold constructed by SAUCIE, we also consider the geome-787

try between samples to provide a coarser patient-level manifold. We construct and embed this788

manifold in low dimensions by applying kernel-PCA (kPCA) [64] with an RBF kernel to the789

metric space defined by MMD distances between subjects. This augments the analysis SAUCIE790

provides of the biological variations identified in the cell space with an analysis of the variation791

in the patient space. Normally, without batch correction, the two sources of variation would792

be confounded, and batch effects would prevent clear analysis at either level (patient or cell)793

across batches. With our approach here we are able to separate them to provide on one hand, a794

stable (batch-invariant) cell-level geometry by the SAUCIE embedding, and on the other hand,795

a robust patient geometry provided by kPCA embedding. The patient geometry then allows us796

to recover patient-level differences and utilize them further for data exploration, in conjunction797

with the cell-level information. For example, as Figure 5A shows, we have a notable stratifica-798

tion between the acute and non-acute subjects. There is also a noticeable difference between the799

convalescent subjects and the acute, albeit a less drastic one than the difference between acute800

subjects and the others.801

4.1.6 Training802

To perform multiple tasks, SAUCIE uses a single architecture as described above, but is run803

and optimized sequentially. The first run imputes noisy values and corrects batch effects in the804

original data. This preprocessed data is then run through SAUCIE again to obtain a visualization805

and to pick out clusters. The different runs are done by optimizing different objective functions.806

In the following, we describe the optimization of each run over a single batch of n data points.807

However, the full optimization of each run independently utilizes multiple (mini-)batches in808

order to converge and minimize the described loss functions.809

For the first run, formally let X be an n × d input batch, where each row is a single data810

point, and d is the number of features in the data. It is passed through a cascade of encoding811

linear and nonlinear transformations. Then, a cascade of decoding transformations reconstruct812

the denoised batch X̂ , which has the same dimensions as the input X and is optimized to813

reconstruct it.814
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For the next run, the cleaned batch X̂ is passed through encoding transformations and a815

visualization layer denoted by V ∈ Rn×2. We also consider a clustering layer in another run816

where the decoder outputs near-binary activations B ∈ R
n×dB , where dB is the number of817

hidden nodes in the layer, which will be used to encode cluster assignments, as described below.818

The activations in B are then passed to the reconstruction X̃ that has the same dimensions as X̂819

(and X) and is optimized to reconstruct the cleaned batch.820

The loss function of all runs starts with a reconstruction loss Lr forcing the autoencoder to
learn to reconstruct its input at the end. SAUCIE uses the standard mean-squared error loss (i.e.,
Lr(X, X̂) = 1

n

∑n
i=1 ‖xi − x̂i‖

2, where xi and x̂i are the i-th row ofX and X̂ correspondingly).
We note that while MSE is a standard and effective choice in general, other loss functions can
also be used here as application-specific substitutes that may be more appropriate for particular
types of data. For the first run, we add to this loss a regularization term Lb that enables SAUCIE
to perform batch correction. This regularization is computed from the visualization layer to
ensure consistency across subsampled batches. The resulting total loss is then

L = Lr(X, X̂) + λb · Lb(V ).

The loss function of the clustering run then optimizes Lr along with two regularization terms
Lc and Ld that together enable SAUCIE to learn clusters:

L = Lr(X̂, X̃) + λc · Lc(B) + λd · Ld(B, X̂).

The first term Lc guides SAUCIE to learn binary representations via the activations in B using821

a novel information dimensionality penalty that we introduce in this paper. The second term Ld822

encourages interpretable clusters that contain similar points by penalizing intra-cluster distances823

in the cleaned batch X̂ , which is fixed for this run.824

4.1.7 Runtime Comparison Methodology825

For each visualization, clustering, and imputation method, the dataset of size N was given to826

the method as input and returned the appropriate output. For batch correction, the dataset of827

size N was divided into two equal-sized batches that were corrected. For the methods that828

operated on minibatches, minibatches of size 128 were used. For the methods that train by829

stochastic gradient descent, the number of steps was determined by taking the total number of830

points and dividing by the size of the minibatch, so that a complete pass through the entire831

dataset was performed. In order to return clusters, the latent space of scVI must be clustered by832

another method, and since the number of clusters is not known ahead of time, the fastest method833

that does not require this to be known (Phenograph) was used. For SAUCIE, batch correction,834

imputation, clustering, and visualization were all produced in the timed run. All computations835

were performed on a single machine with 16 CPU cores and a GeForce GTX 1080 GPU.836
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4.1.8 Number of Clusters837

As discussed earlier, the number of clusters resulting from SAUCIE is not specified in advance,838

but dictated by the structure of the data that the model discovers, and by the choice of regular-839

ization coefficients λd and λc. For a given value of λd, as λc increases, the number of clusters840

decreases. Increasing λd, on the other hand, increases the number of clusters (Figure S9). This841

is because λc penalizes entropy in the activations of the n neurons in the clustering layer of the842

network. While entropy can be initially decreased by making all n neurons either 0 or 1, it can843

be further decreased by making all n neurons 0. Thus, as this term is considered more influential844

in the total loss, in the extreme, all points can be mapped to the same binary code. In contrast,845

λd penalizing intra-cluster distances, so this value can be decreased by making clusters smaller846

and smaller (and thus getting more of them). In the extreme for this term, every point can be847

made its own cluster and intra-cluster distances would decrease to 0. By balancing these two,848

the desired granularity of clustering can be obtained from SAUCIE. In our experiments, we find849

making λd to be between two and three times larger than λc, with values around 0.2 generally850

results in medium coarse-grained clustering. Another consideration that affects the number of851

clusters is the number of neurons in the clustering layer. We found varying this number does852

not improve performance and for all experiments here we use a fixed size of 256 neurons.853

4.2 Experimental methods854

4.2.1 Study Subjects855

Dengue patients and healthy volunteers were enrolled with with written informed consent under856

the guidelines of the Human Investigations Committees of the NIMHANS and Apollo Hospital,857

and Yale University [19]. The Human Investigations Committee of each institution approved858

this study. Patients with dengue virus infection were defined as dengue fever using WHO-859

defined clinical criteria, and/or laboratory testing of viral load or serotyping at the time of860

infection. Healthy volunteers included household contacts of dengue patients present in the861

same endemic area. Participants were of both genders (26.7% female) and were all of Indian862

heritage. Subjects from the symptomatic and healthy groups were not statistically different for863

age, gender, or race in this study.864

4.2.2 Sample Collection and Cell Isolation865

Heparinized blood was collected from patients and healthy volunteers and employed a 42866

marker panel of metal conjugated antibodies following methods previously described [65, 66].867

Purification of peripheral blood mononuclear cells (PBMCs) was performed by density-gradient868

centrifugation using Ficoll-Paque (GE Healthcare) according to the manufacturer’s instructions869

following isolation and cryopreservation guidelines established by the Human Immunology870

Phenotyping Consortium. PBMCs for CyTOF were frozen in 90% FBS containing 10% DMSO871
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and stored in liquid N2 for shipping following the guidelines of the DBT. Samples for this study872

were received in three shipments and viability was average 85% (range 50−98) across the dates.873

4.2.3 Mass Cytometry Acquisition874

For mass cytometry at Yale University, PBMCs (5 x 106 cells/vial) were thawed incubated in875

Benzonase (50U/ml) in RPMI/10% human serum, and seeded in 96-well culture plate (6 x 103-876

1.2 x 106 cells/well. Monensin (2µM, eBioscience) and Brefeldin A (3µg/ml, eBioScience)877

added for the final 4 h of incubation for all groups. Groups of samples (8-13/day) were infected878

in vitro per day on 5 separate days and included a CD45-labeled spike-in reference sample in879

every sample. Surface markers were labeled prior to fixation and detailed staining protocols880

have been described. Briefly, cells were transferred to 96-well deep well plates (Sigma), resus-881

pended in 25 µM cisplatin (Enzo Life Sciences) for one minute, and quenched with 100% FBS.882

Cells were surface labeled for 30 min on ice, fixed (BD FACS Lyse), and frozen at −80°C.883

Intracellular labeling was conducted on batches of cells (12/day). Fixed PBMCs were perme-884

abilized (BD FACS Perm II) for labeling with intracellular antibodies for 45 min on ice. Cells885

were suspended overnight in iridium interchelator (125 nM; Fluidigm) in 2% paraformaldehyde886

in PBS and washed 1X in PBS and 2X in H2O immediately before acquisition. A single batch887

of metal-conjugated antibodies was used throughout for labeling panels. Metal-conjugated an-888

tibodies were purchased from Fluidigm, Longwood CyTOF Resource Core (Cambridge, MA),889

or carrier-free antibodies were conjugated in house using MaxPar X8 labeling kits according890

to manufacturer’s instructions (Fluidigm). A total of 180 samples were assessed by the Helios891

(Fluidigm) on 15 independent experiment dates using a flow rate of 0.03 ml/min in the presence892

of EQ Calibration beads (Fluidigm) for normalization. An average of 112, 537 ± 71, 444 cells893

(mean± s.d.) from each sample were acquired and analyzed by CyTOF. Data was preprocessed894

with the hyperbolic sine transformation. Additional experimental details will be given in [19].895
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5 Software899

SAUCIE is written in Python using the Tensorflow library for deep learning. The source code900

is available at https://github.com/KrishnaswamyLab/SAUCIE/.901
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Supplemental Figure S1: Comparison of runtimes on an increasing number of points. The
number of points is represented on the horizontal axis and the time in seconds the method took
to complete is on the vertical axis. If a method ran out of resources and could not complete a
run for a certain number of points, that is demarcated with an ‘x’ and no further time points
were attempted for that method. SAUCIE is the fastest method besides PCA and kmeans.
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Supplemental Figure S2: A comparison of the SAUCIE clustering to other clustering methods
on artificial and real data. Rows show the different datasets. Along with the first two artificial
datasets, there are two CyTOF datasets and three scRNA-seq datasets. Columns show the dif-
ferent clustering methods. From left to right: True “ground truth” labels, SAUCIE, kmeans,
Phenograph, scVI.
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Supplemental Figure S3: A comparison of batch correction with SAUCIE to other methods
on an artificial dataset, two technical replicates from the dengue CyTOF data, non-technical
replicates on scRNA-seq batches from mouse cortex, and then public data from Chevrier et al,
Azizi et al, and Setty et al. Rows show the different datasets. Columns show the different batch
correction methods. From left to right: The original data prior to batch correction, SAUCIE,
mutual nearest neighbors (MNN), canonical correlation analysis (CCA).
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Supplemental Figure S4: A comparison of the SAUCIE visualization to other methods on a
number of artificial and real datasets. The columns show the different methods. From left
to right: SAUCIE, PCA, Monocle2, Diffusion Maps, UMAP, tSNE, PHATE. The rows show
the different datasets. From top to bottom: Artificially generated trees with varying amounts of
noise, random tree generated with diffusion limited aggregation (DLA), intersecting half circles,
Gaussian mixture model, MNIST, scRNA-seq hematopoiesis from Paul et al. 2015 [27], CyTOF
T cell development from Setty et al. 2016 [22], CyTOF ipsc from Zunder at al. 2016 [25],
scRNA-seq retinal bipolar cells from Shekhar et al. 2016 [26], scRNA-seq mouse cortex from
Zeisel et al. 2015 [28].
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Supplemental Figure S5: A comparison of imputation methods including SAUCIE. Several
gene-gene associations are shown from the 10x mouse cortex dataset. From left to right: The
original (sparse) data, data after imputation with SAUCIE, MAGIC, scImpute, and nearest
neighbor completion.
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Supplemental Figure S6: A comparison of imputation with SAUCIE to other methods on the
simulated dropout experiment. Increasing amounts of dropout are along the horizontal axis
from left to right, and the accuracy of each method as measured by R2 is along the vertical axis.
The time each method took to complete is in the legend in seconds.
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Supplemental Figure S7: Four select marker abundances with samples grouped by day they
were run on the cytometry instrument, with each day having fourteen distinct samples in the
group. For each marker, the fourteen samples before batch correction are shown to the left of
the same fourteen samples after batch correction.
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Supplemental Figure S8: Histograms of marker expression (top: IL-6, bottom: CD86) of sam-
ples run together on the cytometry instrument on day two, separated by sample. The values for
each sample and marker are shown before SAUCIE batch correction (left) and after SAUCIE
batch correction (right).
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Supplemental Figure S9: The granularity of the clustering, as measured by the total number of
clusters found. Each line represents a fixed value of λd as λc increases from left to right.
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Supplemental Figure S10: An illustration of the metaclustering process on the dengue dataset.
Top left: cluster centroids embedded by tSNE and colored by metacluster, sized according
to the number of cells in each cluster.. Top right: cluster centroids colored by sample, also
sized according to the number of cells in each cluster.. Bottom left: a cell-level heatmap of
expresssion grouped by metacluster. Bottom right: the composition of each metacluster by
sample.
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Supplemental Figure S11: An illustration of the SAUCIE pipeline on the dengue dataset. Left:
cell-level heatmap of expresssion grouped by cluster. Top right: cluster centroids embedded by
tSNE, sized according to the number of cells in each cluster. Bottom right: the composition of
each cluster by sample.
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SAUCIE kmeans Phenograph scVI
MNIST 0.8822/-0.0165 0.8805/0.0535 0.9316/0.0180 0.8592/0.0084
GMM 0.7512/0.8162 0.8917/0.3097 0.9302/0.2662 0.9030/-0.0626

Shekhar et al 0.9662/-0.0602 0.8530/0.0753 0.8981/0.0868 0.93139/0.0593
Chevrier et al 0.9347/-0.3761 0.9517/0.0085 0.9258/-0.0452 0.9330/-0.1967

Zeisel et al 0.8663/-0.1881 0.9138/0.1135 0.9209/0.1529 0.9085/-0.1238
Paul et al 0.8854/-0.3060 0.8930/0.0249 0.8819/0.1802 0.8839/-0.0540
Setty et al 0.6860/0.0425 0.8704/0.0377 0.8912/0.0147 0.8591/-0.0718

Table 1: A comparison of modularity (left) and silhouette (right) scores of each of the clustering
algorithms on each dataset.
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Original SAUCIE MNN CCA
GMM 0.999/— 0.630/0.629 0.526/0.620 0.510/0.998

Dengue 0.999/— 0.593/0.532 0.998/0.512 0.992/0.765
Mouse cortex 0.994/— 0.530/0.498 0.898/0.485 0.836/0.923
Chevrier et al 0.880/— 0.540/0.934 0.787/0.232 0.835/0.346

Azizi et al 0.621/— 0.512/0.180 0.560/0.205 0.621/0.000
Setty et al 0.518/— 0.504/0.064 0.514/0.067 0.523/0.698

Table 2: A comparison of mixing (left) and Procrustes (right) scores of each of the batch cor-
rection algorithms on each dataset.
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SAUCIE PCA Monocle2 DM UMAP TSNE PHATE
Artificial Tree 3 0.993 0.956 0.935 0.963 0.967 0.968 0.947
Artificial Tree 7 0.994 0.951 0.921 0.980 0.986 0.990 0.971

Artificial Tree 20 0.948 0.896 0.854 0.940 0.938 0.940 0.939
DLA Tree 0.865 0.817 0.725 0.819 0.836 0.845 0.847

Half Circles 0.975 0.970 0.940 0.937 0.958 0.946 0.925
GMM 0.999 0.972 0.953 0.500 0.992 0.992 0.969

MNIST 0.777 0.801 0.744 0.498 0.718 0.506 0.507
Paul et al 0.944 0.948 0.896 0.807 0.842 0.865 0.856
Setty et al 0.882 0.870 0.839 0.508 0.501 0.501 0.491

Zunder et al 0.939 0.903 0.884 0.505 0.522 0.513 0.510
Shekhar et al 0.942 0.908 0.918 0.506 0.863 0.508 0.496
Ziesel et al 0.952 0.914 0.903 0.943 0.909 0.881 0.905

Table 3: A comparison of precision-recall area-under-the-curves (AUCs) for each of the visual-
ization algorithms on each dataset.
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