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Supplemental Text 1: Definition of epigenetic and 

genomic features  

Definition of epigenetic features 

Pre-processing of ChIP-Seq libraries 

A collection of 133 ChIP-Seq libraries with matching control libraries were downloaded from the Gene 

Expression Omnibus database (Edgar et al. 2002) (see Supplementary Data Set 2). ChIP-Seq and 

control reads (downloaded as sra or fastq files) were aligned to mm9 genome with Bowtie2 (with 

number of mismatches = 1). Obtained sam files were converted into bam using samtools, only keeping 

alignments with MAPQ score higher than 10. Replicates were pooled for further analysis to obtain 

better coverage. All ChiP libraries containing less than three million uniquely mapped reads were 

removed from the collection, as the read coverage would be too sparse to infer robust signals. The 

deepTools package (Ramírez et al. 2014) was used for quality control of the ChIP-seq data: 

fingerprints, created with the plotFingerprint function and heatmap summary plots, created with 

bamCoverage, computeMatrix and plotHeatmap functions, were created for each ChiP library and 

the corresponding control library. Fingerprint plots produce a profile of cumulative read coverage from 

bins of specified size across the genome and allow to assess the signal-to-noise ratio in ChIP-Seq 

samples, i.e. whether there is sufficient enrichment of signals versus background. Heatmap plots allow 

to assess the average distribution of both ChIP-seq and control signal of interest around pre-specified 

regions (e.g. promoters) in the genome. For example, for a ChIP-seq dataset on H3K4me1 we expect 

an average signal enrichment (i.e. a peak) around the gene transcriptional start sites for the experiment 

but not for the control. ChIP libraries were filtered by manual inspection based on the enrichment of 

experiment over control input signal (see Supplementary Figure 14 as example). 



For some features more than one ChIP-Seq library was downloaded, when experiments from different 

labs were available in GEO, and the most ‘high-quality’ dataset for each feature was chosen based on 

the signal to noise ratio (deepTools heatmap) and cumulative distribution of the reads from input and 

experiment (deepTools fingerprint). For example, for the feature CTCF one out of three available ChIP 

libraries was selected, based on the fingerprint and heatmap summary plots of the ChIP libraries (see 

Supplementary Figure 15). After completion of all filtering steps, we defined regions of enrichment 

for each of the remaining 57 ChIP-Seq libraries and used the normalized read counts in the specified 

region as epigenetics features for the Random Forest model (see Supplementary Table 2 and 

Supplementary Data Set 1).  

Normalization of ChIP-Seq signals 

The R package normR (Helmuth et al. 2016; Kinkley et al. 2016) was used to normalize each ChIP 

library to the corresponding control library in order to remove the background signal. normR jointly 

models ChIP and control reads over the whole genome with a binomial m-component mixture model 

where one component models the background noise and the remaining m-1 components model the 

signal. In our case only a two-component model is used: one component to account for the background 

and one component to account for the ChIP signal. The fitted background component allows to inspect 

the enrichment in a certain genomic region and is used to compare ChIP read counts for that region to 

the expected read counts under the fitted background component (see Supplementary Figure 16). This 

model can then be used to calculate a normalized enrichment for each region, where the fold change of 

ChIP vs control read counts of each region is regularized (windows with zero counts get zero 

enrichment) and standardized (to values between zero and one, where zero means no enrichment and 

one means 100% enrichment), making read counts comparable between different ChIP experiments.  

Bisulfite-Seq data 

We computed the DNA methylation level (DNA methylation (BS-Seq)) of each gene’s promoter using 

the whole genome bisulfite sequencing data in mESC from Stadler et al. (Stadler et al. 2011). For each 



C in a CG context, the total number of reads and the number of methylated reads is given from which 

the percentage of methylation (# methylated reads / # total reads) can be computed. We then computed 

the average methylation level over all CG sites within a 1000 bp region around each gene’s TSS.  

Computation of genomic features 

distance to TAD border 

It defines the distance of each gene’s transcriptional start site (TSS) to the border of the closest 

topologically associated domain (TAD), where the TAD annotation from Hi-C data on mESC is taken 

from Dixon et al. (Dixon et al. 2012).  

distance to Xist 

It defines the linear distance of each gene’s TSS to the TSS of the Xist gene (Gencode Version M9 gene 

annotation on mm10 was lifted over to mm9).  

distance to LADs 

It defines the distance of each gene’s TSS to the closest Lamina Associated Domain (LAD) boundary. 

The genomic annotation of LADs in mESCs was taken from Peric-Hupkes et al. (Peric-Hupkes et al. 

2010). 

overlap with LADs 

It indicates whether a region of 1000 bp around each gene’s TSS overlaps or not with the annotation of 

a LAD. LADs annotation in mESC was taken from Peric-Hupkes et al. (Peric-Hupkes et al. 2010). This 

feature is dichotomic: a value of “1” indicates an overlap of the gene’s 1000 bp region with a LAD, “0” 

indicates no overlap. 



gene density 

It is defined by the number of annotated genes within the 200 kb region around each gene TSS. Gene 

annotation is taken from gencode version M9 on mm10 and lifted over to mm9.  

overlap with Xist early sites 

Engreitz et al. defined the genomic coordinates of few early site (between 100 kb and 1 MB in size) on 

the X chromosome, which have been identified as regions coated by Xist at an early stage of XCI, i.e. 

sites where Xist transfers itself from its transcription locus in order to initiate spreading across the X 

chromosome (Engreitz et al. 2013). We compute the overlap of each X-linked gene with these early 

sites and define a dichotomic feature where a value of “1” indicates an overlap between the gene and 

an early site, while “0” indicates no overlap. 

HiC 3D interactions 

number of 3D interactions or strength of 3D interactions (sum(HiC interactions strength) / number of 

interactions) defined by HiC data for each gene’s promoter. Interactions are subdivided into all 

interactions (number interactions (HiC) all and mean interaction strength (HiC) all), interactions with 

other promoters only (number interactions (HiC) promoter and mean interaction strength (HiC) 

promoter) or with the Xist locus (mean interaction strength (HiC) xist). HiC data was taken from 

Schoenfelder et al. (Schoenfelder et al. 2015). 

HiCap 3D interactions 

HiCap is a technique which combines Hi-C with sequence capture of promoter regions, so it identified 

promoter-anchored 3D chromatin interactions at high-resolution. We compute three features from 

HiCap data on mESCs (Sahlén et al. 2015): number interactions (HiCap) all, which corresponds to the 

total  number of interactions of each gene’s promoter with other elements, such as other promoters or 

enhancer regions, averaged over two replicates; number interactions (HiCap) promoter, which 

corresponds to the number of interactions of each gene’s promoter with other promoters only and 



number interactions (HiCap) enhancers, which corresponds to the number of interactions of each 

gene’s promoter with enhancer elements only. 

overlap with CpG islands 

It indicates whether a region of 1000 bp around each gene’s TSS overlaps or not with an annotated CpG 

island. The CpG island annotation was taken from UCSC on mm9. This feature is dichotomic: a value 

of “1” indicates an overlap of the gene’s 1000 bp region with a CpG island, “0” indicates no overlap. 

CpG content 

It defines the normalized CpG content within the 1000bp region around each gene’s TSS, computed as 

the ratio of observed over expected CG dinucleotides (Marsico et al. 2013):   #"#"$	/	'
((#"	)	#*)	/	,')-

 

where L is the length of the considered region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Text 2: Clustering details 

Determination of the optimal number of clusters 

We developed a scoring system for determining the optimal number of clusters k for the forest-guided 

clustering procedure described in the main text. We chose the optimal number of clusters by minimizing 

the model bias while restricting the model variance. The model bias usually measures how far off the 

real model with a certain k value is from the expected model is, while the variance is related to model 

complexity: complex models have high variance and poor generalization capability.  

We define the model bias by the mixture_indexk which penalizes values of k yielding a clustering with 

a high degree of mixture (i.e. clusters containing genes from both silencing classes). For the definition 

of the mixture_indexk we introduce a “mixture” measure for each cluster i which is defined as: 

𝑚𝑖𝑥𝑡𝑢𝑟𝑒_𝑖𝑛𝑑𝑒𝑥8	 	= 4 ∗ (	
𝑥8<	
𝑛8

∗
𝑥8=
𝑛8
) 

where ni is the number of genes in cluster i and xij, with either j = 0 or j = 1, is the number of genes 

from cluster i belonging to silencing class j. The maximum value of the mixture for each cluster i is 

0.25 in case of a very mixed cluster where 50% of genes belong to one class and 50% to the other class. 

We multiply mixture_indexk by a scaling factor of 4 to obtain a number between 0 and 1. A small 

adjustment to this formula is needed in case of class imbalance. The smaller class needs to be scaled to 

the size of the larger class in a way that both classes have comparable influence on the index value. 

Hence, the number of genes belonging to the smaller class xsj in cluster i are scaled by: 

𝑠𝑐𝑎𝑙𝑒𝑑	𝑥$B = 𝑥$B 	+	
𝑥$B

𝑛$DEFF
∗ (𝑛FEGHI 	−	𝑛$DEFF)	 

 

where nsmall is the total number of genes belonging to the smaller class and nlarge is the total number of 

genes belonging to the larger class. 



The mixture_indexk for a given number of clusters k represents the average degree of mixture per cluster 

across all k clusters:  

𝑚𝑖𝑥𝑡𝑢𝑟𝑒_𝑖𝑛𝑑𝑒𝑥K 		= 	
∑ 𝑚𝑖𝑥𝑡𝑢𝑟𝑒_𝑖𝑛𝑑𝑒𝑥8K
8M=

𝑘  

The smaller the value of the mixture_indexk the better the separation of both class into separate clusters.  

On the other hand we restrict the model variance to discarding too complex models and thereby avoid 

overfitting. Therefore, we analyse the “stability” of the forest-guided clustering for each value of k. We 

assess the stability of each cluster in the clustering by resampling the data 300 times via bootstrapping 

and then computing the Jaccard Similarity for each cluster. The Jaccard Similarity for each cluster is 

defined as: 

𝐽𝑆(𝐴|𝐵) 	= 	
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| 

where A is the set of genes in the original cluster and B is the set of genes in the same cluster after 

bootstrapping the data. The analysis is performed with the function clusterboot of the R package fpc. 

Jaccard similarities values which are smaller or equal to 0.5 are an indication of a "dissolved cluster”, 

while values higher than 0.6 are usually indicative of stable patterns in the data (Hennig 2008). We 

define a clustering to be stable if each cluster in the partition has a Jaccard Similarity (JS) > 0.6. Only 

stable clusterings, i.e. clustering with low variability, are considered as clustering candidate for selecting 

an optimal value of k based on the minimal bias. Hence, the optimal number of clusters k is the one 

yielding minimum mixture_indexk while having a stable clustering. 

In addition, we only consider partitions with k > 2 in order to unravel the combinatorial rules from the 

Random Forest Model. 

Optimal number of clusters for both models 

Considering the scoring system described above, the optimal number of clusters for the XCI/escape 

model is k = 4, with stable clusters (Jaccard similarities > 0.6) for each cluster (see Supplementary 



Figure 7). The minimal value of mixture_indexk for the silencing dynamics model is k = 3, which also 

has a stable clustering (Jaccard Similarities > 0.7) for all clusters (see Supplementary Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Figures 

 

Supplemental Figure 1: Correlation of PRO-Seq replicates. Scatterplots of the log10 RPKM of all 

autosomal genes of (a) no doxycycline sample A and B and (b) dox 24 hrs sample A and B. 
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Supplemental Figure 2: Xist Tsix region allelic track. Tracks of normalized allelic stranded PRO-

seq reads at the Xist and Tsix gene in time. On the left the (+)-strand, with the Black6 track in green 

and the Castaneus track in orange. On the right the (-)-strand, with the Black6 track in pink and the 

Castaneus track in cyan. 

 

 

 

 

 

 

 

 



 

Supplemental Figure 3: Example of assignment of an X-linked gene to its active TSS. Gencode 

vM9 gene annotation and annotated regulatory regions from the PRO-seq data  (no doxycycline), 

identified with the dREG tool (Danko et al. 2015) are used to assign each gene its corresponding active 

promoter/TSS. As example, the Mecp2 gene on the (-) strand of chromosome X is shown. Its assigned 

active TSS is the one corresponding to isoform 2, as it overlaps a regulatory region defined by a bi-

directional peak in the PRO-Seq track. 
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Supplemental Figure 4: Model performance. Random Forest (RF) model performance measured 

from the Out-of-Bag error rate (as defined in the Methods) for the XCI/escape model (left panel) and 

the silencing dynamics model (right panel). Each box in the plot represents the distribution of error rates 

over 500 trained RF models. Error rates are reported for both classes combined (‘total’) and for the 

prediction of each individual class (silenced and not silenced class for the first model, early and late 

silenced class for the second model). In addition, error rates are reported for models trained on the 

complete set of features (74 epigenetic and genomic features, namely ‘all features’), as well as for the 

best models trained only on the ‘top features’ according to Random Forest variable importance analysis 

(Supplementary Figure 5 and Supplementary Figure 6). 
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Supplemental Figure 5: Feature importance for the XCI/Escape model. The importance of features 

for Random Forest classification is measured by the mean decrease in accuracy (MDA), which is 

defined as the average decrease in model accuracy from permuting the values in each feature. The 

feature with the highest MDA (e.g. distance to Xist) is the most important feature for classification. 

Each box in the plot corresponds to a model feature and represents the distribution of that feature’s 

MDA over 500 Random Forest models. For simplicity, only features with MDA higher than 0 are 

shown. Features marked in blue are the top selected features (10 in the XCI/escape model) which are 

used for final classification.   
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Supplemental Figure 6: Feature importance for the silencing dynamics model. The importance of 

features for Random Forest classification is measured by the mean decrease in accuracy (MDA), which 

is defined as the average decrease in model accuracy from permuting the values in each feature. The 

feature with the highest MDA (e.g. distance to Xist) is the most important feature for classification. 

Each box in the plot corresponds to a model feature and represents the distribution of that feature’s 

MDA over 500 Random Forest models. For simplicity, only features with MDA higher than 0 are 

shown. Features marked in blue are the top selected features (11 in the silencing dynamics model) which 

are used for the final classification. 
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Supplemental Figure 7: Cluster stability analysis for optimal number of k clusters. The cluster 

stability analysis shows the distribution of Jaccard Similarity (JS) for each cluster over 300 bootstrap 

runs. Average JS values over 300 runs are reported for each cluster. (a) Cluster stability of XCI/Escape 

model for k=4. (b) Cluster stability of silencing dynamics model for k=3. 
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Supplemental Figure 8: Enriched features from the XCI/escape model clustering. The normalized 

signal of epigenetic marks and other factors computed in the +/- 2000 bp genomic region around 280 



X-linked gene promoters is shown in the heatmaps for each of the four clusters separately. Average 

profile plots for the same factors are also shown above the heatmaps to highlight overall differences 

between clusters. Shown here are only those features which, according to the p-value of an ANOVA 

test, were the top 10 most significantly different among clusters in the XCI/escape model. 



 

Supplemental Figure 9: Top features from the XCI/escape Random forest. The normalized signal 

of epigenetic marks and other factors, computed in the +/- 2000 bp genomic region around 280 X-linked 
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gene promoters is shown in the heatmaps for each of the four clusters separately. Average profile plots 

for the same factors are also shown above the heatmaps to highlight overall differences between 

clusters. Shown here are epigenetic and genomic features that are among the top features in the 

XCI/escape Random Forest model (Supplementary Figure 5) but are not among the top 10 significant 

ones from the clustering. Boxplots of feature distributions in each cluster are shown below the heatmaps 

to give an idea of their variation among clusters. 



 

Supplemental Figure 10: Enriched features from the silencing dynamics model clustering. The 

normalized signal of epigenetic marks and other factors, computed in the +/- 2000 bp genomic region 
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around 280 X-linked gene promoters is shown in the heatmaps for each of the four clusters separately. 

Average profile plots for the same factors are also shown above the heatmaps to highlight overall 

differences between clusters. Shown here are only those features which, according to the p-value of an 

ANOVA test, were the top 10 most significantly different among clusters in the silencing dynamics 

model. 



 

Supplemental Figure 11: Top features from the silencing dynamics Random forest. The 

normalized signal of epigenetic marks and other factors, computed in the +/- 2000 bp genomic region 

10

30

50

70

E2F1

TSS-2kb +2kb

50

30

10

H3K36me3

TSS-2kb +2kb

100500

cluster 1
cluster 2
cluster 3

H2A.Z

20

60

TSS-2kb +2kb

20

40

60

80

YY1

TSS-2kb +2kb

20

40

60

TSS-2kb +2kb

Med12

20

40

60

TSS-2kb +2kb

Rybp

TSS-2kb +2kb

Hcfc1

20

40

60

H3K4me3 Smc3

20

40

60

80

20

40

TSS-2kb +2kb TSS-2kb +2kb

number 
interactions other

0

400

interaction 
frequency other

0

10

0

12

interaction 
frequency promoter distance to LADs

0

2e6

0

1e6

distance to TADs

cl
u
st

e
r 

1
cl

u
st

e
r 

2
cl

u
st

e
r 

3
cl

u
st

e
r 

1
cl

u
st

e
r 

2
cl

u
st

e
r 

3

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

p
 =

 0
.0

0
4

p
 =

 0
.0

0
6

p
 =

 0
.0

0
9

p
 =

 0
.0

1

p
 =

 0
.0

2

p
 =

 0
.0

4

p
 =

 0
.0

5

p
 =

 0
.1

3

p
 =

 0
.4

4

p
 =

 0
.7

9

p
 =

 0
.9

8

p
 =

 0
.3

5
p
 =

 0
.0

9

p
 =

 0
.1

1



around 280 X-linked gene promoters is shown in the heatmaps for each of the four clusters separately. 

Average profile plots for the same factors are also shown above the heatmaps to highlight overall 

differences between clusters. Shown here are epigenetic and genomic features that are among the top 

features in the silencing dynamics Random Forest model (Supplementary Figure 6) but are not among 

the top 10 significant ones from the clustering. Boxplots of feature distributions in each cluster are 

shown below the heatmaps to give an idea of their variation among clusters. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplemental Figure 12: Comparison of clustering results from both models with classification 

of genes in repeat A-dependent and repeat A-independent from Sakata et al. (Sakata et al. 2017). 

The proportion of genes shown to undergo silencing in mouse trophoblasts independent or dependent 

of Xist repeat A element is shown for each cluster for the XCI/escape model (left panel) and the 

silencing dynamics model (right panel). In detail, ‘repA dependent genes’ refers to those genes from 

(Sakata et al. 2017) which showed abrogated silencing in Xist-repeat A-mutant-cells, ‘repA independent 

genes’ refers to those genes which could still undergo silencing in the same cells,and ‘not covered’ 

refers to those genes in our dataset which were not covered in the Sakata et al. study (Sakata et al. 2017). 
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Supplemental Figure 13: Experimental validation of Sat1 and Wdr13 with Pyrosequencing. 

Experimental validation of one gene predicted as silenced (Sat1) and another gene predicted as not 

silenced (Wdr13) with Pyrosequencing. The experiment was conducted over 24 hours with 7 time 

points. We normalized the B6 expression and computed the half-time (as defined in the Methods). The 

half-time of Sat1 (0.88) lies within the range of silenced genes (< 0.9) and the half-time of Wdr13 (1.65) 

lies within the range of not silenced genes (> 1.6), as correctly predicted by the XCI/escape model.  
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Supplemental Figure 14: ChIP-Seq library filtering with deepTools heatmap. DeepTools heatmaps 

are visualized for two ChiP-Seq experiments, H3K4me1 (GEO: GSE29184, left panel) and SUZ12 

(GEO: GSE66830, right panel) and their respective input controls. Shown is the ChIP-seq signal at the 

+/- 2000bp region around the TSS of each gene (280 X chromosomal genes with computed half-times). 
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Both experiments show a higher enrichment for the control input signal in this region than the 

experiment itself (where very little signal is present). This evidence makes the quality of both data sets 

doubtful and therefore those libraries, as well as other data sets showing similar characteristics, were 

excluded from further analysis to avoid biases in the modelling process. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplemental Figure 15: Example on how to select the best ChIP-seq data set for a given factor. 

When more than one data set was available in GEO for a given factor or epigenetic feature only one is 

selected for further analysis based on deepTools heatmaps (on the right) and fingerprint plots (on the 

left). An example is shown for CTCF, where the dataset with GEO GSE28247 is selected out of three 

libraries as 1) the fingerprint plot shows that the cumulative distribution of the reads from the input 

experiment (orange line) is closer to the diagonal, indicative of a uniform read distribution, compared 

to the other two libraries; 2) the fingerprint plot shows that the read distribution of the ChIP experiment 

(blue line) has a steep rise toward the end of the plot, it clearly distinguishes itself from the control read 

distribution (orange line), and it is therefore indicative of a nonuniform, but rather peaked, read 

distribution at CTCF binding sites, compared to the other two libraries; 3) the heatmap clearly shows 

signal enrichment for CTCF at the -/+ 2000 bp region around gene TSSs compared to input, indicative 

of a good signal to noise ratio, which is not the case for the GSE29184 and the GSE25777 libraries. 
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Supplemental Figure 16: Example of ChIP-Seq signal normalization with normR. Two genomic 

loci on chromosome X are shown. The green box highlights a region with no or little uniform signal in 

the input control but a sharp peak in the ChIP library. The normalized track correctly shows that the 

signal corresponding to the sharp peak is still maintained after normalization. In contrast, the red box 

highlights a region with a peak signal in both the input control and the ChIP library. The normalized 

track correctly shows that the peak in this region is rescaled after normalization to the input signal. 
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Supplemental Figure 17: Feature correlation matrix. It shows the Pearson correlation for every pair 

of features used in the model and it is computed based on all 280 genes with estimated half-times from 

the PRO-seq data. Red indicates high positive correlation and blue a high negative correlation. One can 

observe blocks of correlate features. For example, the active marks (PolII, H3K4me3, H3K27ac and 

others) are highly correlated amongst each other while repressive features, such as PRC1 and PRC2 

components and H3K27me3 form another positively correlated block but are negatively correlated with 

many active mark features. 
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Supplemental Tables 

Supplemental Table 1: List of Random Forest predictions for genes without half-times. Sheet 1 

contains a list of candidate genes for experimental validation. Those genes were confidently predicted 

as silenced (class 0) or not silenced (class 1) and were selected based on prediction probability, 

expression at time point 0 and number of SNPs falling into their exons (see Material and Methods for 

further information). Sheet 2 contains the whole predictions list for all genes without computed half-

times. Predicted classes marked in red are not reliable. The additional columns list the value of each 

feature in the XCI/escape model for each gene. 

 

Supplemental Table 2: List of genes with computed half-times. This table contains 280 genes for 

which we could measure half-times. The genes are listed by gene name with corresponding genomic 

position (annotation of active TSS, see Material and Methods). In addition to the half-time column, 

there are columns listing the basal skewing (basal skewing towards one allele at t=0), sqrtRSS (fitting 

error of the exponential decay function), RPKM value of each gene at t=0, if a gene is a known escapee 

shown by other studies (source given in brackets with legend at the top of the gene list) and the class 

predicted by our Random Forest model for each gene after training averaged over 500 RF models. 

 

Supplemental Table 3: Metadata of Random forest features. Sheet 1 lists all ChIP-Seq, BS-Seq and 

genomic data used for the Random Forest model with its source and a description of the feature. For 

ChIP-Seq data the enrichment region (upstream and downstream of the TSS) is given. Sheet 2 contains 

information about the filtering of ChIP-Seq data and the reason why certain libraries were discarded. 

 
Supplemental Table 4: Filtering steps in the computation of half-times. 

filtering step # of genes after filtering 

no filter 484 

minimum read coverage per timestep > 10 341 

basal skewing between 0.2 and 0.8 330 



sqrtRSS < 1.5 296 

regulatory region within defined region around 
TSS 

280 

 

Supplemental Table 5: Filtering steps in the ChIP library pre-processing. 

filtering step # of ChIP libraries after filtering 

no filtering 133 

remove ChIP libraries with < 3 Mio. reads 120 

manuel filtering with heatmap plots 79 

selecting the best ChIP library for each feature 57 

 

Supplemental Table 6: Ranges of half-times for choosing class thresholds. 

class  half-times ranges 

silenced genes 𝑡=/, 	< 	 [0.9, . . . ,1.4] 

not silenced genes 𝑡=/, 	> 	 [1.4, . . . ,2] 

early silenced genes 𝑡=/, 	< 	 [0.5, . . . ,0.7] 

late silenced genes [0.7, . . . ,1] 	< 	 𝑡=/, 	< 	 [1, . . . ,1.4] 
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