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Abstract 
Single-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained 
discovery of cellular subtypes and specific cell states. It routinely uses machine learning 
methods, such as feature learning, clustering, and classification, to assist in uncovering novel 
information from scRNA-seq data. However, current methods are not well suited to deal with the 
substantial amounts of noise that is created by the experiments or the variation that occurs due to 
differences in the cells of the same type. Here, we develop a new hybrid approach, Deep 
Unsupervised Single-cell Clustering (DUSC), that integrates feature generation based on a deep 
learning architecture with a model-based clustering algorithm, to find a compact and informative 
representation of the single-cell transcriptomic data generating robust clusters. We also include a 
technique to estimate an efficient number of latent features in the deep learning model. Our 
method outperforms both classical and state-of-the-art feature learning and clustering methods, 
approaching the accuracy of supervised learning. The method is freely available to the 
community and will hopefully facilitate our understanding of the cellular atlas of living 
organisms as well as provide the means to improve patient diagnostics and treatment. 

 

Introduction 
Despite the centuries of research, our knowledge of the cellular architecture of human tissues and 
organs is still very limited. Microscopy has been conventionally used as a fundamental method 
to discover novel cell types, study cell function and cell differentiation states through staining 
and image analysis [1]. However, this approach is not able to identify heterogeneous sub-
populations of cells, which might look similar, but perform different functions. Recent 
developments in single-cell RNA sequencing (scRNA-seq) have enabled harvesting the gene 
expression data from a wide range of tissue types, cell types, and cell development stages, 
allowing for a fine-grained discovery of cellular subtypes and specific cell states [2]. Single-cell 
RNA sequencing data have played a critical role in the recent discoveries of new cell types in the 
human brain [3], gut [4], lungs [5], and immune system [6], as well as in determining cellular 
heterogeneity in cancerous tumors, which could help improve prognosis and therapy [7, 8]. 
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Single-cell experiments produce datasets that have three main characteristics of big data: volume 
(number of samples and number of transcripts per each sample), variety (types of tissues and 
cells), and veracity (missing data, noise, and dropout events) [9]. Recently emerging large 
initiatives, such as the Human Cell Atlas [10], rely on single-cell sequencing technologies at an 
unprecedented scale, and have generated datasets obtained from hundreds of thousands and even 
millions of cells. The high numbers of cells, in turn, allow to account for data variability due to 
cellular heterogeneity and different cell-cycle stages. As a result, there is a critical need to 
automate the processing and analysis of scRNA-seq data. For instance, for the analysis of large 
transcriptomics datasets, computational methods are frequently employed that find patterns 
associated with the cellular heterogeneity or cellular development, and group cells according to 
these patterns. 

 

If one assumes that all cellular types or stages extractable from a single-cell transcriptomics 
experiment have been previously identified, it is possible to apply a supervised learning 
classifier. The supervised learning methods are trained on the data extracted from the individual 
cells whose types are known. The previously developed approaches for supervised cell type 
classification have leveraged data from image-based screens [11] and flow cytometry 
experiments [12]. There has also been a recent development of supervised classifiers for single-
cell transcriptomic data [13]. While a supervised learning approach is expected to be more 
accurate in identifying the previously observed cellular types, its main disadvantage is the 
limited capacity in discovering new cell types or identifying the previously known cell types 
whose RNA-seq profiles differ from the ones observed in the training set.  

 

Another popular technique for scRNA-seq data analysis is unsupervised learning, or clustering. 
In this approach, no training data are provided. Instead, the algorithm looks to uncover the 
intrinsic similarities shared between the cells of the same type and not shared between the cells 
of different types [14]. Often, the clustering analysis is coupled with a feature learning method to 
filter out thousands of unimportant features extracted from the scRNA-seq data. In a recent 
study, the Principal Component Analysis (PCA) approach was used on gene expression data 
from scRNA-seq experiments profiling neuronal cells [15]. With the goal of identifying useful 
gene markers that underlie specific cell types in the dorsal root ganglion of mice, 11 distinct 
cellular clusters were discovered. Other approaches have also adopted this strategy of combining 
a simple, but efficient feature learning method with a clustering algorithm, to detect groups of 
cells that could be of different sub-types or at different stages in cellular development [21, 65]. 
One challenge faced by such an approach is due to scRNA-seq data exhibiting complex high-
dimensional structure, and such complexity cannot be accurately captured by fewer dimensions 
when using simple linear feature learning methods.  

 

A nonlinear method frequently used in scRNA-seq data analysis for clustering and visualization 
is t-distributed stochastic neighbor embedding (t-SNE) [16]. While, t-SNE can preserve the local 
clusters, preserving the global hierarchical structure of clusters is often problematic [17]. 
Furthermore, the conventional feature learning methods may not be well suited for scRNA-seq 
experiments that have considerable amount of both experimental and biological noise or the 
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occurrence of dropout events [18, 19]. To address this problem, two recent methods have been 
introduced, pcaReduce [20] and SIMLR [21]. pcaReduce integrates an agglomerative 
hierarchical clustering with PCA to generate a hierarchy where the cluster similarity is measured 
in subspaces of gradually decreasing dimensionalities. The other approach, SIMLR, learns 
different cell-to-cell distances through by analyzing the gene expression matrix; it then performs 
feature learning, clustering, and visualization. The computational complexity of the denoising 
technique in SIMLR prevents its application on the large datasets. Therefore, a different pipeline 
is used to handle large data, where the computed similarity measure is approximated, while the 
diffusion approach to reduce the effects of noise is not used. In addition to the dimension 
reduction methods, K-means is a popular clustering method used in single-cell transcriptomics 
analysis. While being arguably the most popular divisive clustering algorithm it has several 
limitations [22, 23]. 

 

In this work, we looked at the possibility to leverage an unsupervised deep learning approach 
[24] to handle the complexities of scRNA-seq data and overcome the limitations of the current 
feature learning methods. It has been theoretically shown that the multilayer feed-forward 
artificial neural networks, with an arbitrary squashing function and sufficient number of hidden 
units (latent features) are the universal approximators [25] capable of performing the 
dimensionality reduction [26]. Here, we propose the use of denoising autoencoder (DAE) [27], 
an unsupervised deep learning architecture that has previously proven successful for several 
image classification [28] and speech recognition [29] tasks. DAEs are different from other deep 
learning architectures in their ability to handle noisy data and construct robust features. We add a 
novel extension to the DAE called Denoising Autoencoder With Neuronal approximator 
(DAWN), which decides the number of latent features that is required to represent efficiently any 
given dataset. To overcome the limitations of K-means clustering, we integrate our DAWN 
approach with the expectation-maximization (EM) clustering algorithm [30]. We use the features 
generated by DAWN as an input to the EM clustering algorithm and show that our hybrid 
approach has higher accuracy when compared to the traditional feature learning and clustering 
algorithms discussed above. In particular, we are able to recover clusters from the original study 
without using any knowledge about the tissue-specific or cell type specific markers. As a result, 
our hybrid approach, Deep Unsupervised Single-cell Clustering (DUSC), helps to overcome the 
noise in the data, captures features that are representative of the true patterns, and improves the 
clustering accuracy. 

 

Methods 
Overview of the approach 

The goal of this work is to design a method capable of identifying cellular types from single-cell 
transcriptomics data of a heterogenous population without knowing a priori the number of cell 
types, sub-population sizes, or the gene markers of the population. Our hybrid approach, DUSC, 
combines deep feature learning and expectation-maximization clustering. The feature learning 
leverages the denoising autoencoder (DAE) and includes a new technique to estimate the number 
of required latent features. To assess the accuracy of our approach, we test it on a series of 
scRNA-seq datasets that are increasingly complex with respect to the biological and technical 
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variability. The performance of our method is then compared with performances of classical and 
state-of-the-art unsupervised and supervised learning methods. 

 

The DUSC computational pipeline consists of four main stages (Fig. 1). Following a basic data 
quality check, we first pre-process the data for training DAE. Second, we perform feature 
learning using DAWN, which includes training DAE and hyper-parameter optimization. We note 
that the data labels are not required during the training part of the pipeline; instead, the labels are 
used solely to test the accuracy of DUSC across the datasets and to compare it against the other 
methods. Third, we use the previously published four feature learning methods, Principal 
Component Analysis (PCA) [31], Independent Component Analysis (ICA) [32], t-SNE [16], and 
SIMLR [21], to generate the compressed dimensions for the same scRNA-seq dataset that was 
used as an input to DAWN. This allows us to assess how well the autoencoder learns the latent 
features compared to the other methods. Finally, we use the reduced feature representations from 
each of the above five methods and pass them as an input to the two clustering algorithms, K-
means (KM) and expectation maximization (EM), to assess the clustering accuracy. 

 

Denoising autoencoder model design 

During the data pre-processing stage, a dataset is defined as a matrix where the rows correspond 
to the cell samples, and the columns correspond to the feature vectors containing the gene 
expression values. To reduce the computational complexity, we remove the matrix columns 
where all values are zeros, which is the only type of gene filtering used in this method (number 
of genes removed in each dataset are detailed in Sup. Table S1). This minimal filtering procedure 
is different from a typical gene filtering protocol, whose goal is to restrict the gene list to a few 
hundred or a few thousand genes [15, 49]. Here, we aim to provide as much data as possible for 
our deep learning algorithm to capture the true data structure. The columns are then normalized 
by scaling the gene expression values to [0,1]  interval: 

  
Norm(xi ) =

xi − xmin

xmax − xmin  

where maxx  and minx  are the maximum and minimum values across all feature values in vector x   
respectively, and ix  is a feature value in x . The normalized matrix is converted from a 64-bit 
floating point representation to a 32-bit representation for native GPU computation and then to a 
binary file format, to reduce the input-output costs and GPU memory usage during the 
computation. 

 

An autoencoder [24] is a type of artificial neural network that is used in unsupervised learning to 
automatically learn features from the unlabeled data. A standard neural network is typically 
designed for a supervised learning task and includes several layers where each layer consists of 
an array of basic computational units called neurons, and the output of one neuron serves as an 
input to another. The first, input, layer takes as an input a multi-dimensional vector ( )ix
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representing an unlabeled example. The intermediate, hidden, layers are designed to propagate 
the signal from the input layer. The last, output, layer calculates the final vector of values ( )iz
corresponding to the class labels in a supervised learning setting. In the autoencoder, the output 
values are set to be equal to the input values, ( ) ( )i ix z= , and the algorithm is divided into two 
parts, the encoder and the decoder. In the encoder part, the algorithm maps the input to the 
hidden layer’s latent representation   y = s(Wx + b) , where ( )s x 	 is a sigmoid function:	

1( )
1 xs x
e−

=
+

. In the decoder part, the latent representation y is mapped to the output layer: 

( )z s W y b′ ′ ′= + . As a result,  z  is seen as a prediction of x , given y . The	weight	matrix,	 'W ,	of	the	
reverse	mapping	is	constrained	to	be	the	transpose	of	the	forward	mapping,	which	is	referred	to	as	tied	
weights	given	by	 ' TW W= . The	autoencoder	is	trained	to	minimize	an	error	metric	defined	as	the	cross-
entropy	of	reconstruction,	  LH (x, z), 	of	the	latent	features:	

  
LH (x, z) = − [xk log zk + (1− xk ) log(1− zk )] ,

k=1

d

∑  

where d  is the length of the feature vector. 

 

To prevent the hidden layer from simply learning the identity function and forcing it to discover 
more robust features, a DAE is introduced. A DAE is trained to recover the original input from 
its corrupted version [27]. The corrupted version is obtained by randomly selecting	 dn 	features	of	

each	 input	 vector	 ( )ix 	 and assigning them zero values. This stochastic process is set up by 

   !x ~ qD ( !x | x) , where   !x  is the corrupted input.  Even when the corrupted vectors are provided to 
the neural network, the reconstruction error is still computed on the original, uncorrupted, input. 
The optimal number of hidden layers and hidden units for the DAE in this approach is explored 
as a part of model optimization. The DAE is implemented using the Theano Python library [33], 
which supports NVidia CUDA. This implementation allows for fast training of the neural 
network layers with large numbers of nodes using NVidia GPUs. 

 

Model optimization 

The overall architecture of the DAE implemented in our approach consists of an input layer, an 
output layer, and one hidden layer. There are multiple parameters in this DAE architecture that 
can be optimized. The task of hyperparameter optimization is fairly unambiguous for supervised 
learning problems [63], where the data are labeled, and a neural network can be tuned to set its 
many parameters such that it achieves an optimal classification performance (e.g., measured by 
accuracy, f-measure, or other measures). However, in the case of unsupervised clustering where 
no labeled data are provided and the neural network parameters are optimized to minimize the 
reconstruction error, the impact of this error metric on clustering is not known a priori. To make 
this optimization a computationally feasible task, we focus on tuning the number of hidden units, 
which is expected to have the most significant impact on the model performance [64], given its 
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single hidden-layer architecture. The tuning is performed by adopting the ideas from Principal 
component analysis (PCA) [31]. 

 

PCA works by converting the initial set of features, which potentially correlate with each other, 
into linearly uncorrelated features (principal components), through an orthogonal transformation 
of the feature space.  It has been shown that PCA is a special case of the autoencoder where a 
single hidden layer is used, the transformation function in the hidden units is linear, and a 
squared error loss is used [28]. PCA offers an automated technique to select the first n  principal 
components required to capture a specified amount of variance in a dataset [34], i.e. in a linear 
autoencoder the principal components are simply the nodes in the hidden layer. The similarity 
between the two approaches leads us to test, if one can use PCA to approximate the number of 
hidden units required in an autoencoder to capture most of the data complexity in each dataset. 
As a result, we apply PCA immediately preceding DAE, using the original dataset as an input to 
PCA and producing, as an output, the number n  of principal components required to capture 
95% of the dataset variance (PCA for all datasets is shown in Sup. Fig. S2). The same data are 
then processed by DAE with the number of hidden units set to n . We then assess if this 
additional optimization stage to DAE improves the performance of our approach and call this 
new extension as Denoising Autoencoder With Neuronal approximation (DAWN). 

 

Since we focus only on the impact of the number of hidden units on the learning efficiency, the 
settings for all other parameters of the DAE are selected based on a recent work that used DAEs 
to learn important features in a breast cancer gene expression dataset [35]. Specifically, we set: 
(1) the learning rate to 0.05; (2) training time to 500 epochs, which has been reported to be 
sufficient for the reconstruction error to converge; (3) batch size to 20, to limit the number of 
batches for the larger datasets; and (4) corruption level to 0.1, which specifies that 10% of the 
input vector features are randomly set to zeroes. The number of hidden neurons estimated for 
each dataset are provided in Sup. Table S7. 

To generate cell clusters from the learnt features of DAWN, we use the Expectation-
Maximization (EM) clustering algorithm [30]. We choose this clustering method because it 
overcomes some of the main limitations of K-means, such as sensitivity to initial clustering, 
instance order, noise and the presence of outliers [23]. In addition, EM is a statistical-based 
clustering algorithm that can work with the clusters of arbitrary shapes and is expected to 
provide clustering results that are different to those ones of K-means, which is a distance-based 
algorithm and works best on the compact clusters. Finally, EM clustering can estimate the 
number of clusters in the dataset, while K-means requires the number of clusters to be specified 
as an input. These attributes make EM algorithm a good candidate, because we expect the latent 
features of DAWN to have specific distributions corresponding to different groups of cells, and 
we can also approximate the number of clusters. 

 

Comparative assessment of DAWN against existing feature learning approaches 

The assessment of the overall performance of our DUSC pipeline includes evaluating the 
performances of both, the DAWN method and EM clustering algorithm. To evaluate the 
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accuracy of feature learning by DAWN, we compare it against the four other feature learning 
methods: a stand-alone PCA, ICA, t-SNE, and SIMLR.  

 

PCA is widely used across many areas including scRNA-seq analysis to reduce the data 
complexity and to make the downstream analysis computationally more feasible. During the 
assessment stage, we set PCA algorithm to select the minimal number of principal components 
required to learn 95% of variance in the data. Independent component analysis (ICA) is another 
statistical method designed to separate a multivariate signal into additive subcomponents, which 
has been applied to a wide range of image analysis and signal processing tasks [36, 37]. 
Assuming that the scRNA-seq data can be represented as following a mixture of non-Gaussian 
distributions, ICA can potentially determine the individual independent components that best 
capture the cell type information in the transcriptomics data. ICA has been previously 
successfully applied to scRNA-seq data where changes in the transcriptome were resolved to an 
improved temporal resolution during cell differentiation [38]. However, both PCA and ICA 
make certain assumptions on the data structure: in addition to being linear methods, they are not 
designed to handle the considerable amount of noise present in the scRNA-seq data. Unlike 
PCA, the ICA algorithm cannot automatically choose the number of components required to 
learn a given amount of data variance. Hence, we manually set the number of components to the 
same number derived by the PCA method when it is required to learn 95% of the data variance. 

 

t-Distributed stochastic neighbor embedding (t-SNE) is a nonlinear feature learning technique 
specifically designed to map and visualize high-dimensional data into two-dimensional (2D) or 
three-dimensional (3D) spaces [16]. t-SNE is often used in scRNA-seq studies to visualize cell 
subpopulations in a heterogeneous population [39]. The technique is very efficient in capturing 
critical parts of the local structure of the high-dimensional data, while facing difficulties in 
preserving the global hierarchical structure of clusters [17]. Another potential drawback of t-SNE 
is the time and space complexities that are both quadratic in the number of samples. Thus, this 
method is typically applied to a smaller subset of highly variable gene features. When evaluating 
it against DAWN, we use t-SNE only for the feature learning. t-SNE is dependent on an 
important parameter, perplexity, which estimates the effective number of neighbors for each data 
point. Here, instead of setting it arbitrarily in the range of [5,50] , we calculate it precisely for 
each dataset based on Shannon entropy (discussed below). 

 

Single-cell interpretation via multi-kernel learning (SIMLR) is a recent state-of-the-art 
computational approach that performs the feature learning, clustering, and visualization of 
scRNA-seq data by learning a distance metric that best estimates the structure of the data [21]. 
The general form of the distance between cells i  and j  is expressed as a weighted combination 
of multiple kernels: 

  
D(i, j) = 2− 2 wl Kl (i, j)

l
∑ ,  
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where, lw  is the linear weight value, which represents the importance of each individual kernel 
( , )lK i j , and each kernel is a function of the expression values for cells i  and j . The similarity 

matrix ijS  is therefore a N N×  matrix where N  is the number of samples, capturing the 
pairwise expression-based similarities of cells: 

  
Sij = wl Kl (i, j)

l
∑ . 

In SIMLR, to reduce the effects of noise and dropouts in the data, a diffusion-based technique 
[40] is employed. However, this technique is computationally expensive and therefore can be 
only applied to small or medium size datasets (e.g., in a previous work, any dataset with a 
sample size greater than 3,000 did not use this technique [21]). Hence, the noise and dropouts 
effects remain present in the large datasets. Furthermore, the SIMLR framework uses K-means 
as its clustering algorithm and is affected by the previously discussed limitations.  While SIMLR 
has the capability to estimate the number of clusters, to compare DAWN with the best possible 
performance of SIMLR, we set the true number of clusters for each dataset as an input to 
SIMLR. Note that this information about the number of clusters is not provided to any other 
method. The PCA, ICA, and t-SNE algorithms were evaluated using the implementations in the 
Python scikit-learn library [41], while SIMLR was evaluated using its implementation as an R 
package. 

 

Evaluation protocol 

All five feature learning methods are evaluated by integrating each of them with one of the two 
clustering algorithms used in this work, K-means or EM. To do so, we use the latent features 
uncovered by each of the five methods as inputs to the two clustering algorithms. This setup also 
allows to comparatively assess the individual contributions towards the prediction accuracy by 
each of DUSC’s two components, DAWN and EM clustering. Indeed, one can first assess how 
much the addition of DAWN to K-means or EM can affect the clustering accuracy by comparing 
the performance with K-means and EM when using the default features. Second, one can 
determine if the EM-based hybrid clustering approach is more accurate than K-means based 
approach for each of the five feature learning methods (including DAWN). In total, we evaluate 
all 5x2=10 combinations of hybrid clustering approaches. 

 

Alternatively, to determine if the neuronal approximation implemented in DAWN improves a 
standard DAE, we compared the performance of DUSC pipeline with DAWN and with two DAE 
configurations. Although, the number of hidden units of a DAE can be set to any arbitrary value, 
we manually set it to 50 in the first configuration and 100 in the second one, making these 
configurations computationally feasible [35] (which we name as DAE-50 and DAE-100 for 
convenience).  

 

Finding the optimal number of clusters in a dataset is often considered an independent 
computational problem. Therefore, for the assessment of clustering accuracy, we set the expected 
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number of clusters to be the number of cell types originally discovered in each study. To 
establish the baseline, we applied KM and EM clustering on the original datasets with zero-value 
features filtered out, and the data being 10log transformed. The KM and EM methods are 
implemented using WEKA package [42]. 

 

After evaluating the performance of DUSC against other unsupervised methods, we next 
compare it against a state-of-the-art supervised learning approach. While a supervised learning 
method is unable to discover new cell types, it is expected to be more accurate in identifying the 
previously learned types that the algorithm has been trained on. We use the log-transformed data 
as an input and apply the multi-class Random Forest (RF) algorithm [43] implemented in 
WEKA, with a 10-fold cross validation protocol [44] that selects the best model with the highest 
accuracy. 

 

For each of the above evaluations, it is desirable to have a common evaluation metric that can 
handle multi-class datasets. Here, we use a simple accuracy measure ( Acc ), which can be 
calculated by comparing the predicted cell clusters with the known cell labels:  

  
Acc = TP +TN

TP +TN + FP + FN
,  

where TP  is the number of true positives, TN  is the number of true negatives, FP  is the number 
of false positives, and FN is the number of false negatives.  

 

In addition to the standard evaluation of the performance accuracy, the following three 
characteristics of the method’s performance are explored. First, we study performance of the 
methods as a function of data complexity. Each of the five datasets considered in this work 
varies with respect to the sample size distributions across different cell types, numbers of cell 
types, and cell type hierarchy. These three properties are expected to affect the complexity of 
cluster separation, prompting one to study the correlation between these properties and the 
clustering accuracy. To measure the distribution balance of samples across all cell types for each 
dataset we use normalized Shannon Entropy [18]: 

  
HNORM = − 1

log2 k
ci

n
log2

ci

ni=1

k

∑  

where n  is the total number of samples, k  is the number of cell types, and ic  is the number of 
samples in cell type i . Thus,  HNORM 	 approaches 0  if the dataset is unbalanced and 1 if it is 
balanced. 

 

Second, since the learned latent features are designed to capture the complexity of each dataset 
and create its reduced representation, one can assess the data compression performance of 
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DAWN. The data compression ratio (CR ) is defined as a ratio between the sizes of the original 
uncompressed and compressed datasets. A normalized value that allows interpreting the 
compression performance more intuitively in terms of feature space compressed ( FSC ), is 
defined as: 

  
FSC = 1− 1

CR
.  

FSC  value approaching 1 implies that the original dataset has been compressed to a very small 
feature set size. 

 

Finally, to determine if DUSC can improve the cell type cluster visualization, we generate two-
dimensional embeddings by applying t-SNE to the features of the four previously considered 
feature learning methods as well as features generated by DAWN. In our qualitative assessment 
of the visualizations, we expect to see the clusters that are well-separated and compact (i.e., the 
intra-cluster distances are much smaller than inter-cluster distances), and the instances of 
incorrect clustering are rare. 

 

Results 
Datasets 

For the assessment of our approach, we chose five single-cell RNA-seq datasets (Fig. 1): 
Embryonic Dataset-1 (E1), Embryonic Dataset-2 (E2), Sensory Neurons (SN), Mouse Cortex 
(MC), and Malignant Melanoma (MM) [46-50]. These datasets were selected to represent areas 
where scRNA-seq technology had significant impact [51]. The areas included embryonic 
development, cellular heterogeneity in the nervous system and cellular heterogeneity in a disease 
(cancer). The datasets originated from a model organism (mouse) and human. In total, 8,055 
single-cell samples were analyzed (Fig. 1a). All datasets were downloaded in a quantified format 
from publicly available sources listed in the studies [52, 53, 54, 55]. To test the scalability and 
robustness of the proposed method, the datasets were chosen such that they exhibited variability 
across multiple parameters: (a) number of sequenced cells (from 56 cells to 4,139 cells), (b) 
number of genes quantified (from ~19,000 to ~41,000 genes), (c) different sequencing and 
quantification pipelines, (d) cellular heterogeneity during development or disease, and (e) 
varying cellular hierarchy and number of cellular types (with 1 to 3 levels of hierarchy and 5 to 
12 cell types/subtypes). Many of the cellular types include subpopulations corresponding to the 
cellular subtypes (Fig. 1b). Specifically, the cellular subtypes in SN and MM datasets are 
hierarchically organized; SN has a three-level hierarchy, while MM has two levels. The 
distributions of number of genes quantified per cell varied significantly: for E1 and E2, the 
distribution was centered around ~13,000 genes, and for SN, MC and MM the distributions were 
centered around ~4,000 genes (Sup. Fig. S1).  Using the normalized Shannon entropy,  HNORM , 
we found that the distribution balance of samples across cell types also varied, with the first level 
of SN being the most balanced and the second level of MM being the most unbalanced sets, 
correspondingly (see also Effects of data balance on accuracy subsection). 
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Comparison with clustering and classification algorithms 

We first evaluated the overall performance of our clustering approach, DUSC, and its most 
critical part, a new feature learning method DAWN. To test if DUSC could improve the 
discovery of cell type clusters in scRNA-seq data, we compared the clustering of our hybrid 
approach with (i) clustering that had no feature selection, and (ii) the same clustering methods 
that now employed the classical and state-of-the-art unsupervised feature learning methods. We 
expected that clustering with no feature selection would perform the worst, thus establishing a 
baseline for comparative analysis. We also assessed the classification accuracy of Random 
Forest (RF), a state-of-the-art supervised learning algorithm. The latter approach represents the 
best-case scenario when all cell types are known.  

 

For E1 dataset, all methods except KM recovered the clusters with similarly high accuracies. As 
expected, the small sample size and a few cell types to consider made the clustering a simpler 
task (Fig. 2a and Sup. Table S2).  When processing E2, DUSC had the highest accuracy among 
all methods, and while there was only small accuracy drop for RF, both KM and EM experienced 
significant losses in accuracy. The drop in performance on E2 dataset, which had the same 
number of cell types as E1, could be explained by the fact that both the sample size and feature 
size approximately doubled, therefore quadrupling the problem size and making it a harder 
computational challenge. For the main hierarchy level in SN (SN-i), the sample size was 731, 
making it a larger search space, but with only five major cell types. Here, DUSC performed well 
(Acc=0.9) and was closely followed by RF, while KM and EM performed poorly (accuracies 
were 0.88, 0.53, and 0.62 correspondingly). For the second level of SN subtypes (SN-ii), the 
sample size was still 731, but the number of cell subtypes increased to 9, thus resulting in a 
smaller sample size for each cell subtype (Fig. 1b) and smaller feature differences between the 
subtypes. As a result, it was not surprising that all methods experienced a drop in their 
performance, with RF performing best (Acc=0.74) and DUSC being the first among the 
unsupervised methods, closely behind RF (Acc=0.69). When considering the lowest level of SN, 
SN-iii, with the number of subtypes being 12 and cell cluster sizes ranging from 12 to 233, we 
noticed that RF and DUSC both have similar accuracy (Acc=0.71), while KM and EM still 
performed poorly (Acc=0.46 and 0.40, correspondingly). We note that for all evaluations based 
on the subtypes of either SN-i (i.e., SN-ii and SN-iii levels) or MM-i (i.e., MM-ii level), we did 
not filter out the major cell clusters from the higher levels to recursively process sub-clusters of 
the lower levels. This is because, the cellular hierarchy was not known a priori when analyzing a 
novel dataset and its structure could only be discovered after the recursive analysis of sub-
clusters that, in turn, required multiple iterations. Here, we generated clusters only through a 
single pass of our processing pipeline. 

 

The size of the next dataset, MC, was several folds greater than of the previous two, and in this 
case, RF had the best accuracy (Acc=0.92) and our unsupervised method DUSC had a 
significantly higher accuracy (Acc=0.81) than KM and EM (Acc=0.54 and 0.57, 
correspondingly). Lastly, in the final dataset, MM, we initially tried to find only two clusters of 
cancerous and non-cancerous cells, and this binary problem with two very different cell types 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511626doi: bioRxiv preprint 

https://doi.org/10.1101/511626
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
	

and approximately the same cluster sizes was unsurprisingly an easy challenge. Thus, all 
methods perform very well with the accuracies above 0.95, but DUSC still lead the unsupervised 
algorithms with the same accuracy as RF (Acc=0.99). When the subtypes of non-cancerous cells 
had to be considered as separate groups along with cancerous cells (MM-ii), the complexity of 
the problem increased, and all unsupervised algorithms experienced a significant drop in 
performance when compared to RF (Acc=0.93), with DUSC still achieving the best result 
(Acc=0.64). 

 

In summary, the assessment on all four datasets demonstrated that DUSC performed better than 
the KM and EM clustering algorithms and in many instances by large margins. Even more 
importantly, DUSC had a comparable performance with Random Forest supervised approach in 
many cases, and in some cases even outperformed it. 

 

Effects of data balance on accuracy 

The data balance metric introduced in this work allowed us to find how the data complexity and 
imbalance affected the performance of DUSC (Fig. 2b). Indeed, for all unsupervised methods, 
including DUSC, the clustering accuracy was impacted by the data complexity (Sup. Fig. S3 and 
Sup. Table S3). This was especially evident in the cases of SN-ii and MM-ii datasets, where the 
number of cell types increased compared to the original datasets, SN-i and MM-i, respectively. 
The higher number of clusters, in turn, lead to the higher variation in cluster sizes, and in the 
same time, lower number of differentiating features. Here, we observed that both data balance 
and clustering accuracy decreased when moving down the cell type hierarchy in SN and MM 
datasets.   

 

Feature compression 

To study the information content of the initially sparse feature space, another metric, feature 
space compressed (FSC), was used for DUSC (Fig. 2c). With the combination of the pre-
processing stage and the neuronal approximation, DAWN compressed at least 0.994 (99.4%) of 
the original feature space reaching 0.998 (99.8%) for four out of five datasets (Sup. Table S7). 
The maximum compression occurred for E2, where 41,388 of the original features were cleaned 
and compressed to just three latent features resulting in FSC of 99.99%. The data compression 
capacity of DAWN could also be a useful tool for storing cell-type critical information in large 
scRNA-seq studies. For instance, the size of an average dataset obtained from a single study 
could be reduced from 1 gigabyte to only 5 megabytes using DAWN. We note that the highly 
efficient compression occurred simultaneously when improving the clustering performance. 

 

Assessment of unsupervised feature learning algorithms and their impact on clustering  

We next compared the performance of DUSC against the four feature learning methods, SIMLR, 
PCA, ICA and t-SNE. Since DUSC is a hybrid approach that combined a new feature learning 
method (DAWN) and a clustering algorithm (EM), for a fair comparison, we also paired the 
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other four feature learning methods with EM clustering method (Fig. 2d and Sup. Table S4).  
The results showed that the previously observed effects of the sample size, number of cell 
clusters, and number of important features on DAWN’s performance also affected the other four 
methods. For the easier datasets w.r.t the above criteria, such as E1 and MM-i, all the algorithms 
had the accuracy greater than 0.7, with DUSC reaching significantly higher accuracies of 0.95 
and 0.99, respectively. Interestingly, when more complex problems were considered, i.e., E2 and 
MC, we noticed a significant performance drop for all algorithms; however when compared to 
SIMLR, the best performing method of the four currently existing ones, DUSC still clustered E2 
more accurately (Acc=0.96) and also had a 14% higher accuracy (Acc=0.81) on MC dataset. We 
also recall that SIMLR was used in a less challenging setup when the true number of clusters was 
provided as an input. Overall, DUSC had the better accuracy across all datasets, compared to all 
other unsupervised feature learning algorithms. 

 

Assessment of the contributing factors in the hybrid approach 

We then hypothesized that between the feature learning (DAWN) and clustering (EM) 
components of our approach, DAWN was contributing more to the clustering accuracy. To 
determine the impact of DAWN, we paired it as well as the four other feature learning methods 
with K-Means clustering. We found that DAWN either exceeded the clustering accuracy of 
SIMLR, (for E2, SN-i, MC and MM-i) or closely matched it in the other cases (Fig. 2e and Sup. 
Table S5). The other methods, PCA, ICA and t-SNE had significantly lower accuracies for the 
majority of the tasks. The findings suggested that DAWN provided the key contribution towards 
improving the clustering accuracy. A consistent trend that was observed across all methods 
(Figs. 2d,e) was that for SN and MM datasets, the accuracy decreased as the feature learning and 
clustering methods traversed the cell type hierarchies. The smaller differences in the numbers of 
uniquely expressed genes together with a larger set of common genes across the cellular 
subtypes, compared to the main cellular types, made it a more challenging problem for the 
feature learning and clustering. 

 

Assessment of neuronal approximation 

To further assess the benefits of our novel neuronal approximation in DAWN, we compared it 
with the standard DAE. We created two configurations of the standard DAE, by choosing the 
number for the hidden units to be 50 and 100 respectively. All other aspects of the DUSC 
approach were kept intact, and the end-to-end analysis was repeated for DAE-50 and DAE-100. 
The clustering results showed that DAWN outperformed the standard DAE configurations in six 
cases and had extremely similar performance in the remaining two cases (Fig. 2f and Sup. Table 
S8). This analysis showed that the automated technique to set the number of hidden units was 
superior to the manual value selection for this important parameter. The results also showed the 
capability of DUSC to be a fully automated clustering approach, which can be applied to small 
datasets (E1, 56 cells) as well as large datasets (MM, 4,139 cells). 

 

Cluster embedding and visualization 
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To illustrate the capacity of our approach to preserve the local structure of the data, we generated 
two-dimensional embeddings for the two largest datasets, MC and MM. Specifically, we applied 
the t-Distributed stochastic neighbor embedding (t-SNE) method to the latent features generated 
by DAWN, and compared it to the four other feature learning methods.  We considered the MC 
dataset first, because it was a complex dataset with 3,005 cells and 7 cell types (Fig. 3a).  When 
comparing the embeddings obtained from the original data and after applying the five feature 
learning methods, the embedding produced from the DAWN-generated latent features showed 
cells clusters that were the most clearly separated and had smooth elliptical boundaries.  

 

To determine if the biological relationship between the clusters of related cell types could be 
reflected through the spatial relationship in the 2D embedding, we next created a hierarchical 
network overlay on the DAWN embedding using the cell type dendrogram obtained from the 
original study (Fig. 3b). The network topology revealed immediate connections between the 
clusters corresponding to the more similar cellular types. The more dissimilar clusters were not 
immediately connected; instead they were connected through the hierarchical nodes and edges in 
the network, as expected. The obtained network overlay indicated that DAWN preserved the 
relationships between the cell types during the learning process. The 20 latent features learned by 
DAWN on the MC dataset were then analyzed using a heatmap representation (Fig. 3c), where 
the rows represent individual cells, and columns represent the latent features. The heatmap, 
where the cells were grouped by their types revealed the “block” structural patterns formed by 
the groups of features, showing that the latent features learned by our method were capable of 
recovering the intrinsic structure of the original data. The heatmap also shows the orchestrated 
work of hidden neurons to learn the complementary patterns. 

 

Finally, we obtained the two-dimensional embeddings for the MM dataset (Fig. 3d), another 
complex dataset with a high variation in the cluster size (52-2,068 cells). We found that DAWN 
was the only feature learning method capable of producing compact and well-separated clusters, 
where the two major cell types, i.e., cancerous and non-cancerous cells, were separated with no 
overlap. The sub-types of non-cancerous cells were also well-separated, with the only exception 
being natural killer (NK) cells (52 cells), which partially overlapped with the largest cell cluster 
of T cells (2,068 cells). This overlap could be explained by the disproportionately small size of 
the NK cluster and the substantial similarity between NK cells and T cells [56]. 

 

Discussion 
In this work, we have presented DUSC, a new hybrid approach for accurate clustering of single-
cell transcriptomics data. Rapid progress in the development of scRNA-seq technologies urges 
the advancement of accurate methods for analyzing the single-cell transcriptomics data [57]. One 
of the first tasks for such analysis is extracting the common patterns shared between cell 
populations by clustering the cells together based on their expression profiles. The process of 
clustering, ideally, can help in answering two questions: (1) what is the biological reason that the 
cells are grouped together (e.g., a shared cellular type), and (2) what are the biological 
constituents found in the scRNA-seq data that determine the similarity between the cells from the 
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same cluster (e.g., expression values for a set of the overexpressed genes). An important 
advantage of the clustering methods is their power to extract novel, previously unseen similarity 
patterns, which leads to the discovery of new cell types [58], spatial cellular 
compartmentalization in disease and healthy tissues [59], subpopulations of cells from different 
developmental stages [60], and other cellular states. However, the clustering accuracy, in spite of 
being continuously tackled by the recent methods, has remained substantially lower when 
compared to the supervised learning, or classification, methods. Classification methods, in turn, 
are designed to handle data from the cellular subpopulations whose representatives have been 
used during the training stage, and therefore cannot identify novel subpopulations. Another 
question that has not been fully addressed is the robustness of the class definition based on the 
scRNA-seq data: Does a class defined by a certain supervised classifier depend on other 
parameters, such as type of experimental protocol, time of the day, developmental stage, or cell 
location in the tissue?  

 

DUSC improves the clustering accuracy by (i) leveraging a new deep learning architecture, 
DAWN, which is resilient to the inherent noise in the single-cell data and generates the data 
representation with automated feature learning, thus efficiently capturing structural patterns of 
the data, and (ii) pairing this reduced representation with the model-based EM clustering. In 
particular, DUSC generates more accurate clusters compared to the clustering algorithms alone 
and is better than four classical and state-of-the-art feature learning methods integrated with the 
clustering algorithms. Furthermore, our method achieves a comparable performance with a state-
of-the-art supervised learning approach. The novel neuronal approximation implemented in the 
denoising autoencoder simplifies the optimization process for the most important hyper-
parameter in the deep architecture— the number of hidden neurons. The simplicity of using 
DAWN is thus comparable to PCA, and the utility of the newly learnt features is illustrated by 
the better visualization of large scRNA-seq datasets when using a two-dimensional embedding. 
Lastly, our multi-tiered assessment reveals the dependence of clustering performance on the 
dataset complexity, as defined by an information-theoretic metric, which is due to the size 
balance of the subpopulations in the dataset.  

 

Our next step is to improve the scalability of DUSC for the very large datasets containing 
100,000+ cells, which are highly heterogeneous and may include a certain cell type hierarchy 
[61]. We also plan to evaluate if a deeper architecture can improve the feature learning on the 
massive datasets. An even more challenging task is to improve feature learning for the highly 
imbalanced data, e.g., to be able to detect cell subpopulations of disproportionally small sizes, 
which would either be absorbed by a larger cluster or identified as noise and removed from the 
analysis by the traditional methods. We have seen this scenario in the MM dataset, the non-
cancerous subtypes vary in sample size from 52 cells to 2,068 cells, which affects the 
performance of all considered methods. Another interesting application of DUSC is to analyze 
time-sensitive scRNA-seq data of cell differentiation [62]. In summary, we believe that DUSC 
will provide life scientists and clinical researchers a more accurate tool for single-cell data 
analysis, ultimately leading to deeper insights in our understanding of the cellular atlas of living 
organisms, as well as improved patient diagnostics treatment. DUSC is implemented as an open-
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source tool freely available to researchers through GitHub: 
https://github.com/KorkinLab/DUSC	. 
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Figures 

 
Figure 1. Overview of DUSC approach.  (a) Basic stages of the deep clustering method and 
overview of the five datasets it was applied to. Each of the five datasets was processed using a 
different RNA-seq quantification tool, with the data quantified in different expression units. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/511626doi: bioRxiv preprint 

https://doi.org/10.1101/511626
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
	

During the evaluation, our approach was compared against the standard clustering methods as 
well as their enhanced versions using four feature learning approaches. (b) The detailed 
description of the five datasets: Embryonic Dataset-1 (E1), Embryonic Dataset-2 (E2), Sensory 
Neurons (SN), Mouse Cortex (MC), and Malignant Melanoma (MM), their multi-level 
hierarchical organizations, and subpopulation distribution. The total number of cell samples is 
depicted in the center of each sunburst chart. 
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Figure 2. Comparative assessment of DUSC.  The methods considered in this figure include: 
K-means (KM), Expectation-Maximization (EM), Random Forest (RF), Principle Component 
Analysis (PCA), Independent Component Analysis (ICA), t-Distributed stochastic neighbor 
embedding (t-SNE), Single-cell Interpretation via Multikernel Learning (SIMLR) and Deep 
Unsupervised Single-cell Clustering (DUSC). The datasets used in the figure include Embryonic 
Dataset-1 (E1), Embryonic Dataset-2 (E2), Sensory Neurons (SN-i, SN-ii, and SN-iii correspond 
to the subpopulations at the first, second, and third levels of hierarchy, respectively), Mouse 
Cortex (MC), and Malignant Melanoma (MM-i and MM-ii correspond to the subpopulations at 
the first and second levels of hierarchy, respectively).   (a) Overall performance of DUSC in 
comparison with two clustering approaches, KM and EM, and a state-of-the-art supervised 
learning approach, RF. DUSC outperforms both clustering methods, and its accuracy is 
comparable with that of the supervised classifier; (b) The performance accuracy by DUSC is 
affected by the distribution balance of the subpopulations forming the dataset: applying DUSC to 
the more unbalanced dataset result in the lower accuracy and vice versa (c) feature space 
compressed (FSC) calculated for all five datasets; (d) The performance of EM clustering 
combined with DAWN and other feature learning methods. DAWN shows a significantly greater 
improvement compared to the other methods; (e) The performance of K-means clustering 
combined with DAWN and other feature learning methods. Similar to (d), DAWN shows a 
superior improvement of the stand-alone clustering approach; (f) The clustering performance of 
DUSC using DAWN, versus using two manual configurations of the standard DAE (DAE-50 
and DAE-100). DAWN performs significantly better than the manual configurations and with 
fewer hidden neurons. 
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Figure 3. Analysis of clustering performances using visualization approaches.  (а) Two-
dimensional embedding of the Mouse Cortex (MC) dataset in the original feature space 
compared with the embeddings of the same dataset in the feature space generated by DAWN and 
four other feature learning methods, Principle Component Analysis (PCA), Independent 
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Component Analysis (ICA), t-Distributed stochastic neighbor embedding (t-SNE), and Single-
cell Interpretation via Multikernel Learning (SIMLR). (b) Hierarchical clustering overlay (top) 
constructed from the two-dimensional embedding of the DAWN feature space. The hierarchy is 
created based on the proximities of mass centers of the obtained clusters. The obtained hierarchy 
is compared to that one of biological cell types (bottom) extracted from the original study [49]. 
The leaf nodes correspond to the original cell types, while the root and internal nodes correspond 
to the three other levels obtained during the agglomerative hierarchy.  The two-dimensional 
embedding of the DAWN feature space can recover all but one of defined relationships between 
the related cell types extracted from the literature. (c) The heatmap of the 20 latent features 
generated by DAWN on the MC dataset, showing the block structure of the expression profiles 
of the individual cells grouped by the cell types (bottom). The values of the latent features 
corresponding to the weights in the hidden layer are distributed in [-3: 3] range (top). (d) Two-
dimensional embedding of the Malignant Melanoma (MM) dataset in the original feature space 
compared with the embeddings of the same dataset in the feature spaces generated by DAWN 
and four other feature learning methods, PCA, ICA, t-SNE, and SIMLR.  
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