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Supporting Information Text

1. Calculations for simplified models

h

l
w

x

Fig. S1. Geometrical parameters of Lockhart-Ortega models: height h and length l of the cell, thickness w of the walls. The two faces orthogonal to the x axis are refered to
as base faces while the four other faces are refered to as lateral faces.

Lockhart-Ortega models. The equations of cell wall elongation (Eq. (1) in main text) and of water uptake (Eq. 2 in main text)
can be linked thanks to the geometry of the cell and the mechanical equilibrium. See Fig. S1 for the geometrical description.

First, the cell volume is V = h2l and therefore we find that the relative growth rate of the cell is equal to the strain rate of
the walls:

γ̇ = 1
V

dV
dt = 1

l

dl
dt = ε̇. [S1]

Then, we consider the balance of forces on the base faces (see Fig. S1 for the nomenclature); their area is h× h and they are
submitted to a total pressure force Ph2 in the direction of the main axis of the cell, balanced by the tension from the lateral
walls. Let σ be the common (scalar) stress in the walls; the wall thickness is w so their cross section is h× w and therefore
they each exert a force σhw on the base faces. To be coherent with the bidimensional model we propose, we consider that the
top and bottom lateral faces bear no stress and the balance of forces leads to

Ph2 = 2σhw

and therefore the balance of forces leads to P = 2w
h
σ. Finally, thanks to this equation and the identity Eq. (S1), the

Lockhart-Ortega model (eqs. (1), (3) in main text) is reduced to the following differential equation for P :

1
Ē

dP
dt + φw(P − PY )+ = φa

(
PM − P

)
, [S2]

where φa = ALa

V
has been introduced in the main text; in order to keep the calculations as simple as possible, Lockhart made

the assumption that the area of the base faces is negligeable compared to the area A = 4hl of the lateral faces (see Fig. S1).
Note that the cell volume is V = h2l and therefore the ratio A/V = 4/h is constant.

Let’s study the transient behaviour of equation Eq. (S2), from an initial condition P (t = 0) = 0:

• Elastic regime: first, P is below PY and the plastic rate is zero; Eq. (S2) becomes

λa
dP
dt + P = PM ,

where λa = 1
φaĒ

is a characteristic time. The solution is

P = PM (1− exp(−t/λa)).

The relative growth rate is
γ̇ = φaPM exp(−t/λa).

• Plastic regime: the plastic regime starts when P = PY , at t0 = λa log
(

PM

PM−PY

)
. The equation Eq. (S2) becomes:

1
Ē

dP
dt + (φa + φw)P = φaPM + φwPY ,

and equivalently
λaw

dP
dt + P = αaPM + (1− αa)PY ,
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where λaw = 1
(φa+φw)Ē is a characteristic time. The solution is

P = αaPM + (1− αa)PY − αa(PM − PY ) exp((t0 − t)/λaw), [S3]

γ̇ = φaφw

φa + φw
(PM − PY )− (φa)2

φa + φw
(PM − PY ) exp((t0 − t)/λaw). [S4]

The stationnary solution is

P ∗ = αaPM + (1− αa)PY [S5]

γ̇∗ = φaφw

φa + φw
(PM − PY ). [S6]

Single polygonal cell.

P

n1 e1

y
π/n

vertex v
n2e2

x

R

σ

We consider a regular convex polygon of radius R with n edges that represents a cell.

Mechanical equilibrium. Let σ be the stress in the walls and P the pressure inside the cell; the outside pressure is set to zero.
The length of the edges is 2R sin(π/n), and the walls are given a height h and a thickness w; therefore the stresses are exerted
on a surface hw; the contribution of pressure on vertex v is 1

2P2hR sin(π/n)(n1 + n2). Therefore, the balance of forces on
vertex v writes:

1
2P2hR sin(π/n)(n1 + n2) + σhw(e1 + e2) = 0.

The normal vectors are
n1 = (− sin(π/n), cos(π/n)) and n2 = (sin(π/n), cos(π/n)).

The tangent vectors are
e1 = (− cos(π/n),− sin(π/n)) and e2 = (cos(π/n),− sin(π/n)).

By symetry, the x component of the resulting force is zero; the projection of the balance of forces on y axis yields

2PhR sin(π/n) cos(π/n)− 2σhw sin(π/n) = 0,

and
P = w

R cos(π/n)σ. [S7]

When n→∞, cos(π/n)→ 1 and we recover the Laplace law.

Flux equation. The surface of the polygon is

Sn = n× 2R sin(π/n)R cos(π/n)/2 = R2n sin(π/n) cos(π/n).

The volume of the cell is V = Snh, so the volume variation is

dV
dt = 2hRdR

dt n sin(π/n) cos(π/n).
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The perimeter of the polygon is n× 2R sin(π/n) so the lateral area of the cell is

A = 2nhR sin(π/n).

Note that the ratio A/V is not constant:
A

V
= 2
R cos(π/n) .

Finally, the flux equation writes

2hRdR
dt n sin(π/n) cos(π/n) = n2hR sin(π/n)L(PM − P ),

which yields
dR
dt = L

cos(π/n) (PM − P ) [S8]

Wall rheology. Let εe be the elastic deformation of the walls; it is related to the stress by the constitutive equation σ = Eεe

where E is the elastic modulus. The length of the edges is l = 2R sin(π/n) and therefore the strain rate of the edges is
1
l

dl
dt = 1

R
dR
dt . The rheological behaviour of the walls is given by

1
R

dR
dt = dεe

dt + ΦwEmax(0, εe − εY ), [S9]

or equivalently
1
R

dR
dt = 1

E

dσ
dt + Φw max(0, σ − σY ), [S10]

where εY (resp. σY ) is a yield elastic deformation (resp. stress).

Numerical results. The problem to solve is reduced to a set of two differential equations. It is numerically solved with the
odeint routine from the python library scipy.

We study the growth of a hexagonal cell (n = 6) growing from an initial state where the elastic deformation of the walls is
set to the threshold value, in order to bypass the pure elastic regime; computations are run over a long time scale. We want to
study how this models compares to Lockhart-Ortega when the relative importance of fluxes and wall synthesis varies; to this
end, we run three simulations with αa = 0.1, 0.5, 0.9. Let R0 = 10µm be the initial radius of the cell, then PY = w

R0 cos(π/6)Eε
Y

is a representative value for the yield turgor of a hexagonal cell. The value εY = 0.1 is chosen accordingly to experimental
observations where wall deformations can be of the order of 10%; then we choose E such that PY = 0.5 MPa, which sets an
order of magnitude for the initial turgor of the cell, close to observed experimental data. We choose PM = 0.7 MPa so that it
is above PY . Finally, we can use the Lockhart’s prediction Eq. (S6) as an order of magnitude of the relative growth rate; we
choose γ̇∗ = 2% · h−1. Then, a given value of αa (evaluated with the initial area of the cell) sets a unique value of La and φw.

At the onset of the simulation, walls start to extend irreversibly and plastic growth occurs. Fig. S2a,c shows that the volume
increases faster for large values of αa, although we have chosen the parameters so that the Lockhart model predicts a constant
and common value of γ̇. Fig. S2b shows that P is initially close to Lockhart predictions P ∗ but decreases fastly to zero; the
fast decrease of P coincides with peaks of γ̇ (Fig. S2c) above the value γ̇∗ with a higher peak for larger values of αa; the elastic
deformation εe (Fig. S2d)is not constant either, with a large peak above the Lockhart-Ortega prediction for αa = 0.9. For all
values of αa, εe converges toward the threshold εY .

Two-cells model. The geometry and notations of the two-cells model is recalled in Fig. S3. Gathering the flux equation (Eq. 8
from main text) and the wall mechanics equation (Eq. 1 from main text) with dP

dt = 0, we get

φa(PM − P0) + φs

2 (P1 − P0)− φw(P0 − PY0 )+ = 0 [S11]

φa(PM − P1)− φs

2 (P1 − P0)− φw(P1 − PY1 )+ = 0. [S12]

First, we assume that both cells are growing (Pi > PYi , i = 0, 1).

First regime: Pi > PYi , i = 0, 1. Adding Eq. (S11) and Eq. (S12) we get:

P = αaPM + (1− αa)PY , [S13]

where αa = φa

φa + φw
, P = P0 + P1

2 . With Eq. 1 from main text, we get

γ̇ = φaφw

φa + φw
(PM − PY ), [S14]

where γ̇ = γ̇0+γ̇1
2 Therefore, the gathering of two cells behaves the same as one cell if one considers the mean values.
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Fig. S2. Growth of a single hexagonal cell for three different values of αa: time evolution of volume (inset: ratio area/volume) (a), turgor (b), relative growth rate (c), and elastic
deformation of the walls (d). The dashed lines correspond to the solution of the Lockhart model; note that the chosen sets of parameters lead to the constant and equal value
γ̇∗ = 2% · h−1, and to the same evolution of volume.

Then, we examine the heterogeneities in turgor and growth rate. Substracting Eq. (S11) to Eq. (S12), we get

∆P = φw

φa + φs + φw
∆PY .

Let
αs = φs

φs + φa
.

Then the previous expression becomes

∆P = (1− αa)(1− αs)
1− αs + αaαs

∆PY . [S15]

As (1− αa)(1− αs) = 1− αa − αs + αaαs < 1− αs + αaαs, we find that turgor difference ∆P cannot exceed the value ∆PY .
When αs = 0 (symplasmic fluxes negligeable with respect to apoplasmic ones), then ∆P = (1 − αa)∆PY ; when αs > 0,
symplasmic fluxes tend to reduce the turgor heterogeneity between cells.

With Eq. 7 from main text we get then

∆γ̇ = (φa + φs)φw
φa + φs + φw

∆PY , [S16]

where ∆γ̇ = γ̇0−γ̇1
2 . Note that this expression is valid iff P1 > PY1 or equivalently γ̇1 > 0. The limit γ̇1 = 0 corresponds to the

situation where cell 0 is growing in such a way that it prevents cell 1 to grow because of the symplasmic fluxes between them.
We examine how this situation can occur depending on the values of the sumplasmic conductivity φs and the other parameters.
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Fig. S3. Two cells model: symplasmic flows (dark blue arrows) occur through the contact surface A01; apoplasmic flows (light blue arrows) occur through the surfaces A0 and
A1. Growth is restricted to the green edges: cell 0 (in dark green) has stiffer walls that cell 1 (in light green).
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We find that

P1 > PY1 ⇐⇒
φa + φs

φa + φs + φw
∆PY

PM − PY
<

φa

φa + φw

⇐⇒ αa

1− (1− αs)αa ρ < αa

⇐⇒ αs <
1− ρ

1− αa .

For instance, PY0 = 0.25 MPa, PY1 = 0.5 MPa, and PM = 0.625 MPa yields ρ = 0.5. The hypothesis of this study
(PY0 < PY1 < PM ) corresponds to the condition ρ ∈ [0, 1]. Note that if αa > ρ, then 1−ρ

1−αa > 1, and the condition is verified
whatever the value of αs; if αs = 1 − ρ, the condition is equivalent to αa > 0, which is also always verified. Fig. S3a)
recapitulates the regions of the parameters space αa × αs where the condition is verified, for different values of ρ. The size of
the region γ̇1 = 0 increases as ρ gets closer to 1.

Second regime: P0 > PY0 and P1 < PY1 . In this case, eqs. Eq. (S11) and Eq. (S12) turn into

φa(PM − P0) + φs

2 (P1 − P0)− φw(P0 − PY0 ) = 0 [S17]

φa(PM − P1)− φs

2 (P1 − P0) = 0. [S18]

Eq. (S18) leads to
P1 = (1− α̃s)PM + α̃sP0, [S19]

where α̃s = φs

2φa+φs . Adding eqs. Eq. (S17) and Eq. (S18) leads to

P0(φa + φw) = 2φaPM + φwPY0 − φa((1− α̃s)PM + α̃sP0),

then,
P0(φa(1 + α̃s) + φw) = φa(1 + α̃s)PM + φwPY0 ,

and finally
P0 = αasPM + (1− αas)PY0 , [S20]

where
αas = φas

φas + φw
and φas = φa(1 + α̃s).

Hence, thanks to the symplasmic fluxes from its neighbour cell 1, cell 0 benefits from an enhanced access to the apoplasmic
fluxes by a factor φas/φa = 1 + α̃s. Then, from Eq. 1 in main text, the relative growth rate of cell 0 is

γ̇0 = φasφw

φas + φw
(PM − PY0 ). [S21]

By hypothesis, the growth rate of cell 1 is zero, and we can compute the heterogeneity in turgor: from Eq. (S19), we find that

∆P = 1− α̃s
2 (PM − P0),

and hence
∆P = 1

2(1− α̃s)(1− αas)(PM − PY0 ). [S22]

2. Numerical resolution of the 2D multicellular model

Structure of the mathematical problem. Thanks to the geometrical constraint of uni-directional growth, the Lockhart-Ortega
is very simple to resolve. The identity between the relative growth rate of the cell and the strain rate of the walls allows to
couple the equation that describes fluxes, and the equation that describes walls synthesis. Then the stress in the walls and the
pressure inside the cell are linked by the mechanical equilibrium. Finally there is only one independent variable (pressure for
instance) and the model can be solved analytically.

Conversely, in the bidimensionnal model we propose, the properties of a given wall (elongation rate and elastic deformation)
cannot be directly linked to the properties of the adjacent cells (growth rate and pressure). Hence a new strategy has to be
developped. First, we emphasize the strong coupling between fluxes and mechanics: the motion of the vertices is prescribed by
the mechanical equilibrium (Eq. 11 from main text) between pressure forces and elastic forces; meanwhile, a displacement
of the vertices can cause a variation of volume of several cells, which has to be balanced by water fluxes (Eq. 10 from main
text); water fluxes are limited by the finite permeability of the walls, which sets a constraint on possible variations of volume.
Similarly, any variation in the length of the walls leads to a modification of their elastic deformation (Eq. 7 from main text).
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Another way to understand this problem is to consider it as the minimization of mechanical energy (mechanical equilibrium
Eq. 11 from main text) under two constraints on the position of the vertices, through the volumes of the cells (Eq. 10 from
main text) and the lengths of the edges (Eq. 7 from main text). This kind of problem is often encountered in mechanics, e.g
solid friction, contact mechanics, or incompressible fluid mechanics; a powerfull theoritical and practical tool to solve this is the
method of lagrangian multipliers. For instance, in the context of incompressible fluid mechanics, the constraint of volume
conservation is relaxed by pressure that acts as a lagragian multiplier. Physically, the pressure adjusts itself so that both the
constraint and the mechanical equilibrium are satisfied. The model we propose exhibits the same structure, as pressure will
adjust to both fluxes and mechanical constraints. However, the system here is discrete, and the flux equation (Eq. 10 in main
text) is linear with respect to pressure, so it can be reduced to a linear system. We will take advantage of this for the resolution
of the model.

Resolution algorithm.

Volumes and lengths as functions of the positions of the vertices. First, we express volumes and lengths as functions of
the positions of the vertices. Let Nv be the number of vertices and X ∈ R2Nv the vector of the positions of all the vertices.
The volume of a cell i is Vi = Sih where Si is its surface. As cells are non intersecting polygons, their signed surface is given by
the general formula

Si = 1
2

ni−1∑
k=0

(xkyk+1 − xk+1yk), [S23]

where ni is the number of vertices of cell i, (xk, yk)k=0,...,ni−1 are the coordinates of the vertices of the cell i in counterclockwise
order, and we set (xni , yni ) = (x0, y0). Let Nc be the number of cells and V ∈ RNc the vector of all the cells volumes; thanks
to Eq. (S23), it can be expressed as a function of X and its gradient ∇XV with respect to X can be computed. Then the time
derivative of V expresses as

dV
dt = ∇XV

dX
dt .

Note here that ∇XV is a Nc × 2Ne matrix and dX
dt is a 2Ne vector, so their product is well defined and has the correct

dimension.
Similarly, the length of a segment k with two vertices v1 = (x1, y1) and v2 = (x2, y2) at its ends is

lk =
√

(x1 − x2)2 + (y1 − y2)2. [S24]
Let Ne be the number of edges and l ∈ RNe the vector of all the edges lengths; thanks to Eq. (S24), it can be expressed as a
function of X and its gradient ∇X l with respect to X can be computed. Then the time derivative of l expresses as

dl
dt = ∇X l

dX
dt .

Time discretisation. Time is discretized using a fixed time step ∆t and the time derivatives are approximated by the 1st
order Euler scheme, for instance:

dX
dt (t) ≈ X(t+ ∆t)−X(t)

∆t .

Let ε ∈ RNe be the vector of all the elastic deformations of the edges. Let X0 = X(0) and ε0 = ε(0) be some initial conditions.
We construct successive approximations of the solution at times tn = n∆t for n > 0 by solving at each time step the mechanical
equilibrium (Eq. 11 from main text) along with the discretized versions of flux (Eq. 10 from main text) and wall rheology (Eq. 7
from main text) equations: let P ∈ RNc be the vector of all the cells pressures; these equations can be written in a matrix form:

∇XV (Xn+1)X
n+1 −Xn

∆t = MPP
n+1 + bP , [S25]

εn+1 − εn

∆t + βnεn+1 = 1
l(Xn+1)∇X l(Xn+1)X

n+1 −Xn

∆t . [S26]

where MP is a Ni ×Ni matrix, with the following non-zero coefficients:

MP (i, i) = AiL
a
i −

∑
j∈n(i)

AijL
s
ij , ∀i = 1, . . . , Nc,

MP (i, j) = AijL
s
ij , ∀i = 1, . . . , Nc, ∀j ∈ n(i),

with bP ∈ RNc is defined by its coefficients
bp(i) = AiL

a
i P

M , ∀i = 1, . . . , Nc.
Note here that the model implies no time derivative of the pressure, so that ∀n > 0, P n+1 can be computed without the
knowledge of P n, and the initial value of the pressure is not needed.

In addition, βn is the Ne ×Ne diagonal matrix with components βn(k, k) = 2w
h
φwk Ek max

(
0, ε

n
k
−εY

k
εn

k

)
for k = 1, . . . , Ne,

and for the purpose of notation, 1
l
is the Ne ×Ne diagonal matrix with components 1/lk. Note here that the variables βn are

taken at time step n so that they are considered as constants at time step n+ 1 and the equation Eq. (S26) is linear with
respect to the unknown εn+1.
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Pressure and elastic deformation as functions of the position of the vertices. Thanks to this time discretization, we see
that at each time step, the unknown pressure P n+1 and elastic deformation εn+1 are defined through the linear equations
Eq. (S25) and Eq. (S26) which can be easily inverted, which allows to express both these variables as functions of the spatial
unknown Xn+1.

First, from equation Eq. (S25):

P (Xn+1) = 1
∆tM

−1
P ∇XV (Xn+1)Xn+1 −M−1

P

( 1
∆t∇XV (Xn+1)Xn − bP

)
. [S27]

Then, using Eq. (S26):

ε
(
Xn+1) = 1

∆tM
−1
ε

1
l(Xn+1)∇X l(Xn+1)Xn+1 − 1

∆tM
−1
ε

(
1

l(Xn+1)∇X l(Xn+1)Xn − εn
)
, [S28]

where Mε = 1
∆tINe + βn.

Structure of the resolution algorithm Thanks to the two previous steps, we are now able to propose a algorithm for the resolution
of the model.

• Initialization: Define X0 ∈ R2Nv and ε0 ∈ RNe

• ∀n ≥ 0, assuming Xn and εn are known, let F n : R2Nv → R2Nv be the function such that ∀v = 0, . . . , Nv − 1,(
Fn2v+1(X)
Fn2v+2(X)

)
= 1

2
∑
k∈f(v)

∆kP (X) Ak(X)nk(X) +
∑
k∈f(v)

Ekε
e
k(X)ak(X)ek,v(X),

where Fnk is the k-th component of F n, and with the same notations as in Eq. 11 from main text; P (X) and ε(X) are
the functions of X given by Eq. (S27) and Eq. (S28). Then, the new position of the vertices Xn+1 is the solution of the
equation

F n(X) = 0. [S29]

Resolution of Eq. (S29). This is the last and most critical step of the resolution algorithm. The problem of computing the roots
of a multidimensional non linear function is often encountered in the mechanical modelling of complex multibody systems,
and a method of choice for the resolution is the Newton algorithm [1]. It is a iterative process which derives from a Taylor
expansion about a current point uk:

F n(uk+1) = F n(uk) + J(uk)(uk+1 − uk) + o(uk+1 − uk),

where J(uk) is the jacobian matrix of function F n. The new value uk+1 is obtained by setting the right-hand side to zero and
neglecting the high order term, and then solving the linear system:

J(uk)δuk = −Fn(uk),uk+1 = uk + δuk.

With the initial value u0 = Xn, iterations are run until a stopping criterium is met, for instance

‖F n(uk)‖
‖F n(u0)‖ ≤ tolres, [S30]

where tolres > 0 is a fixed value. Then one can set Xn+1 = uk.
The compution of the jacobian matrix J(uk) is non trivial here because of the numerous non-linearities of function F n.

Therefore we have chosen to use the Newton-Krylov variant of this algorithm, that avoids the computation of the jacobian
without loosing efficiency [1].

However, Newton methods in general have only local convergence properties, which means that they need an initial guess
close enough to the solution to be able to converge. This is critical for instance in the first time step of the simulation, because
the initial conditions might be far from equilibrium, but also for further time steps. This lack of global convergence properties
is often dealt with by adding a friction term proportional to the velocity and hence to the time derivative of the positions.
With this method, the problem to solve at each time step becomes after time discretization: find X such that

G(X) = F n(X)− cX −X
n

∆t = 0,

where c > 0 is a friction coefficient. This new problem is easier to solve with the Newton method, all the more that c is large.
However, the root of G might not satisfy the condition Eq. (S30), and in addition its value depends on the value of c. Therefore,
instead of applying the Newton method to the function G, we perform the following iterative process:

• Initialization: u0 = Xn

Ibrahim Cheddadi, Michel Génard, Nadia Bertin, Christophe Godin
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• Assuming uk is known, compute uk+1 as the solution of

Gk(uk+1) = 0, [S31]

where Gk(uk+1) = F n(uk+1)− ck uk+1−uk

∆t , and the value ck > 0 will be adjusted to ensure a robust convergence (see
below). This solution is computed thanks to the Newton method, with the tolerance tolres/10 in the stopping criterium.

• The iterations are stopped when ‖F
n(uk)‖

‖F n(u0)‖ ≤ tolres. Then the choice Xn+1 = uk is an approximate solution of Eq. (S29).

In this algorithm, the choice of the friction coefficient ck is not straightforward: a large value would ensure the convergence
of subproblem Eq. (S31), but it would also slow down the convergence toward the solution of problem Eq. (S29). To avoid
this, we choose a large initial value c0 and decrease it with the law ck+1 = ck/2. This choice ensures a robust behaviour of the
algorithm.

3. Sets of parameters used for the bump simulations

Let R0 = 10µm be the initial radius of the cell, then PY = w
R0 cos(π/6)Eε

Y is a representative value for the yield turgor of a
hexagonal cell. However we have observed that the effective threshold pressure is approximately twice lower in multicellular
tissues and we have adapted the value of E accordingly: we choose E such that PY = 0.5 MPa and multiplied this value by
two to obtain a an order of magnitude for the initial turgor of the cell close to the target value 0.5 MPa. The value εY = 0.1 is
chosen accordingly to experimental observations where wall deformations can be of the order of 10%. We choose two values for
PM : 0.55 MPa close to the threshold, and 0.7 MPa. Finally, we can use the Lockhart’s prediction γ̇∗ (Eq.6 from main text) as
an order of magnitude of the relative growth rate; we choose γ̇∗ = 2% · h−1. Then, a given value of αa (evaluated with R = R0)
sets a unique value of La and φw. The table S1 recapitulates the sets of parameters used in this article, either with the control
parameters

εY , PM , PY , γ̇∗, αa, [S32]
or equivalently with the actual parameters of the model

εY , PM , E,Φw, La. [S33]

The correspondance has been obtained with R0 = 6.5µm.
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Table S1. Parameters used for the bump simulation (see Fig. 3 in main text). The top part of the table refers to the control parameters
Eq. (S32), and the bottom part to the actual parameters Eq. (S32) used in the 2D model. The rightmost parameters after the vertical double
bar are specific to multicellular models as they quantify the water conductivity between neighbour cells. The geometrical parameters are
h = 10µm and w = h/20.

Control parameters εY PM (MPa) PY
6 (MPa) γ̇∗ (h−1) αa αs

(REF) 0.1 0.7 0.5 2 · 10−2 0.1 0.9
(CC-) 0.1 0.7 0.5 2 · 10−2 0.1 0.1

(ALPHA+) 0.1 0.7 0.5 2 · 10−2 0.9 0.9
(PM-) 0.1 0.55 0.5 0.5 · 10−2 0.1 0.9

Actual parameters εY PM (MPa) E (MPa) Φw (MPa−1.s−1) La (m.MPa−1.s−1) Ls (m.MPa−1.s−1)
(REF) 0.1 0.7 112.6 2.8 · 10−5 8.7 · 10−11 7.8 · 10−10

(CC-) 0.1 0.7 112.6 2.8 · 10−5 8.7 · 10−11 9.6 · 10−12

(ALPHA+) 0.1 0.7 112.6 3.1 · 10−6 7.8 · 10−10 7.0 · 10−9

(PM-) 0.1 0.55 112.6 2.8 · 10−5 8.7 · 10−11 7.8 · 10−10
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