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27 Abstract

28 High-throughput drug sensitivity screening has been utilized for facilitating the discovery of drug 

29 combinations in cancer. Many existing studies adopted a dose-response matrix design, aiming for 

30 the characterization of drug combination sensitivity and synergy. However, there is lack of 

31 consensus on the definition of sensitivity and synergy, leading to the use of different mathematical 

32 models that do not necessarily agree with each other. We proposed a cross design to enable a more 

33 cost-effective testing of sensitivity and synergy for a drug pair. We developed a drug combination 

34 sensitivity score (CSS) to summarize the drug combination dose-response curves. Using a high-

35 throughput drug combination dataset, we showed that the CSS is highly reproducible among the 

36 replicates. With machine learning approaches such as Elastic Net, Random Forests and Support 

37 Vector Machines, the CSS can also be predicted with high accuracy. Furthermore, we defined a 

38 synergy score based on the difference between the drug combination and the single drug dose-

39 response curves. We showed that the CSS-based synergy score is able to detect true synergistic and 

40 antagonistic drug combinations. The cross drug combination design coupled with the CSS scoring 

41 facilitated the evaluation of drug combination sensitivity and synergy using the same scale, with 

42 minimal experimental material that is required. Our approach could be utilized as an efficient 

43 pipeline for improving the discovery rate in high-throughput drug combination screening. The R 

44 scripts for calculating and predicting CSS are available at https://github.com/amalyutina/CSS.

45

46 Author summary

47 Being a complex disease, cancer is one of the main death causes worldwide. Although new 

48 treatment strategies have been achieved with cancers, they still have limited efficacy. Even when 

49 there is an initial treatment response, cancer cells can develop drug resistance thus cause disease 
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50 recurrence. To achieve more effective and safe therapies to treat cancer, patients critically need 

51 multi-targeted drug combinations that will kill cancer cells at reduced dosages and thereby avoid 

52 side effects that are often associated with the standard treatment. However, the increasing number 

53 of possible drug combinations makes a pure experimental approach unfeasible, even with 

54 automated drug screening instruments. Therefore, we have proposed a new experimental set up to 

55 get the drug combination sensitivity data cost-efficiently and developed a score to quantify the 

56 efficiency of the drug combination, called drug combination sensitivity score (CSS). Using public 

57 datasets, we have shown that the CSS robustness and its highly predictive nature with an accuracy 

58 comparable to the experimental replicates. We have also defined a CSS-based synergy score as a 

59 metric of drug interaction and justified its relevance. Thus, we expect the proposed computational 

60 techniques to be easily applicable and beneficial in the field of drug combination discovery.

61

62 Introduction

63 Despite the great advances in the understanding of cancer, there remains a major gap 

64 between the vast knowledge of molecular biology and effective anti-cancer treatments. Next 

65 generation sequencing has revealed the intrinsic heterogeneity in cancer survival pathways, which 

66 partly explains why patients respond differently to the same therapy [1]. To reach effective and 

67 durable clinical responses, cancer patients who become resistant to standard treatments need 

68 multi-targeted drug combinations, which shall effectively inhibit the cancer cells and block the 

69 emergence of drug resistance [2-4].

70 In order to predict novel drug combinations, high-throughput drug screening has been 

71 applied on a large variety of cancer cell lines and more recently on patient-derived cancer samples 

72 [5-6]. Ideally, a promising drug combination should achieve the therapeutic efficacy at reduced 
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73 dosages, and therefore also minimize the toxicity and other side effects associated with high doses 

74 of single drugs [7-8]. Therefore, both the sensitivity and synergy of a drug combination need to be 

75 considered when evaluating the high-throughput screening results for further validation [9].

76 Many high-throughput drug combination screens combine two drugs at a full matrix of 

77 multiple doses, for which the cell viability or growth inhibition effects are measured [10-11]. The 

78 drug combinations are usually ranked based on the degree of synergy, such that the drug 

79 combinations that produce higher growth inhibition effects compared to the single drugs will be 

80 prioritized. However, there have been multiple methods to score drug synergy, each of which relies 

81 on a different mathematical model that do not fully agree with each other [12]. The lack of 

82 consensus on the choice of synergy scoring methods may partly explain the difficulty to validate 

83 drug combination discoveries in a high-throughput setting [13]. On the other hand, focusing only on 

84 synergy but not on sensitivity may produce false positive drug combinations that do not necessarily 

85 reach therapeutic efficacy, despite being synergistic [14]. However, unlike the sensitivity of single 

86 drugs which can be directly derived from dose-response curves [15], the sensitivity of a drug 

87 combination remains largely undefined, as the same sensitivity can be achieved using different dose 

88 combinations. Furthermore, there is a lack of scoring approaches to fully capture the synergy and 

89 sensitivity simultaneously.

90 On the other hand, the dose-response matrix utilizes a full factorial design to test multiple 

91 dose combinations, and thus demands a relatively large amount of cancer cells. For patient-derived 

92 cancer samples which are typically rare and restricted in volume, the full dose-response matrix 

93 design may be infeasible for testing even a minimal number drug combinations. Furthermore, 

94 cancer samples of different genetic profiles are known to respond differently to the same drug 

95 combination. With the limited amount of drug combinations as the training data, it becomes a 
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96 daunting task for any machine learning approach to navigate the combinatorial space to pinpoint 

97 the most promising drug combinations that are specific for individual cancer samples [16].

98 To overcome these challenges, we proposed a cost-effective experimental and 

99 computational procedure to facilitate the prediction of drug combination synergy and sensitivity. 

100 We utilized an experimental design where two drugs are crossed at their IC50 concentrations, and 

101 either drug is allowed to span over multiple doses while the concentration of the other drug is fixed. 

102 The resulting dose-response curves are utilized to defined a drug combination sensitivity score 

103 (CSS). Using a large scale of drug combination study, referred to as the O’Neil data [17], we showed 

104 that the CSS is highly reproducible, suggesting its robustness as a metric for characterizing drug 

105 combination responses. Furthermore, we found that the CSS can be predicted at high accuracy using 

106 chemical and pharmacological features of the drug combinations. Based on the difference between 

107 the observed and expected CSS values, a drug synergy score can be determined straightforwardly. 

108 We showed that such a CSS-based synergy score can also detect the true synergistic and 

109 antagonistic drug combinations with high accuracy. Compared to the dose-response matrix design, 

110 the cross design requires minimal amount of experimental materials, while it still maintains a 

111 sufficient level of accuracy for capturing both synergy and sensitivity simultaneously. We foresee 

112 that such an experimental design and its CSS scoring would facilitate the standardization of drug 

113 combination analysis that is currently lacking in functional chemical screening, and would allow for 

114 the scale up of drug combination testing eventually for personalized medicine.

115

116 Results

117 CSS values are highly reproducible and robust

118 We applied the CSS scoring on the O’Neil drug combination data, which consists of 22,737 

119 drug combinations for 39 cancer cells [17]. We found that the CSS1 and CSS2 values calculated using 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2019. ; https://doi.org/10.1101/512244doi: bioRxiv preprint 

https://doi.org/10.1101/512244
http://creativecommons.org/licenses/by/4.0/


6

120 either drug fixed at its IC50 concentration are highly correlated (Pearson correlation = 0.82, p-value 

121 = 2×10-16; Fig 1A). Both CSS1 and CSS2 values ranged from 0 to 50, with a marginal absolute difference 

122 of 5.62 (Fig 1B). Such a high level of consistency holds true for all the 39 cancer cell lines and the 

123 majority of the 38 unique drugs, suggesting the robustness of the CSS scoring method (Figs 1C and 

124 D, Fig S1). We also found a high correlation between the CSS value and those derived from single 

125 replicates (minimal correlation = 0.97, Table S3). In order to check whether the CSS values are within 

126 the range of the CSS replicates for each drug combination, we calculated the minimal and maximal 

127 values over the CSS replicates for each drug combination and plotted them together with CSS values 

128 over the standard deviation of the CSS replicates. For a better visualization, we applied a generalized 

129 additive model to smoothen the CSS lines and obtain 95% pointwise confidence interval around the 

130 mean (Fig S2). Only 4% of the drug combinations have the CSS values being out of the CSS replicate-

131 based limits, however this can be explained by the higher variance over the replicates.

132 Fig 1. Robustness and replicability of CSS. (A) The correlation of CSS1 and CSS2 over all the drug 

133 combinations; (B) Density plot of the CSS1 and CSS2 distributions; (C) The correlation per cell line 

134 colored according to the tissue type; and (D) The correlation per drug colored according to the drug 

135 target class.

136 Notably, we found that drug combinations that involved bortezomib showed much lower 

137 correlation (0.26) between the CSS1 and CSS2 values compared to other drug combinations. Since 

138 the O’Neil data contains the replicates for single drug screening, we analyzed the coefficient of 

139 variation (CV) of the cell viability readout for each drug in the replicates. As expected, we found that 

140 bortezomib has the highest CV (0.28), suggesting a relative low quality of the drug sensitivity data 

141 involving this drug (Fig S3). Therefore, the lower correlation between the CSS1 and CSS2 for a drug 

142 combination may be attributed to a higher experimental variation, and thus were considered as low 

143 quality data points. For the subsequent analysis, we selected only those drug combinations that 
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144 have the absolute difference between CSS1 and CSS2 lower than 10, resulting in a total of 18,905 

145 drug combinations. After this filtering the correlation between CSS1 and CSS2 was further improved 

146 (Pearson correlation = 0.93, p-value = 2×10-16). Furthermore, the mean absolute difference between 

147 CSS1 and CSS2 was 3.83, which became comparable to the variability determined from the technical 

148 replicates of CSS1 and CSS2 (2.92 and 3.06 respectively), suggesting that the difference between CSS1 

149 and CSS2 is similar to what is expected when repeating the experiment. Taken together, CSS1 and 

150 CSS2 values are highly consistent and therefore supported their averaging as a summary for the drug 

151 combination sensitivity score.

152 CSS can be predicted using machine learning approaches

153 Given that the CSS is highly reproducible as a summary of the overall sensitivity of a drug 

154 combination, we explored whether CSS can be predicted using pharmacological and chemical 

155 information of the drugs. We considered a drug combination as a combination of its drugs target 

156 profiles as well as their chemical fingerprints, with which the machine learning approaches 

157 illustrated in the previous section can be optimized by exploring the feature space using the training 

158 data. We examined three major machine learning methods for predictions: Elastic Net, Random 

159 Forests and Support Vector Machines.

160 We found that all of these machine learning approaches worked reasonably well, with the 

161 Elastic Net consistently achieving the best performance, with the mean MAE of 4.01 which is 

162 comparable to that (2.07) of a technical replicate (Table 1). Note that in our cross-validation setting 

163 the drug combinations in the test data were not present in the training data, the machine learning 

164 methods were still able to predict the CSS values for new drug combinations by exploring the feature 

165 similarity in the drug targets and chemical fingerprints. The prediction performance thus validated 

166 our hypothesis that a drug combination can be considered as a combination of their drug target 
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167 profiles and chemical-structural properties, with which the CSS score can be predicted with high 

168 confidence using the state-of-the-art machine learning approaches.

169 Table 1. The prediction performance for Elastic Net, Random Forests and Support Vector 

170 Machines, as compared to the upper limit when selecting randomly one technical replicate as the 

171 prediction.

Method RMSE R2 COR MAE
Elastic Net 5.20±1.11 0.80±0.06 0.90±0.03 4.01±0.86

Random Forests 6.30±1.18 0.71±0.07 0.85±0.04 4.75±0.9

Support Vector Machines 7.47±1.32 0.57±0.08 0.80±0.04 5.80±1.07

Technical replicate 2.87±0.59 0.93±0.04 0.97±0.02 2.07±0.45

172 All the values are mean+/-standard deviation.

173 Since both the drug target profiles and chemical fingerprints were considered as the drug 

174 combination features, we next evaluated their prediction performances separately using the Elastic 

175 Net method. For drug-target profiles we collected known targets that were experimentally validated 

176 as well as the additional secondary targets that were predicted with high confidence using the SEA 

177 method. For chemical fingerprints we used the MACCS fingerprint which contains 166 structural 

178 features [18]. As expected, when combining all the features the model achieved the best 

179 performance (Table 2). We found that in general drug target profiles were predictive of CSS, 

180 especially when including the experimentally validated targets. The predicted targets using the SEA 

181 method did not improve the prediction accuracy significantly, indicating that even though 

182 secondary drug target interactions may occur, most likely they have minor functional impact that 

183 may not lead to the changes in cancer cell viability and thus does not contribute to the prediction 

184 of CSS. On the other hand, we found that chemical fingerprints were less predictive of CSS compared 

185 to the drug-target profiles, suggesting that the use of MACCS might be suboptimal to capture the 

186 relevant structural information for predicting the drug combination sensitivity. However, as the 
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187 focus of this study was to show the validity of using machine learning methods to predict the CSS 

188 score, we decided to explore other chemical fingerprint features as a future step.

189 Table 2. The prediction performances for drug-target features and chemical fingerprint features 

190 using Elastic Net.

Feature RMSE R2 COR MAE

Validated targets 5.66±1.27 0.77±0.07 0.88±0.04 4.26±0.95

Validated + predicted targets 5.70±1.22 0.76±0.06 0.87±0.04 4.34±0.95

Fingerprints 6.27±1.19 0.71±0.06 0.85±0.04 4.87±0.94

Validated targets + fingerprints 5.30±1.14 0.79±0.06 0.89±0.03 4.07±0.88

All features 5.20±1.11 0.80±0.06 0.90±0.03 4.01±0.86

191 All the values are mean+/-standard deviation.

192 We considered the regression coefficients that were determined in the Elastic Net model as 

193 an indication of their importance to contribute to the CSS prediction. We collected 67 features that 

194 have their absolute coefficients greater than 3 for at least one cell line. Unsupervised hierarchical 

195 clustering with the Manhattan metric was then applied to group the cell lines and the selected 

196 features (Fig 2). We found that certain drug target features were present with high coefficients 

197 across all the cell lines. For example, DNA topoisomerases including TOP1MT, TOP2A, TOP2B and 

198 TOP1 were selected, with an average coefficients of 8.2, 2.7, 2.6 and 1.0 separately. Despite the 

199 difference in the level of variable importance, all the DNA topoisomerases showed positive 

200 coefficients in 38 of 39 cell lines, suggesting that targeting DNA topoisomerases were associated 

201 with a higher CSS. DNA topoisomerases are known proteins which are essential for cell replication 

202 and metabolism [19]. Including a topoisomerase inhibitor can thus enhance the drug combination 

203 sensitivity in many cancer cell lines. On the other hand, the only cell line that showed negative 
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204 coefficients for TOP1MT was LNCAP (prostate cancer), which turned out to be the cell line that has 

205 the smallest average CSS scores for drug combinations involving the TOP1MT inhibitor (topotecan) 

206 (Fig S4).

207 Fig. 2. The feature importance map by Elastic Net for each cell line. Cell-line independent as well 

208 as cancer subtype-specific features can be identified by evaluating the regression coefficients of the 

209 Elastic Net model. Features such as TOP1MT, TOP1, TOP2A/B has shown consistently positive 

210 coefficients as compared to features such as AKT1/2/3 which showed cancer subtype specificity in 

211 breast cancer (indicated as arrows).

212 At the cell line level, we found that cell lines of the same tissue type did not necessarily 

213 cluster together, indicating their distinctive drug combination response profiles. However, we found 

214 that the breast cancer cell lines did form a major cluster including KPL1, ZR751, EFM192B, OCUBM 

215 and T47D, while the only outlier was MDAMB436. Indeed, MDAMB436 is the only triple negative 

216 breast cancer (TNBC) subtype, while the other cell lines are either ER positive (KPL1, ZR751 and 

217 T47D), or HER2 positive (EFM192B and OCUBM). It has been known that TNBC respond anticancer 

218 drugs differently from ER and HER2 positive breast cancers due to the distinctive disease 

219 mechanisms [20]. The features selected for the CSS prediction separated these two distinctive 

220 breast cancer subtypes, suggesting the validity of using CSS to cluster cancer of different subtypes. 

221 Furthermore, we found that AKT targets (AKT1/2/3) were among the top ones that showed higher 

222 importance in the non-TNBC group. A combination of an AKT inhibitor and TOP1MT inhibitor 

223 therefore can be suggested to treat non-TNBC but not necessarily for TNBC breast cancers. On the 

224 other hand, we found that CHEK1 and PARP3/4 targets were selected for MDAMB436 but not for 

225 non-TNBC group, suggesting that a combination of a CHEK inhibitor and PARP inhibitor might be 

226 tested for TNBC, but not for non-TNBC. The mechanisms of actions for the proposed drug 

227 combination may prove interesting for experimental validations. Taken together, the features that 
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228 were selected from the CSS prediction may help to pinpoint the underlying target interactions, 

229 which are of pivotal importance to identify the drug combination response biomarkers.

230

231 The CSS-based synergy scores can predict the true synergy and antagonism

232 Next, we defined the degree of drug synergy as the differences between the dose-response 

233 curves of a drug combination and its single drugs. We derived three variants of the CSS-based 

234 synergy score (Ssum, Smax, Smean) and compared them with the HSA, Bliss, Loewe and ZIP synergy 

235 scores that were determined using the full-dose response matrix. We evaluated whether the CSS-

236 based synergy scores using the cross design can capture the ground truth. Although determined 

237 using only one row and one column from the dose-response matrix, all the CSS-based synergy scores 

238 managed to obtain a good correlation with the synergy scores based on the dose-response matrix 

239 design (Table 3). 

240 Table 3. Correlations of the CSS-based synergy scores with those derived using four reference 

241 models that were calculated using the full dose-response matrices.

Synergy Scores HSA Bliss Loewe ZIP

Ssum 0.72 0.72 0.46 0.55

Smax 0.71 0.65 0.51 0.49

Smean 0.65 0.63 0.41 0.44

242

243 We found that the CSS-based synergy scores correlated relatively well with the HSA and Bliss 

244 scores, while the correlation started to decrease when comparing to the Loewe and ZIP scores. Since 

245 all the synergy scoring models utilized different assumptions for the reference of no synergy, we 

246 therefore did not expect a perfect correlations in such pairwise comparisons. Of all the three 

247 variations of CSS-based synergy score, we found that Ssum showed the best correlation with those 
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248 determined using the full dose-response matrix. As Ssum considers the additive effect of single drug 

249 sensitivities as the expectation of no synergy, it thus can be considered a more conservative scoring 

250 method compared to Smax and Smean, where the maximal and average effect of single drugs were 

251 considered as reference separately. To control the false discovery rate of detecting synergistic 

252 combinations, we therefore proposed Ssum as a more appropriate scoring method for the cross drug 

253 combination design.

254 Furthermore, we evaluated the predicting accuracy of the CSS-based synergy scores for true 

255 synergistic and antagonistic drug combinations. We applied a stringent criteria to determine the 

256 ground truth from the dose response matrix data, such that all the synergy scores (HSA, Bliss, Loewe 

257 and ZIP) must be higher than 5, or lower than -5, to be classified as a true synergistic or antagonistic 

258 drug combination, respectively. From the O’Neil data, we identified 3,716 true synergistic and 218 

259 true antagonistic drug combinations. We then asked the question of whether the CSS-based synergy 

260 scores that were determined using the cross design can predict the ground truth. We showed that 

261 the CSS-based synergy scores managed to achieve the area under the ROC curves of 0.997 (Ssum), 

262 0.996 (Smax) and 0.992 (Smean) to detect the true synergistic and antagonistic combinations correctly 

263 (Fig 3A). Note that in order to calculate the synergy score, only two vectors of the drug combination 

264 responses are needed, rather than the full dose-response matrix. Therefore, the CSS-based synergy 

265 score needs a substantially fewer measurements compared to the other well-established synergy 

266 scores. Still, the CSS-based synergy scores can predict the most synergistic and antagonistic drug 

267 combinations with high accuracy. On the other hand, the CSS-based synergy score and the CSS drug 

268 combination sensitivity score were using the same unit as the percentage of the actual drug 

269 response compared to the theoretical upper limit. Therefore, the synergy score can be interpreted 

270 as the extra benefit of combining two drugs that can achieve an effect closer to the upper limit. We 

271 summarized both CSS drug sensitivity scores and CSS-based synergy scores for all the drug 
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272 combinations as an S (sensitivity)-S (synergy) plot (Fig 3B; Table S4). By applying a threshold of the 

273 3rd quantiles for CSS and S, we can clearly identify the most promising drug combinations that fulfill 

274 both the sensitivity and synergy criteria, while avoiding the false positive drug combinations that 

275 might be synergistic but do not achieve a sufficient high level of sensitivity. Taken together, the 

276 combined use of CSS drug combination sensitivity score and its associated synergy score allows a 

277 simultaneous evaluation of the sensitivity and synergy for a drug combination, which will facilitate 

278 a more systematic analysis of high-throughput drug combination data with much less experimental 

279 materials.

280 Fig. 3. (A) The ROC curves for the CSS-based synergy scores to detect true synergistic and 

281 antagonistic drug combinations. (B) The S-S plot for all the drug combinations. The drug 

282 combinations with the 75th percentile and above for both the CSS and the S scores were considered 

283 as the prioritized hits for further experimental validation and highlighted in red.

284

285 Discussion

286 Drug combinations may potentially lead to more durable clinical responses by overcoming 

287 intra-tumoral heterogeneity and drug resistance to monotherapies. Identifying drug combinations 

288 that are tailored for personalized medicine is a challenge, as the number of possible combinations 

289 may easily grow exponentially [21]. High-throughput drug combination screening has been 

290 increasingly utilized for early detection of true synergistic and effective drug combinations. 

291 However, systematic identification of drug combinations is difficult, as the concepts of synergistic 

292 versus effective drug combinations are often intertwined and sometimes interchanged without 

293 sufficient clarification. Furthermore, there is a lack of consensus on what the definition of synergy 

294 is, which might contribute to the poor reproducibility of many drug combination studies. The 
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295 uncertainty about the endpoint measurement in drug combination screens brings additional 

296 complexity for any machine learning approach to tackle the prediction problem.

297 We developed a novel scoring approach called CSS for drug combinations that can be 

298 efficiently determined using a simple experimental design. We found that the CSS is highly replicable 

299 and therefore can be considered as a robust metric to characterize drug combination sensitivity. To 

300 leverage the drug combination CSS data, we also developed a testing platform to allow for a 

301 systematic evaluation of the prediction accuracy of different machine learning methods. We found 

302 that the target information for the compounds as well as their chemical fingerprints are highly 

303 predictive of the CSS values, with an accuracy comparable to the experimental replicates. Therefore, 

304 the rationale of considering a drug combination as a combination of their target and fingerprint 

305 profiles can be justified. This would also allow the augmentation of single-drug screening and drug 

306 combination screening data to train a machine learning model, as many drugs are multi-targeted 

307 which are equivalent to a drug combination with the same target profile. In this study we focused 

308 on drug combination prediction within the same cell line. In the future, we would include the 

309 molecular features of the cell lines to improve the prediction accuracy as well as identify drug 

310 combination specific biomarkers across different cell lines. On the other hand, as the focus of the 

311 current study is to propose the new experimental design and to justify its associated drug 

312 combination scoring methods, we tested the predictability of CSS using conventional machine 

313 learning methods, and showed that CSS can be accurately inferred from the pharmacological 

314 features of drug combinations. More advanced machine learning methods such as Deep Learning 

315 [16] or network-based methods [22] may further improve the prediction accuracy, which will be 

316 tested as future work.

317 A truly promising drug combinations shall reach therapeutic efficacy via a strong synergy. 

318 While there have been multiple synergy scoring methods that can be applied to the full dose-
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319 response matrix design, they do not always produce the consistent results. The truly synergistic and 

320 antagonistic drug combinations may therefore be determined by finding the consensus across the 

321 different scoring methods [12]. We developed a CSS-based synergy score to quantify the degree of 

322 interactions in a drug pair, and showed that the CSS-based synergy score can identify the truly 

323 synergistic and antagonistic drug combinations accurately. Therefore, the CSS-based synergy score 

324 can be used for the prioritization of a primary drug combination screen using the cross design, after 

325 which only the significant drug combinations warrant a confirmation screen using the full dose-

326 response matrix design. Furthermore, we proposed a novel S-S plot to visualize drug combination 

327 sensitivity and synergy using the same scale, which enables an unbiased way to explore high-

328 throughput drug combination data more efficiently. On the other hand, the CSS is defined at the 

329 IC50 concentrations of the background drugs. Therefore, a synergistic drug combination determined 

330 by the CSS-based synergy score should be more therapeutically relevant than a drug combination 

331 where the synergy is detected at a higher concentrations, which are often associated with unwanted 

332 off-target effects and side-effects.

333 The advantage of the proposed cross design is that drug combination screens and single-

334 drug screens can be implemented in a sequential manner, which requires much less cells and 

335 compound materials compared to a full dose-response matrix. With the introduction of CSS scoring, 

336 we are foreseeing a lower technical barrier to carry out large scale drug combination studies with 

337 minimal cellular materials. Although the drug combination data we explored here involves cancer 

338 cell lines, the cross design and its CSS scoring can be readily applied for ex-vivo drug screening, 

339 where the amount of patient-derived materials can be extremely limited and technically difficult to 

340 obtain due to culture constraints [23]. With the help of CSS and its visualization tools, drug 

341 combination discovery can be more quickly advance and may eventually lead to the validation of 

342 personalized drug combinations in clinical trials.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 4, 2019. ; https://doi.org/10.1101/512244doi: bioRxiv preprint 

https://doi.org/10.1101/512244
http://creativecommons.org/licenses/by/4.0/


16

343

344 Materials and Methods

345 The cross drug combination design

346 We proposed a cross design to test the synergy and sensitivity of a drug pair by first 

347 introducing the concepts of background drug and foreground drug: background drug is the drug 

348 fixed at its IC50 concentration while foreground drug is added into the background drug with multiple 

349 concentrations. We allow that either drug in the pair to be the background drug, so that two vectors 

350 of dose mixtures will be produced and intersected at the IC50 concentrations (Fig 4). The dose-

351 response curves for these two vectors will be determined using cell viability or toxicity assays, where 

352 the inhibition percentages can be calculated using negative and positive controls. Note that the 

353 cross design requires specifically the combinations at the IC50 concentrations, which need to be 

354 determined based on single drug sensitivity screening or prior knowledge.

355 Fig. 4. The cross design to determine the drug combination sensitivity score. Compared to the full-

356 dose response matrix design (left panel), only the single row and single column that correspond to 

357 the IC50 concentrations of the two drugs were utilized for the calculation of CSS (middle panel). 

358 Either Drug1 or Drug2 can be considered as the background drug fixed at its IC50 concentration while 

359 the other is considered as the foreground drug with multiple doses being titrated. The resulting two 

360 dose-response curves will be summarized as the drug combination sensitivity score (CSS), from 

361 which a synergy score can also be calculated as the deviation from the expected value when there 

362 is no interaction.

363 Determination of the CSS drug combination sensitivity scores

364 With the drug combination dose-response curves determined in the cross design, the CSS 

365 summarizes the area under the curve similar to the AUC and DSS (Drug Sensitivity Score) scoring 
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366 approaches [24-25]. Namely, a four-parameter log-logistic function is used to fit the dose-response 

367 curve for a concentration x of the foreground drug according to: 

368  ,   (1)y = 𝑦𝑚𝑖𝑛 +
𝑦𝑚𝑎𝑥 ‒ 𝑦𝑚𝑖𝑛

1 + 10
𝜆(log10IC

50
‒ log10𝑥)

369 where ymin and ymax are the minimal and maximal inhibition (the bottom and top asymptotes of the 

370 curve,0 ≤ y,ymin,ymax ≤ 1; IC50 is the concentration of the foreground drug with which the drug 

371 combination reaches 50% inhibition of the cell growth;  is  the slope of the dose-response curve.

372 The dose-response curve (1) is transformed by substituting x with x' = log10(x) as:

373                                                     (2)y = 𝑦𝑚𝑖𝑛 +
𝑦𝑚𝑎𝑥 ‒ 𝑦𝑚𝑖𝑛

1 + 10
𝜆(log10IC

50
‒ 𝑥')

374 The area under the log10-scaled dose-response curve (AUC) is determined according to

375    (3)AUC =  ∫𝑐2

𝑐1
𝑦𝑚𝑖𝑛 +

𝑦𝑚𝑎𝑥 ‒ 𝑦𝑚𝑖𝑛

1 + 10𝜆(𝑚 ‒ 𝑥')𝑑𝑥' = 𝑦𝑚𝑖𝑛(𝑐2 ‒ 𝑐1) + (𝑦𝑚𝑎𝑥 ‒ 𝑦𝑚𝑖𝑛)1
𝜆𝑙𝑜𝑔10(1 + 10

𝜆(𝑐2 ‒ 𝑚)

1 + 10
𝜆(𝑐1 ‒ 𝑚)),

376 where [c1, c2] is the log10 concentration range for the foreground drug tested in the experiment, and 

377 m = log10(IC50).

378 The AUC is further normalized as the proportion of its theoretical upper bound according to:

379  ,                                                             (4)AUC' =
AUC–𝑡(𝑐2 ‒ 𝑐1)
(1 ‒ 𝑡)(𝑐2 ‒ 𝑐1)

380 where t is the minimum inhibition level that is considered meaningful (by default it is fixed at 10%, 

381 assuming that the inhibition below 10% is experimental noise).

382 The CSS for the foreground drug is defined as a percentage and varies between 0 and 100:

383                                                                  (5)CSS = 100AUC'

384 As there are two drug combination dose-response curves depending on which drug is fixed 

385 as the background drug, we refer to the results of Eq. (5) for either scenario as CSS1 and CSS2, and 

386 consider them as two samples that are generated from the same random variable. We take the 

387 average of CSS1 and CSS2 as the CSS for the drug pair, i.e.
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388                                                      (6)CSS =  (CSS1 + CSS2) 2

389

390 The O’Neil drug combination data

391 Dose-response was measured as percentage of cell viability and retrieved from the 

392 supplementary material of [17], which includes 22,737 experiments for 583 drug pairs that involves 

393 38 unique drugs in 39 cancer cell lines, representing 7 tissue types. At the first stage, single-drug 

394 screening was done using 8 concentrations to determine the IC50 concentration for each drug with 

395 six replicates. At the second stage, a 4 by 4 dose matrix was utilized to cover the span of IC50 

396 concentrations for a drug pair with four replicates. To utilize the cross design, we picked up only the 

397 row and the column corresponding to the concentrations closest to the IC50 of the single drugs. 

398 These two vectors thus allowed the fitting of drug combination dose-response curves with which 

399 the CSS can be calculated. The cell viability percentage was first transformed to inhibition 

400 percentage according to:

401                                                   (7)%𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 = 100 ‒ %𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

402 In our analysis, the average % inhibition of the four replicates was used to calculate the CSS. 

403 The robustness of the CSS values was assessed using the Pearson correlation across the four 

404 replicates.

405

406 Predicting the CSS using machine learning approaches

407 With the CSS being determined for each drug combination, we sought to evaluate the 

408 prediction accuracy of multiple machine learning methods. We considered a drug combination as a 

409 combination of their targets and chemical fingerprints. We collected the known targets that have 

410 been experimentally validated for the 38 drugs from Drugbank [26] and ChEMBL [27]. Furthermore, 

411 we also utilized the Similarity Ensemble Approach (SEA) to predict additional secondary targets 
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412 based on the chemical structures of the drugs [28]. The targets that were predicted with Z-score 

413 higher than 20, Tanimoto coefficient higher than 0.4 and P-value smaller than 0.01 were included. 

414 The MACCS fingerprints of the drugs were determined using the SMILES strings with the R package 

415 rcdk [29]. The resulting feature set for a drug combination altogether included 398 validated and 

416 predicted targets and 166 MACCS fingerprints (Table S1 and S2).

417 We compared three state-of-the-art machine learning methods for the CSS prediction: 

418 Elastic Net [30], Random Forests [31] and Support Vector Machines [32]. Elastic Net is a 

419 regularization and feature selection method that combines both ridge and lasso regression by 

420 including the L1 and L2 penalty terms. This method depends heavily on its penalty term that is 

421 regulated by hyper parameters  and . In our studies,  was selected from the interval [0.1, 1] and 

422  was chosen to minimize the difference between predicted and actual CSS scores. Random Forests 

423 is an ensemble learning method that constructs multiple decision trees. In our studies, we set the 

424 number of randomly selected predictors that is used at each split of the decision tree equal to the 

425 rounded down square root of the number of variables. For Support Vector Machines, the tuning 

426 parameters are the cost parameter C that sets the penalty for misclassification of a training point 

427 and a smoothing parameter σ, based on the accuracy of predictions in cross-validation.

428 We focused on the model performance for predicting new drug combinations within the 

429 same cell line, as the set of drug combinations in the training data did not overlap with that in the 

430 test data. For each cell line, we randomly sampled 70% of the drug combinations to train multiple 

431 machine learning models using 10-fold cross-validation. The optimized models were then used for 

432 predicting the CSS values for the remaining 30% of the novel drug combinations. The same 

433 processes were repeated 20 times by randomly splitting the training and test data. Four metrics 

434 including coefficient of determination (R2), root mean square error (RMSE), mean absolute error 

435 (MAE) and Pearson correlation (COR) were utilized for model comparison. To benchmark the 
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436 performance of the machine learning methods, we utilized one randomly selected technical 

437 replicate as the prediction to obtain the upper limit of the performance. All the methods were 

438 implemented and evaluated using the R package caret [33].

439

440 Determination of the CSS-based drug synergy scores

441 The advantage of CSS is that it allows a direct comparison of the sensitivity between a drug 

442 combination and its single drugs, and hence facilitates the quantification of drug synergy. The 

443 degree of synergy is often calculated as the deviation of the observed drug combination effect from 

444 the reference, which is defined as the expectation effect if the drugs are not interacting. We defined 

445 three variants of CSS-based synergy scores (termed as S scores) as:

446 ,                                                 (8)Ssum = CSS ‒ 𝑠𝑢𝑚(DSS1,DSS2)

447 ,                                                (9)Smax = CSS ‒ 𝑚𝑎𝑥 (DSS1,DSS2)

448 ,                                           (10)Smean = CSS ‒ 𝑚𝑒𝑎𝑛 (DSS1,DSS2)

449 where the expectation was determined as a summary statistics of the normalized AUC based on the 

450 single drug dose-response curves (termed as DSS values as proposed in [25]). For a non-synergistic 

451 drug pair, the S score is expected to be zero. To evaluate the prediction accuracy of the CSS-based 

452 synergy scores, we defined a set of true synergistic and antagonistic drug combinations as the gold 

453 standard, which were determined using the full dose-response matrix data. We utilized the R 

454 package synergyfinder  [34] to calculate multiple versions of synergy scores including the HSA 

455 (Highest single agency, [35]), the Bliss [36], the Loewe [37] and the ZIP synergy scores [38]. The 

456 principles of these four models were briefed as below:

457 Consider that drug 1 at concentration x1 and drug 2 at concentration x2 were combined to 

458 produce the inhibition effect of yc, while their respective single drug effects were y1(x1) and y2(x2). 
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459 The synergy score was calculated as the difference between yc and the expected effect ye if there is 

460 no synergy. Each synergy scoring took a different model for ye:

461 1. HSA: ye is the maximal single drug effect, defining

462                                             (11)SHSA = 𝑦𝑐 ‒ 𝑚𝑎𝑥 (𝑦1(𝑥1), 𝑦2(𝑥2))

463 2. Bliss: ye is the expected effect of two drugs acting independently, defining

464                                (12)SBliss = 𝑦𝑐 ‒ (𝑦1(𝑥1) +  𝑦2(𝑥2) ‒  𝑦1(𝑥1)𝑦2(𝑥2))

465 3. Loewe: ye is the expected effect of a drug combined with itself, defining

466                                 (13)SLoewe = 𝑦𝑐 ‒ 𝑦1(𝑥1 +  𝑥2) =   𝑦𝑐 ‒ 𝑦2(𝑥1 +  𝑥2)

467 4. ZIP: ye is the expected effect of two drugs that do not potentiate each other, defining

468                                (14)𝑆ZIP = 𝑦 '
𝑐 ‒ (𝑦 '

1(𝑥1) +  𝑦 '
2(𝑥2) ‒  𝑦 '

1(𝑥1)𝑦 '
2(𝑥2)),

469 where  and  are the fitted values based on the full-dose response matrix for the  𝑦 '
𝑐,𝑦 '

1(𝑥1) 𝑦 '
2(𝑥2)

470 combination and single drugs, respectively.

471 For each of the four models, the synergy scores were determined first for a given dose 

472 combination and then were averaged over the full dose-response matrix. With the four synergy 

473 scores determined for each drug combination,  the  true  synergistic  and  antagonistic  drug  

474 combinations  are  those with all the four synergy scores consistently higher than 5 and lower than 

475 5, respectively. The aim was then to use the CSS-based synergy score which was determined by the 

476 cross design data to predict the ground truth determined by the full dose-response matrix design. 

477 The area under the ROC curve was used for evaluating how well the CSS-based synergy scores can 

478 predict the consensus drug combinations determined using the full dose-response matrix data.

479
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586 shown in different colors at the edges of the heatmap.

587 Fig S2. Replicability of CSS values over the replicates. The line plot of the minimal and maximal values 

588 for the CSS replicates combined with CSS values over the standard deviation of the CSS replicates.

589 Fig S3. The coefficient of variation (CV) for each drug in the single drug screens. The correlations 

590 between CSS1 and CSS2 for the drug combinations that involve a given drug were shown on top of 

591 each bar.

592 Fig S4. The correlation between the variable importance of TOP1MT and the average CSS for 

593 TOP1MT inhibitor for all the 39 cell lines. LNCAP is the only line which has a negative variable 

594 importance for TOP1MT.
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