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Abstract  

To date, a number of epigenetic clocks have been developed using DNA methylation data, aimed 

at approximating biological aging in multiple tissues/cells. However, despite the assumption that 

these clocks are meant to capture the same phenomenon−aging, their correlations with each other 

are weak, and there is a lack of consistency in their associations with outcomes of aging. 

Therefore, the goal of this study was to compare and contrast the molecular characteristics and 

functional associations of 11 existing epigenetic clocks, using data from diverse human tissue 

and cell types. Results suggest that the CpGs comprised in the various clocks differ in regards to 

the consistency of their age correlations across tissues/cells. Using microarray expression data 

from purified CD14+ monocytes, we found that six clocks—Yang, Hannum, Lin, Levine, 

Horvath1, and Horvath2—has relatively similar transcriptional profiles. Network analysis 

revealed nine co-expression modules, most of which display robust correlations across various 

clocks. One significant module—turquoise is involved in mitochondrial translation, gene 

expression, respiratory chain complex assembly, and oxidative phosphorylation. Finally, using 

data from 143B cells with chronically depleted mtDNA (rho0) and 143B controls, we found that 

rho0 cells have more than a three-standard deviation increase in epigenetic age for Levine 

(p=0.006), Lin (p=0.012), and Yang (p=0.013). In summary, these results demonstrate the shared 

and contrasting features of existing epigenetic clocks, in regards to the CpG characteristic, tissue 

specificity, and co-regulatory gene network signatures, and suggesting a link between two 

hallmarks of aging—epigenetic alterations and mitochondrial dysfunction.   

 

Keywords: epigenetic clock; CpG; DNA methylation; co-expression; biological aging; 

mitochondria 
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Introduction 

Chronological age is arguably the strongest risk factor for most major chronic diseases 

[1], suggesting may be a causal driver of pathogenesis for various diseases [2]. In response, there 

has been a major initiative focused on targeting aging directly in order to increase disease-free 

life expectancy and in turn reduce healthcare spending and improve population health. However, 

given that aging is a complex multifactorial process characterized by increasing dysregulation 

and loss of function across multiple levels and systems [3], one major hurdle in tackling human 

aging is how to measure it. Thus, quantify aging, particularly using molecular hallmarks, has 

become a priority in Geroscience research [2, 4, 5].  

Measures based on epigenetic alterations have emerged as promising biomarkers of 

aging, in part stemming from the accumulating evidence that the methylome exhibits extremely 

precise transformations with age [6-9]. Such changes have also been identified as potential 

therapeutic targets, in line with the Geroscience paradigm proposed by the National Institute on 

Aging [2]. In particular, DNA methylation (DNAm)—typically consisting of the covalent 

attachment of methyl groups to cytosines in CpG dinucleotides—has exhibited extremely robust 

age tends, characterized by specific CpG island (CGI) promotor-associated hypermethylation, 

and genome-wide hypomethylation. Building off the precision of age-related DNAm changes, a 

number of methylation-based age predictors, commonly referred to as epigenetic clocks or 

DNAm age, have been developed (a brief review of these epigenetic clocks can be found in 

Additional file 1 and other literature [10]). These epigenetic clocks, which exhibit extremely 

high correlations with chronological age, upwards of r=0.95 in full age range samples, are 

thought to capture aspects of biological aging, or more accurately epigenetic aging. Further, 

these epigenetic clocks can be contrasted against individuals’ chronological ages to capture inter-
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individual and/or inter-tissue variability in the rate of aging [11]. For instance, samples predicted 

to have a higher epigenetic age, relative to chronological age, are characterized as exhibiting 

signs of accelerated aging. For a number of the clocks, this divergence between epigenetic and 

chronological age has been shown to translate to differential susceptibility to death and disease. 

After adjustment for chronological age, epigenetic age often remains a very significant predictor 

of mortality [12-15]. Additionally, some clocks have been shown to predict major diseases of 

aging, including coronary heart disease, diabetes, and some forms of cancer (e.g., breast and 

lung) [15-19]. Moreover, differential epigenetic age in brain is associated with both Alzheimer’s 

related neuropathology and Down syndrome. Finally, there is also evidence to suggest some 

clocks reflect HIV infection, obesity, Hutchinson Gilford Progeria Syndrome [20], and familial 

longevity [15, 21].  

However, despite the general associations between epigenetic clocks and outcomes of 

aging, the strengths of these associations vary significantly across different clocks. Moreover, 

after adjusting for chronological age,  the majority of the clocks are typically only correlated at 

r<0.5—suggesting that they may be capturing different aspects of epigenetic aging. Furthermore, 

given that each clock utilized diverse sample types when being developed, their translatability in 

other tissues/cells or at various developmental stages differs. As a result, the goal of this study 

was to compare and contrast the CpG characteristics, tissue-specificity, and transcriptional 

signals of 11 published epigenetic clocks, in order to identify their shared and/or distinct 

biological etiology. 

 

Results 

Clocks vary in the types of CpGs they contain  
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The epigenetic clocks we considered are listed in Table 1. For clocks comparisons, we 

started by describing CpG characteristics (Fig 1). Overall, about 1,600 CpGs are included when 

pooling across all clocks. The majority of CpGs (n=1,427) are unique to only one clock and 

show no overlap. Conversely, one CpG (cg09809672) overlaps in seven clocks, and 37 CpGs 

overlap in three to five clocks. Moreover, this does not change when considering larger genomic 

regions, suggesting that clocks are not simply selecting adjacent/collinear CpGs and instead are 

drawing markers from entirely different genomic regions. This difference is further emphasized 

when comparing CpG annotations (see Fig S1A in Additional file 2 and 3). Four clocks 

(Hannum, Horvath1, Lin, and Levine) show relatively similar proportions in regards to CpG 

locations, such that islands, shores, and shelves/open seas each made up about a third of these 

clocks CpGs. The Horvath2 clock is somewhat similar, although with slightly fewer CpGs in 

islands, and slightly more in Open Seas. Conversely, the Yang clock is comprised almost 

exclusively of CpGs in islands (85%), while the Zhang clock and the Vidal-Bralo clock contain 

only one CpG located in CGIs.  

 
Table 1. Summary of recent existing 11 epigenetic aging clocks in human being  

First Author, Year Training phenotypes of aging  # of CpG 
sites 

Tissues derived  Denotation 

Bocklandt, S., 2011 Chronological age 1 Saliva Bocklandt 
Garagnani, P., 2012 Chronological age 1 Whole blood Garagnani 
Horvath, S., 2013 Chronological age 353 51 tissues/cells Horvath1 
Hannum, G., 2013 Chronological age 71 Whole blood Hannum 
Weidner, C.I., 2014 Chronological age 3 Whole blood Weidnera 
Lin, Q., 2016 Mortality  99  Whole blood Lin 
Vidal-Bralo, L., 2016 Chronological age 8  Whole blood Vidal-Bralo 
Yang Z., 2016 Chronological age 385  Whole blood Yang  
Zhang Y., 2017  Mortality 10  Whole blood Zhang 
Levine, M., 2018 Phenotypic Age 513 Whole blood Levine 
Horvath, S., 2018 Chronological age 391 Skin Horvath2 

a The 3 CpGs model by Weidner et al [22] was updated for the weights using 450k DNAm array 
by Lin et al [23] since it was initially trained on pyrosequencing data. The updated weights were 
used in this study.  
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Fig 1. The analytic plan for this study. DEG, differentially expressed genes; WGCNA, 
weighted-gene correlation network analysis; GO, Gene Ontology; TFBS, transcription factor 
binding site.  
 

These clocks also vary in regards to the proportions of CpGs located in regions marked 

by polycomb-group (PcG) protein targets and DNase I hypersensitive sites (DHS) (Fig S1B and 

S1C), implying the CpGs contained in them may have differing regulatory mechanisms. For 

instance, Yang includes only CpGs in PcG protein targets, whereas, for the most part, CpGs in 
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PcG protein targets make less than a third of CpGs in the other clocks (range 12-30%). Similarly, 

the Yang clock also has the highest proportion of DHS CpGs (42%), followed by Hannum with 

37%, Zhang with 30%, Horvath2 with 25%, Lin with 18%, Levine and Horvath1 with about 

13%, and both Vidal-Bralo and Weidner containing none.  

 

CpGs track age across tissues and exhibit increasing noise with age  

Next, we examined the strength and tissue-specificity of the age correlations for the 

individual CpGs in each clock (Fig 2). We observed that most of the CpGs in the Hannum clock 

show strong and consistent age correlation regardless of tissue and/or cell type, with clear 

distinctions between approximately half of the CpGs showing positive age correlations and the 

other half showing negative age correlations. Lin, Horvath2, and Vidal-Bralo exhibit similar 

tissue consistency, but with slightly weaker correlations and also few positively age-associated 

CpGs. Horvath1 and Levine exhibit good tissue consistency, but contain a large proportion of 

CpGs with very weak to no age correlation. Yang almost exclusively contains CpGs with 

positive age correlations; however, the strength tends to be somewhat weaker than what is 

observed for Hannum, Horvath2, or Lin. Lastly, we observed high tissue specificity for the CpGs 

in the Zhang clock.  

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 4, 2019. ; https://doi.org/10.1101/512483doi: bioRxiv preprint 

https://doi.org/10.1101/512483
http://creativecommons.org/licenses/by-nc/4.0/


8 

 

 

Fig 2. Heatmaps (hierarchical clustering) of age correlations for the CpGs included in each 
epigenetic clock, across various tissues and cells. DLPFX, dorsolateral prefrontal cortex. 
 

 We also examined the change in variance with age for each CpG, which can be thought 

of as increasing noise or heterogeneity in DNAm across cells. Changes in DNAm that represent 

random drift should exhibit increasing variance with age; conversely, DNAm changes that are 

more developmental should exhibit stable variance over the age range.  Using data from purified 

monocytes and DLPFC, we estimated the correlations between the variance in CpG DNAm 

levels within 10-year age bins (e.g., ages 30-39, 40-49) and the midpoint for age in each bin. We 

found that Lin and Hannum almost exclusively contain CpGs that display strong increases in 

variance of DNAm in monocytes with age (Fig 3A). The other clocks, aside from Zhang, mainly 

consist of CpGs for which variance increases with age in monocytes; however, to a lesser degree 
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than is seen for Lin and Hannum. When examining changes in variance using data from DLPFC, 

the age trend is substantially reduced (Fig 3B). In this case the Weidner (3 CpGs) and Vidal-

Bralo (8 CpGs) clocks show general consensus for increasing variance with age, while the other 

clocks have only a slight enrichment in CpGs that exhibit increasing DNAm variance with age. 

 

 

Fig 3. Variance of each CpG using 10-year age bins in A. purified monocytes and B. 
DLPFC datasets. DLPFX, dorsolateral prefrontal cortex. Positive values suggest that variance 
increases with age, whereas negative values suggest variance decreases with age.  
 

Epigenetic clocks track age across tissues 

Fig 4 illustrates the age correlations for the clock scores across tissue and cell types. As 

expected the original pan-tissue clock by Horvath (Horvath1) has the strongest age correlation 

across pooled tissues and cells (r=0.94). This is followed by Horvath2 (r=0.85), which was the 

only other age predictor trained on more than one tissue type. Nevertheless, despite being trained 

in whole blood, the clocks by Hannum, Levine, Lin, and Weidner also exhibit fairly robust 

multi-tissue age correlations (r=0.68, 0.53, 0.67, and 0.46, respectively). Further, the loss in the 
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strength of the correlations appear to be due to tissue differences rather than a lack of age 

association within tissues, as suggested by Fig S2 (Additional file 4), which shows that the 

within tissue age correlations are extremely strong for these clocks. Furthermore, age slopes in 

these clocks appear to be differentiated by brain versus non-brain samples—with brain showing 

a much slower increase in epigenetic age over chronological age. Interestingly, the single CpG 

clock by Garagnani exhibits similarly robust age correlations both across tissues (r=0.70) and 

within tissues. Much weaker multi-tissue age correlations were observed for the Vidal-Bralo 

clock (r=0.11) and the Yang clock (r=-0.23). However, the Yang clock tends to exhibit a very 

strong positive age slope in colon (yellow) and epidermis (pink), which is not surprising given 

that Yang was developed to be a mitotic clock. As with the other clocks, Yang and Vidal-Bralo 

reflect tissue differences, but show moderately robust correlations within tissues. The single CpG 

clock by Bocklandt exhibits stark tissue differences, but moderate within tissue correlations. 

Finally, the clock by Zhang does not show good consensus regarding its age correlation across 

tissues, and in fact is negative in some tissues and positive in others. 

 

Transcriptomic signatures of the clocks  

To examine the potential functional implications of the various clocks, we examined their 

transcriptional signals. Fig 5A shows the clustering of the epigenetic clocks based on the log2FC 

values of 5,028 differentially expressed genes (DEGs) that were identified using microarray data 

from purified monocytes. Results suggested that the age residuals of six clocks—Yang, Hannum, 

Lin, Levine, Horvath1, and Horvath2—have relatively similar transcriptional signals. Expression 

associated with these six clocks was further compared to determine the relative strength of their 

expression signals. As shown in Fig 5B, the log2FC for each DEG in association with five clocks 
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(Hannum, Lin, Levine, Yang, and Horvath2) was plotted against the log2FC for the association 

with each DEG and Horvath1. These results suggest that compared to Horvath1, the other five 

clocks have amplified expression signals (slope >1).  

 

 

Fig 4.  Age correlations for the clock scores across tissue and cell types. DLPFX, dorsolateral 
prefrontal cortex. 
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Fig 5. DEGs expression pattern. A. The clustering of the epigenetic clocks based on the log2FC 
values of 5,028 DEGs that were identified out of 10,471 genes in monocytes. B. Comparisons of 
shared transcriptomic signals for the six clocks (Yang, Hannum, Lin, Levine, Horvath1, and 
Horvath2) while using the pan-tissue clock by Horvath (Horvath1) as the reference.  
 

 Next, we employed weighted gene co-expression network analysis (WGCNA), from 

which we identified nine co-expression (Fig 6A), ranging in size from 69 for the Magenta 

module to 838 for the turquoise module. Results based on WGCNA have been shown to be more 

reproducible and are thought to better capture true biology, compared to traditional differential 

expression analysis. To test the clock associations with co-expression modules, we estimated 

eigengene values for each module (equivalent to the first PC among all genes in a given module) 

and related this value to the clock residuals (Fig 6B, complete results can be found in Fig S3, 

Additional file 5). Multiple modules displayed robust correlations across various clocks. For 

example, the blue module is positively associated with the six clocks (age residuals), ranging 

from β=0.89 (Horvath2) to β=4.14 (Yang). Conversely, the turquoise module negatively relates 
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to age residuals for the six clocks, ranging from β=-0.96 (Horvath2) to β=-3.50 (Yang). The 

strong correlation (r=-0.86, Additional file 6) between the blue and turquoise modules suggests 

that they might represent a larger network, but differentially represent overexpressed genes 

relative to epigenetic age acceleration (blue module), and underexpressed genes relative to 

epigenetic age acceleration (turquoise module). Overall, most modules showed consistent 

directions of associations across clocks, with the one exception being the magenta module, 

which is positively related to Levine and negatively related to Yang.  
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Fig 6. Network analysis of DEGs to unveil transcriptomic signatures of the clocks.  
A. Network dendrogram from co-expression topological overlap of 5,028 DEGs across the 11 
clocks. Color bars show correlation of gene expression with the age acceleration of the clock 
scores (blue—positive, red—negative). B. Relationship between the eigengene values for each 
module and the acceleration for the 6 clocks. C. Selected GO enrichment results (complete 
results are available in Additional file 7 [GO] and 8 [KEGG]). For each module, we selected top 
two representative biological processes based on q value (FDR), enrichment score, and genes 
(which should differ for each GO term). D. Selected results from the enrichment analysis for 
TFBS. Full results from this enrichment analysis can be found in Additional file 11. For each 
module, we selected top two representative TFs based on P value and enrichment score (Yes/No 
value>2). If the TF in one module overlapped with that in another module, we selected that with 
lower P value and higher enrichment score for presentation.  
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Co-expression modules that relate to epigenetic aging are enriched for mitochondrial and 

metabolic pathways 

Selected results for GO enrichment analysis are shown in Fig 5D (complete results are 

available in Additional file 7 [GO] and 8 [KEGG]). Genes in the blue module were enriched for 

ERBB2 signaling pathway (enrichment score=3.74, FDR=0.024), and regulation of DNA 

metabolic process (enrichment score=2.65, FDR=0.005). Interestingly, the blue module 

contained a number of known aging genes, including IGF1R, SIRT1, NRF2, PIK3R1, and ATM. 

Genes in the turquoise module were involved in mitochondrial translation, gene expression, 

respiratory chain complex assembly, and oxidative phosphorylation (OXPHOS). Similar, but 

slightly weaker enrichments were also observed for genes in the yellow module. Genes in both 

turquoise and yellow modules exhibited enrichment for NADH dehydrogenase complex 

assembly. Other potential aging genes in the yellow module included TFAM, NDUFS3, and 

NDUFS7. We observed strong connections between the top 20 hub genes within each module 

(Fig S5 in Additional file 9 and 10), particularly for those in blue and brown modules. Examples 

of hub genes identified included: PHF3, PPP1R12A, and USP6 in blue module, IFIT2, STAT1 in 

magenta module, NDUFA13  and TOMM22  in turquoise module.  

The enrichment analysis for TFBS suggested critical binding motifs for these modules 

(Fig 6D, and Additional file 11 and 12). For example, TFs including FOXP1 (Forkhead box P1, 

enrichment score=14.7) [24, 25] and MEF2 (Myocyte enhancer factor 2A, enrichment score=3.0) 

[26] were enriched among genes assigned to the blue module, while ZBRK1 (Zinc finger protein 

350, enrichment score=9.7) [27],  NKX25 (NK2 homeobox 5, enrichment score=4.3) [28], and 

CREB1 [29] in the turquoise module.  
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Mitochondrial Depletion and Epigenetic Aging 

Given the enrichment for mitochondrial dysfunction observed in our co-expression 

modules of interest, we examined the relationship between mitochondrial depletion and 

epigenetic aging using DNAm data (GSE100249) [30]. We first calculated clock scores for 143B 

cells with chronically depleted mtDNA (rho0) and 143B controls. Samples included three 

independent biological replicates for both cases and controls. Clock scores were then 

standardized in order to be comparable. Analysis of variance revealed that rho0 cells had more 

than a three- standard deviation increase in epigenetic age for Levine (p=0.006), Lin (p=0.012), 

and Yang (p=0.013). A slightly weaker increase was also observed for Horvath2 (p=0.044) (Fig 

S6 in Additional file 13).   

 

Discussion  

In response to the initiative from the National Institute of Health, aimed at identifying 

valid and reliable biomarkers of aging, a number of potentially promising measures of aging 

have been developed—perhaps most notably, the epigenetic clocks. Nevertheless, while the 

growing number of epigenetic clocks have provided some hope that we may be able to 

successfully track the aging process in vivo using a single measure, there remained a lack of 

understanding of the characteristics and signals that are either shared between them, or that make 

each clock distinct. Here, we compared and contrasted the CpG characteristics, age correlations 

and variances, and transcriptomic signals of 11 unique epigenetic clocks, using data from diverse 

human tissues and cells. Despite the fact that all the epigenetic clocks were originally developed 

with the goal of capturing fundamental age-related alterations in the methylation landscape, we 

found that they each appear somewhat distinct.  
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The most striking difference is the limited overlap and/or target regions for CpGs 

included across the clocks. This may not be surprising if in fact hundreds to thousands of CpGs 

track together with age—representing a single shared biological phenomenon—and each clock 

randomly selects a small subset of these related CpGs. Another explanation is, given the 

complexity of the aging process, there are likely distinct types/pathways of epigenetic aging, and 

that the use of different outcome measures, tissues, and populations in developing the clocks may 

influence the proportions of each “type” selected by the various clocks. While in general, the 

proportions of islands, shores, and shelves is comparable among five of the six clocks (Hannum, 

Lin, Levine, Yang, Horvath1, and Horvath2), the CpGs in these clocks vary in regards to their 

age correlations in different tissues and cells, suggesting that they may be capturing different 

biological phenomena. For instance, despite being developed using DNAm data exclusively from 

whole-blood, CpGs in the clock by Hannum, and to a lesser extent those in the clock by Lin, 

show very strong age correlations across tissues and/cells (about half positive and half negative). 

This consistency is not surprising given that it was previously shown that over 70% of age-

associated DNA methylation changes are commonly shared across tissue/cell types and in that 

recent report [31], it was also shown that a high proportion (over 65%) of DNAm changes are 

associated with age. Conversely, while CpGs in the pan-tissue clock by Horvath (Horvath1) and 

those in the clock by Levine, show consistency across tissues and cells, many exhibiting little to 

no age correlation. Given that the Levine clock was trained to predict ‘Phenotypic Age’, which 

strongly correlates with chronological age, yet at the same time, is meant to differentiate 

mortality risk among same aged individuals [32], we hypothesize that the large proportion of 

CpGs in the Levine clock with relatively little to no age correlation, may be capturing stable 
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between-person methylation differences that contribute to differences in the aging process via 

alterations in biological response or general functioning.  

Relatedly, the lack of age correlations for many of the CpGs in Horvath1 may reflect 

tissue differences. For instance, it has been shown that DNAm can be used to differentiate 

tissues/cells, and thus when training a multi-tissue predictor, CpGs that differentiate tissues/cells 

may be included in the score to recalibrate the age prediction so that it best matches 

chronological age regardless of sample type. While, a goal in developing these measures should 

always be lack of tissue-specificity, at the same time, different tissue/cells cannot be expected to 

age at the same rate. Thus, methods that pool tissues may inadvertently be adjusting out some 

important biological differences. Interestingly, for most clocks we observed that the “rate of 

aging” appeared slower in brain compared to other tissues. We also did not see the expected 

increase in variance with age in DLPFC, as was observed in monocytes. Furthermore, as 

reported by Horvath, we find that the majority of clocks show a slower aging rate in cerebellum, 

as evidence by a lower slope. 

Our results from our transcriptional analysis point to a number of pathways—many 

already implicated in aging—that may either contribute to epigenetic aging, or be a consequence 

of it. Further, despite the large aforementioned differences between the clocks, and the fact that 

they incorporated almost entirely different CpGs, our results suggest that many of these 

epigenetic clocks may be capturing some shared transcriptional signal/s. We showed that the 

age-residuals for six epigenetic clocks (Yang, Hannum, Lin, Levine, Horvath1, and Horvath2) 

had similar associations with gene expression, such that the log2FCs for these various clocks 

were highly correlated. Further, we also observed relatively consistent associations between 

clock residuals and co-expression modules. One of the noteworthy co-expression modules was 
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the blue module, which was positively associated with the age residuals for six of the clocks. The 

blue module was enriched for genes involved in regulation of DNA metabolic processes and 

epidermal growth factor receptor (EGF) signaling. EGF signaling has been implicated in a 

number of cancers, particularly breast [33]. In addition to promoting cellular division and 

differentiation, studies in C. elegans suggest a role of EGF in longevity and healthspan [34] and 

EGF signaling has been shown to have multiple potential points of overlap with the Insulin/IGF-

like Signaling (IIS) pathway. Interestingly, studies also suggest EGF receptor (EGFR) may 

modulate mitochondrial function, through alterations to mitochondrial cytochrome c oxidase 

subunit II [35, 36].  

Another co-expression module of interest was turquoise, which had a strong negative 

correlation with the blue module, suggesting they were part of the same network, yet 

distinguished upregulated genes (blue) and downregulated genes (turquoise) in relation to 

epigenetic aging. The turquoise module was negatively related to seven out of the 11 clocks, and 

was enriched for nuclear encoded genes involved in mitochondrial transcription, translation, and 

respiratory chain functions. Age and disease associated downregulation of genes involved in 

such functions have been reported for a number of organs, including heart [37] and brain [38]. 

Moreover, the links between mitochondrial function and aging were described more than half a 

century ago [39] and mitochondrial dysfunction is still considered one of the major hallmarks of 

aging [2, 5]. However, given how little is known regarding the underlying explanations for 

DNAm age-alterations, it remains unclear whether changes in DNAm influence mitochondrial 

functioning, or whether impaired mitochondria contribute to age-related changes in the 

epigenome. Nevertheless, we observed that Levine DNAmAge—and to some extent Lin, Yang, 

and Horvath2 DNAmAge—were accelerated in 143B cells with chronically depleted mtDNA 
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(rho0). Such cells, are unable to carry out oxidative phosphorylation, suggesting that the causal 

pathway may go from mitochondrial dysfunction�epigenetic aging.  

Results from our comparative analysis have important implications for future work. First, 

the majority of epidemiological studies only evaluate Horvath1 and/or Hannum given their 

notoriety and their growing body of literature. Yet, based on our results showing the differences 

across existing clocks, it may be more advantageous to either examine multiple clocks 

simultaneously or to select a clock that best fits the aims of the study. Second, the finding of the 

amplified transcriptional signal for the Yang clock and the unique gene module represented by 

others (e.g., Levine) may imply that distinct types of DNAm changes occur in parallel with 

aging. In moving forward, it will be important to determine whether various types of epigenetic 

aging have distinct versus common causes. It will also be critical to identify whether each clock 

has unique downstream functional implications or whether they have additive or multiplicative 

effects. If the causes and consequences of different types of epigenetic aging are unique, then 

epigenetic clocks—which consist of a variety of types if DNAm age changes—may exhibit 

robust age predictions, but at the expense of losing biological specificity and outcome prediction.  

 In summary, by comparing 11 existing epigenetic clocks, we have observed differences 

in regards to the CpGs they contain and their characteristics, yet surprisingly consistent 

transcriptional signals. These results are a first step in uncovering the underlying biology of 

epigenetic clocks, and in may inform future development of more robust and valid epigenetic 

biomarkers of aging in both humans and animal models.   

 

Materials and Methods  
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DNA Methylation Data 

All data used in this study are publicly available via Gene Expression Omnibus (GEO) 

and detailed descriptions of these datasets can be found in Additional file 16. Briefly, we used 

Illumina Infinium 450k DNA methylation data from: breast (GSE101961), buccal (GSE94876), 

cerebellum (part of GSE89706), colon (GSE101764), dermis (part of GSE51954), dorsolateral 

prefrontal cortex (DLPFX, GSE74193), epidermis (part of GSE51954), fibroblasts (GSE77135), 

frontal cortex bulk (part of GSE66351), hippocampus (part of GSE89706), purified monocytes 

(GSE56046), occipital cortex glia (part of GSE66351), occipital cortex neurons (part of 

GSE66351), striatum (part of GSE89706), temporal cortex bulk (part of GSE66351), and whole 

blood (GSE87571).  

 

Epigenetic clocks  

Each of the 11 published clocks considered in this study (Table 1 and Additional file 1), 

was calculated in accordance with published methods [13, 15, 19, 20, 22, 23, 40-44]. To simplify 

the description, we used the last name of the first author to refer to each clock. Most of these 

clocks were developed to predict chronological age in whole blood, with the number of included 

CpGs ranging from 3 to 513—the exception being the clocks by Bocklandt and Garagnani, 

which are each based on DNAm for only one CpG. In this study, we also calculated the age 

acceleration, defined as the residual resulting from a linear model when regressing epigenetic age 

on chronological age. As mentioned, the age acceleration is meant to reflect between-person 

and/or between-tissue variably in the rate of aging—whether a person appears older (positive 

value) or younger (negative value) than expected [11, 12, 43]. 
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Transcriptomic Data 

To better understand the functional signatures of the clocks, we used both transcriptomic 

(GSE56045) and methylomic (GSE56046) datasets from purified monocytes from 1,202 

participants (age 44-83 years) in the Multi-Ethnic Study of Atherosclerosis (MESA) [45] (see 

details in Additional file 16). For the transcriptomic dataset, in addition to the pre-processing and 

quality control performed by Reynolds et al (the data provider), we performed other procedures 

when starting with >47,000 probes: excluded probes with a detection P-value of ≥0.05 (similar to 

the signal to noise ratio in >50% samples), excluded those targeting putative and/or not well-

characterized genes (e.g., gene names starting with FLJ, LOC, and MGC), excluded those with 

low variance across the samples (<10th percentile), and assigned a mean value to a gene with 

multiple probes. These procedures resulted in a final dataset containing 10,471 probes with 

unique Entrez gene IDs that was then used in subsequent analysis.  

 

Statistical Analyses 

The analytic plan is briefly described in Fig 1 and additional details can be found in 

Additional file 12. In brief, to identify the CpG characteristics (step 1), we: 1) described the 

overlap in CpG sites and/or CpG blocks across the 11 clocks; 2) compared the CpG types/targets 

included in each of the clocks (e.g., the proportion of CpG in high density islands, PcG protein 

targets, DNase I hypersensitive sites); and 3) tested the age correlations and age-specific variance 

of CpGs within each clock, using data from multiple tissues and cell types, representing the full 

age range from fetal up to extreme old age.  

 In step 2, we calculated the 11 epigenetic clocks using a variety of tissues and cell types. 

We then examine their age correlations across pooled samples, as well as within six 
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tissues/cells— monocytes, DLPFC, colon, fibroblasts, epidermis, glial from occipital cortex, 

neurons from occipital cortex. 

To investigate the functional signatures of these clocks, we related them to transcriptomic 

data (step 3). Using data from purified monocytes (GSE56046), we first identified genes 

(denoted as differentially expressed genes, DEGs) that were associated with age residuals for at 

least one of the 11 epigenetic clocks (FDR<0.05), using R package “limma” [46]. We then 

compared the gene-specific log2FC values corresponding to 11 epigenetic clocks (age residuals), 

to determine if clocks exhibited shared transcriptomic signals. Using the DEGs, we performed 

weighted-gene correlation network analysis (WGCNA) [47] to identify co-expression modules. 

For each module, we estimated the eigengene value—representing the optimal summary of the 

gene expression profile for gene assigned to that modules—and then related these module 

eigengenes to the epigenetic clock age residuals. We then performed functional enrichment 

analysis for Gene Ontology (GO) terms and KEGG pathways for the co-expression modules, 

using the R package “clusterProfiler” [48]. Next, we identified potential hub genes for each 

module based on module membership (also referred to as kME or module eigengene based 

connectivity), defined as the correlation between the module eigengene and the gene expression 

profile. The top 20 hub genes were then plotted using Cytoscpae (Cytoscape software, version 

3.7.0 [49]). Finally, we performed transcription factor binding site (TFBS) enrichment analysis 

for genes in each module using TRANSFAC® by geneXplain platform 

(http://genexplain.com/transfac/). Promoter regions (1000 upstream to 100 bp downstream) were 

interrogated for TF-specific motifs using the TRANSFAC curated TFBS database. By comparing 

TFBS in genes within each module to the rest of the genome (release 2018.3), we identified 

overrepresented TFs (P<0.05).  
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Finally, in step 4, we utilized data from GSE100249 [30] that included DNAm for 143B 

cells with chronically depleted mtDNA (rho0) ethidium bromide treatment, as well as 143B 

controls. Samples included three independent biological replicates for both cases and controls. 

Clock scores were then standardized in order to be comparable, and analysis of variance 

(ANOVA) was used to compare chronically depleted mtDNA cells to control cells.   

 All analyses were performed using R version 3.5.1 (2018-07-02). 
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