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S2 APPENDIX. ALTERNATIVE ASSUMPTIONS DETAILS.

We tested the robustness of our results to alternative choices and assumptions in the

presented model by: changing the used evolutionary model (Section A), allowing the en-

vironment to fluctuate randomly between the two possible states with mean frequency ν

(Section B), using the average protein number or the distribution of protein numbers over

the individual life span as phenotype (Section C), changing the fitness function to a Gaus-

sian or a step-like function with similar span around the optimal phenotypes (Section D),

implementing different selection schemes (Section E), as well as different mutation schemes

(Section F). Additionally, more quantitative aspects of the model were perturbed by ex-

ploring other optimal phenotypes for the environments (Section G), basal activity α values

(Section H), and different degradation rate γ values (Section I). In addition, we allowed

the basal activity α parameter to evolve simultaneously with {k, nH , KD}.

A. Moran model

Wright-Fisher and Moran models are the most common options to simulate evolution.

In our main simulations, we implemented a version of the Wright-Fisher model with non-

overlapping generations. Alternatively, we tested a Moran model, where the reproduction

and death events are treated as stochastic events allowing overlapping generations. At each

time step, an individual is chosen for reproduction using the defined tournament selection

scheme, and an individual is randomly chosen from the population for death to keep the

population size N fixed. N time steps occur in the previously defined lifespan time, such that

the reproduction rate (and then mutation) is equivalent to the original model. Importantly,

these simulations are considerably more expensive computationally, so we used a shorter

simulation time (only 1,000 generations).

B. Environmental random fluctuations

The environmental fluctuations in our main simulations were regular and periodic with

frequency ν. We tested whether stochastic fluctuations with frequency ν produced different

results; even though previous work demonstrated little difference between the two types of

fluctuations [1–4]. In these alternative simulations, the environment fluctuates randomly
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between the two possible states with mean frequency ν.

C. Phenotype definition

Our simulations evaluated the protein number (phenotype) at the end of Gillespie simula-

tion (individual life span) to calculate a fitness score given by a Lorentzian function centered

the optimal phenotype. We also tested alternative phenotype definitions: (1) the life-time

average protein number to assign its fitness score to each individual in the population, or

(2) the life-time protein number distribution to calculate the average fitness score for each

individual in the population.

D. Fitness functions

We also changed the shape of the fitness function from a Lorentzian to a Gaussian fitness

function:

ω(E)
g (A) = e

− (A−A(E))2

2σ2
(E) (S1)

where σ2
(E) is equal to the width in the Lorentzian fitness function (v2); or a step-like function:

ω(E)
s (A) =

1 if (A− A(E))2 ≤ 2σ2
(E)

0, otherwise
(S2)

where σ2
(E) is equal to the width in the Lorentzian fitness function (v2).

E. Selection schemes

We used Tournament selection to select the next generation of cells based on the fitness of

the individuals in the current generation. Other common selection schemes are Truncation,

Proportional, and Weighted selection [5].

In the truncation selection scheme, only a certain fraction of the best individuals can be

selected, each with the same probability. Blickle & Thiele (1995) calculated the truncation

fraction that resulted in the same selection strength as a given tournament size (Table I).

We estimated that st = 6 corresponds to a 0.24 truncation fraction. We used this fraction

in our Truncation selection simulation.
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TABLE I. Evolutionary parameters

Parameter Range Units

N Population size {100, 250, 630, 1600, 4000, 10000} individuals

ν Environmental fluctua-

tion frequency

{0.01, 0.02, 0.04, 0.0625, 0.10} 1/generation

st Selection pressure (i.e.

tournament size)

{3 (47%), 6 (24%), 15 (10%),

40 (4%), 100 (1.7%), 250 (0.7%)}a
individuals

u Mutation rate {0.01, 0.03, 0.10} (1/individual)

(1/generation)

M Mutation step-size (i.e.

maximum fold change)

{1.1, 1.4, 1.7, 2.1, 2.6, 3.2, 4.0, 5.0}

a The equivalence between tournament size and truncation selection is shown in parenthesis.

The numbers in italics were inter- and extrapolated from the values presented in [5].

Using the proportional selection scheme, the probability of an individual to be selected

is proportional to its fitness value. Similarly, in the weighted selection scheme, a random

individual is picked from the population and is cloned into the new population if a uniformly

distributed random number (from the interval [0,1]) is below its fitness. Importantly, the

selection strength cannot be tuned in either of these two schemes.

F. Mutation scheme

Our simulations used a spherically symmetric 3D mutation scheme to permit co-variation

in biophysical parameters in a single mutational step. The mutation step size was determined

by the radius of the spherical mutation, which was a uniformly distributed random value

between 0 and 1 (r ∼ U(0, 1)). Such a radial density produces a non-uniform density of

mutations with highest densities close to the parental phenotype because volume scales as

r3. We tested homogeneous spherical mutation by substituting r in Eqs. (5-7) with 3
√
r and

a homogeneous cubic mutation where three uniformly distributed random value between -1

and 1 (ri ∼ U(−1, 1)) for each biophysical parameter. We also verified that mutating only

one parameter at a time (1D mutation) and increasing the range of biophysical parameters

to allow higher nonlinearity (10−2 ≤ nH ≤ 24) and weaker DNA dissociation constants
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(10−2 ≤ KD ≤ 103) did not fundamentally change our results.

G. Optimal phenotypes

The main simulations were performed with the LOW environment selecting for an optimal

phenotype A(L) = 20 proteins and HIGH environment for an optimal phenotype A(H) = 80

proteins. The effects of doubling (A(L) = 40 proteins, A(H) = 160 proteins) and dividing by

two (A(L) = 10 proteins, A(H) = 40 proteins) these values were explored.

H. Basal activity

At high levels of nonlinearity, the lowest protein level is k · α and the highest protein

level is k. A bistable, epigenetic switch has two solutions, each well-adapted to one of the

environments only when the ratio R = A
(L)
opt/A

(H)
opt = α (S1 Fig). Any mismatch between α

and R will disfavor epigenetic switching because an epimutation from an adapted mode will

jump to a maladapted mode, after which the descendants must accumulate genetic mutations

to further adapt. We explored the effect of other values of basal activity parameter (α = 0.2,

and α = 0.3), but adjusting the LOW optimal phenotype accordingly (A(L) = 16 proteins,

and A(L) = 24 proteins, respectively).

The rate of epimutation is sensitive to the frequency and magnitude of stochastic events.

The magnitude of stochastic events is inversely proportional to the total number of molecules.

A higher rate of epimutation for smaller numbers of molecules is expected. The rate of

epimutation should also increase as the two modes become closer. Thus, we expect a higher

rate of epimutation for larger α.

I. Degradation rate

The protein degradation rate (γ) sets the timescale between stochastic events (i.e. faster

protein degradation leads to more stochastic events per unit time during a Gillespie simula-
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tion). Thus, we expect a higher rate of epimutation for larger γ.
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