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Abstract

Motivation: In the last few years, third generation sequencing error rates have been capped above 5%,
including many insertions and deletions. Thereby, an increasing number of long reads correction methods
have been proposed to reduce the noise in these sequences. Whether hybrid or self-correction methods,
there exist multiple approaches to correct long reads data. As the quality of the error correction has
huge impacts on downstream processes, developing methods allowing to evaluate error correction tools
with precise and reliable statistics is therefore a crucial need. Since error correction is often a resource
bottleneck in long reads pipelines. A key feature of assessment methods is therefore to be efficient, in
order to allow the fast comparison of different tools.
Results: We propose ELECTOR, a reliable and efficient tool to evaluate long reads correction, that
enables the evaluation of hybrid and self-correction methods. Our tool provides a complete and relevant
set of metrics to assess the read quality improvement after correction and scales to large datasets. ELEC-
TOR is directly compatible with a wide range of state-of-the-art error correction tools, using whether
simulated or real long reads. We show that ELECTOR displays a wider range of metrics than the state-
of-the-art tool, LRCstats, and additionally importantly decreases the runtime needed for assessment on
most datasets.
Availability: ELECTOR is available at https://github.com/kamimrcht/

ELECTOR.
Contact: camille.marchet@univ-lille.fr or pierre.morisse2@univ-rouen.fr

1 Introduction

1.1 Motivation

Pacific Biosciences (PB) and Oxford Nanopore Technologies (ONT) long reads, despite their high error rates
and complex error profiles, were rapidly adopted for various applications [1]. These reads display high error
rates (from 9% to as much as 30%, according to technologies and libraries), that largely surpass those of
Illumina reads. Moreover, contrary to Illumina, where the majority of errors are substitutions, long reads
mainly contain insertions and deletions (indels) errors (ONT reads are more deletion-prone whereas PB reads
contain more insertions). This combination of issues requires novel and specific algorithmic developments.
To this extent, dozens of error correction methods directly targeting these long reads emerged in the last
five years. A first range of error correction tools, called hybrid correctors, uses both short and long reads to
perform error correction, relying on the important coverage and low error rate of the short reads in order to
enhance long reads sequences. A second group of methods, called self-correctors, intends to correct long reads
with the sole information contained in their sequences (see [2] for a review of correctors). Both paradigms
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include quite diverse algorithmic solutions, which makes it difficult to globally compare the correction results
(in terms of throughput, quality and performances) without a proper benchmark.

An increasing number of projects adopts long reads to benefit from the long range information they
provide, such as assembly or structural variant calling [1]. Given the long reads’ error rates, the first step
of many applications is error correction. However, this stage can be a time bottleneck [1].

In addition, the quality of the error correction has considerable impacts on downstream processes. Hence,
it is interesting to know beforehand which corrector is best suited for a particular experimental design
(coverage, read type, or genome, for instance). Developing methods allowing to evaluate error correction
tools with precise and reliable statistics is therefore a crucial need.

Such evaluation methods should allow to perform reproducible and comprehensive benchmarks, and thus
to efficiently identify which error correction method is best suited for a given case. They must be usable
on datasets of various complexity (from bacteria to eukaryotes) in order to reproduce a wide variety of the
scenarios that can be encountered. They also should be fast and lightweight, and should not be purple orders
of magnitude more resource and time consuming than the actual correction methods they assess. This aspect
is particularly critical when correction evaluators also stand in the perspective of new correction methods
developments. They can help providing accurate and rapid comparisons with state-of-the-art correctors.
For developers as well as users, correction evaluators should describe with precision the correction method’s
behavior (i.e. quantity of corrected bases, introduced errors or read break ups, and throughput), in order to
identify its potential pitfalls.

Figure 1: Overview of ELECTOR pipeline. Input are the sequences at the different stages: without errors
(from the reference genome), with errors (simulated or real reads) and corrected (after running a correction
method). For each sequence, a multiple alignment of the three versions is computed, and the results are
analyzed to provide correction quality measures. In a second module, reads are assembled using Minimap2
and Miniasm [3], and both the reads and the contigs are mapped on the reference genome, to provide
remapping and assembly statistics. A text summary, plots and a pdf summary are output.

1.2 Previous works

Works introducing novel correction methods usually evaluate the quality of their tools based on how well the
corrected long reads realign to the reference. Despite being interesting, this information remains incomplete.
In particular, it is likely not to mention poor quality reads, or regions to which it is difficult to align. Inspired
by earlier works by Yang et al. [4] and Miclotte et al. [5], La et al. introduced a new way to obtain metrics
describing the quality of the error correction itself [6], that does not solely present the similarity between the
aligned corrected reads and the reference genome. Relying on simulated data, La et al. proposed the idea of
a three way alignment between the reference genome, the uncorrected reads, and the corrected reads. They
presented results on Pacific Biosciences data for hybrid error correction tools, by introducing LRCstats, an
evaluation tool aiming at answering to the aforementioned problematics. LRCstats is based on an alignment
scheme that allows to compare corrected, uncorrected and reference versions of a read. This way it provides
reads’ error rate before and after correction, as well as the detailed count of every type of error. However, only
studying the reads’ error rate after correction is not a satisfying indication of the corrector’s behavior. For
instance, there is no clue about the putative insertions of new errors by the corrector, because its precision
is not assessed. To overcome this issue, additional metrics such as precision (relevant corrected bases among
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all bases changed by the corrector), but also recall (correct bases that have been retrieved by the corrector
among all bases to be corrected) should be given, in order to better understand the correction methods’ pros
and cons.

Moreover, LRCstats suffers from high resource consumption when processing large numbers of reads,
i.e. when coverage or genome size are large. However, deep coverage is expected to help the correction of
very long sequences [1]. Thus, the correction of such datasets must be assessed in a reasonable amount of
time. Additionally, LRCstats’s alignment scheme becomes limited when sequences to process grow longer.
However, extremely long reads start to appear in recent works for larger genomes [7], and require correction
as well.

1.3 Contribution

In order to cope with the identified limits of LRCstats, we propose ELECTOR, a new evaluation tool for long
read error correction methods. ELECTOR provides a wider range of metrics than LRCstats, that assess the
actual quality of the correction, such as recall, precision, and correct bases rate for each read. Such metrics
have already been proposed in earlier works dedicated to short reads, such as ECTools [4]. However, ECTools’
contribution is out of the scope of this work since algorithms to process short reads are different from those
at stake in our case. ELECTOR also informs about typical difficulties long read correctors can encounter,
such as homopolymers, and reads that have been trimmed, split or extended during the correction. Our
multiple alignment strategy allows to compare three different versions of each read: the uncorrected version,
as provided by the sequencing experiment or by the read simulator, the corrected version, as provided by the
error correction method, and the reference version, that represents a perfect version of the original read, on
which no error would have been introduced. In addition, ELECTOR performs and evaluates reads remapping
and assembly, which were not included in the LRCstats pipeline.

In order to provide additional metrics, the three-way alignment paradigm used in LRCstats is replaced
by a scalable multiple sequence alignment in ELECTOR. In order to allow the multiple sequence alignment
strategy to scale to ultra-long reads, we also propose a novel heuristic that combines anchoring and partial
order alignment. This way, we also propose a faster and more scalable evaluation pipeline than LRCstats.

ELECTOR can be used on simulated as well as real long read datasets, provided a reference genome is
available for the sequenced species. For simulated reads, it works with it is compatible with state-of-the-art
long reads simulation tools, such as Nanosim [8] or SimLord [9], on which introduced errors are precisely
known. ELECTOR is meant to be a user friendly tool, that delivers its results through different output
formats, such as graphics than can be directly integrated to the users’ projects. This tool was designed to
be directly compatible with a wide range of state-of-the-art error correction tools, without requiring any
preprocessing by the user. In particular, ELECTOR is compatible with the latest self-correction methods,
and we thus present novel results on such tools, that were not tackled by LRCstats.

2 Material and methods

2.1 Input sequences

ELECTOR is implemented as a pipeline that is divided in two modules. An overview is shown in Figure 1.
Input sequences are passed to the two modules independently. The full evaluation pipeline was initially
designed for simulated long reads. This choice was motivated by the need to know the reference sequences
(which, we recall, represent perfect versions of the original reads, on which no error would have been in-
troduced) in order to precisely control the results brought by the assessed correction method. However,
the reference sequence requisite only depends on the availability of a reference genome, and ELECTOR can
thus be used on real data as well. According to the nature of the reads (simulated or real), these reference
sequences are retrieved in different ways.
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Figure 2: Segmentation strategy to compute a multiple sequence alignment for a triplet of
reference, uncorrected and corrected versions of a read. Instead of computing a multiple alignment
on the whole lengths of the sequences, we rather divide this problem in smaller multiple alignment. As each
version is different, in order to decide were to start and end alignments we find seed k-mers (in black that
are local exact matches between the three sequences.

2.1.1 Input reads

Our pipeline is compatible with long reads simulators SimLord and NanoSim. This means that when using
long reads simulated with one of these two tools, the reference sequences are directly retrieved by ELECTOR,
by parsing the files generated during the simulation. By using these state-of-the-art long reads simulation
tools, we ensure to take as input sequences that closely simulate the actual characteristics of the long reads.
However, other long reads simulation tools can also be used. In this case, the user must provide the reference
sequences to ELECTOR itself. Further configuration of the simulation tools such as the error rate, or the
long reads coverage, is the user’s call and has no impact on the ELECTOR pipeline. The genome used for
the simulation, the simulated erroneous reads, and their corrected versions, output by the desired correction
method, are then provided as an input to our pipeline. For hybrid correction methods, whether the short
reads are real or simulated has no impact on ELECTOR.

In the case of real data, the reads are also passed along with their corrected versions and with the
genome to our pipeline. The reference sequences are then retrieved by aligning the uncorrected reads to the
reference genome, using Minimap2 [10]. Only the best hit for each read is kept, and used to determine the
corresponding reference sequence. In the case a read cannot align to the reference genome, and thus cannot
produce a reference, the read is excluded from the analysis. Apart from that, the rest of the pipeline remains
the same, although the computation of some metrics slightly vary, due to the alignment.

2.1.2 Prepare triplets of sequences for multiple alignment

We propose to compare three different versions of each read in a triplet multiple alignment. The reference
version, the uncorrected version, and the corrected version are used. These three versions of each read
undergo a multiple sequence alignment, in order to collect their differences/similarities at each position of
the alignment. Metrics can then be derived from these observations. A sequencing experiment or a long
reads simulation provides the uncorrected version of the reads. The correction method applied to these
uncorrected reads provides the corrected version. Finally, the reference reads are retrieved either from the
files generated by the simulation tools, or from the alignment of the long reads to the reference genome, as
mentioned in the previous Section.

The three different versions of a given long read corresponding to one another are then retrieved by using
their headers. The files containing the different versions of the long reads are sorted in the same order, so that
corresponding reference, uncorrected, and corrected appear in the same order in each file. In the particular
case of a corrected read that would be split into several (FASTA) fragments, because its correction led
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to fragmented subsequences of the initial read, we duplicate the corresponding uncorrected and reference
versions, so that we always have triplets. Each triplet is then aligned using a multiple sequence alignment
scheme.

2.2 Scalable triplet multiple alignment

2.2.1 Principle

For each of the three versions of a read, the triplet multiple alignment module computes a multiple sequence
alignment (MSA) using a partial ordered alignment algorithm, starting with the reference sequence, then
adding the corrected one, and finally the uncorrected version. This step yields a multiple alignment matrix
that is output in pseudo FASTA (PIR) format for each triplet. The triplet multiple alignment is computed
using an implementation of partial ordered alignment graphs [11]. Partial ordered alignment graphs are used
as structures containing the information of the multiple aligned sequences. In this method a directed acyclic
graph (DAG) contains the previous multiple alignment result. Successive nucleotides from the sequences
are stored in vertices, and each new sequence is aligned to this DAG in a generalization of the Needleman-
Wunsch algorithm. Paths in the graph represent the successive alignments.

However, such a procedure can be time-consuming when applied to long reads. Thus, we propose a novel
multiple alignment heuristic, that we implemented for ELECTOR’s purpose, and describe below.

2.2.2 Segmentation strategy for the MSA

The time complexity of the partial ordered alignment algorithm for MSA increases linearly with the average
number of branches in the DAG. Its global complexity is in O(vMN) with v the average number of prede-
cessors per vertex in the graph, M the length of the sequence to be aligned and N the number of vertices in
the graph. Thus, very long reads induce longer running times according to their length, but they also imply
more errors and branches in the graph that further increase the computation duration.
In order to reduce the time footprint of our approach, we propose a segmentation strategy. It consists in
dividing the triplet multiple alignment into several smaller multiple sequence alignments. Drawing inspi-
ration from Mummer’s [12] and Minimap’s [3] longest increasing subsequence approaches, we divide the
multiple alignment problem into instances of short windows shared by all three versions of a given read. We
therefore compute several short multiple alignment and concatenate them instead of computing a large one.
See Figure 2 for an example.

If we were able to bound the size of the windows we could guarantee an asymptotic time linear to the read
length. In practice our implementation can produce large windows but we observe a running time almost
linear in the size of the reads.

The windows are computed as follow. For each triplet, we compute seed k-mers that have the following
properties: 1-they appear in each of the three versions of the sequence, 2- they are not repeated across any
of the versions of the sequence, 3-they are not overlapping in any sequence.

Using dynamic programming the longest seed k-mers subsequence common to the three sequence is com-
puted. Thus, those anchors delineate positions where each version of the read have an exact match of k
nucleotides. For each pair of consecutive seeds, we then extract the left seed followed by the subsequences
from each version of the read. We align these subsequence triplet independently, as described in the previous
paragraph, using subsequently smaller alignment matrices. This way we divide the global multiple alignment
problem into smaller problems, separated by regions of exact matches. Then, the multiple small MSAs are
concatenated to obtain a single MSA of the whole length of the triplet.

The size of these seed k-mers is adapted according to the current observed error rates [3, 13], i.e. 9 to
15 nucleotides. As it is difficult to a priori set a k-mer size, we designed a quick iterative strategy that tries
several values of k, in order to choose the most suitable for a given triplet.

To avoid to compute metrics on poorly corrected reads we filter out corrected reads which length is below
l% of the reference length (l being a parameter set to 10) or reads for which no of seed k-mers could be
found. These two types of filtered reads are tagged and reported apart in ELECTOR’s summary to inform
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the user about their numbers.

Figure 3: Segmentation strategy when the corrected read is smaller. The corrected read is shortened
on its right end. In order to avoid passing subsequences from seed 2 to the MSA module, which would be
long to compute, we perform a second seed strategy (gray seeds) in order to divide the remaining sequences
in reference and uncorrected into smaller pieces to compute the MSA on. The full MSA is reconstructed by
concatenation and we add dots to complete the corrected MSA line.

2.2.3 Handle reads of different sizes in the segmentation strategy

In the case of a trimmed/split read, the corrected version is shortened in comparison to the two other versions
and a part of the reference is missing from the corrected. A prefix and/or a suffix of the reference can be
missing depending on the case, different scenarios are outlined in Figure 3. In the case of a missing prefix,
the first window selected by the segmentation strategy will contain a very large prefix in the reference and
uncorrected version and a very small sequence in the corrected version. This is due to the fact that we only
use anchors shared among the three sequences. It would be irrelevant to compute a MSA between those
three sequences. Furthermore computing a MSA on two very large sequences is extremely expensive. To
cope with this problem, we detect such cases by checking the sequences length and compute a segmentation
using only the reference and uncorrected sequences unused prefix. We therefore compute a MSA using the
corrected prefix sequence along with its corresponding regions from reference and uncorrected extracted from
the segmentation. This way we are able to efficiently compute a MSA when the corrected reads do not cover
all the original region avoiding to run a MSA on large/unrelated sequences. The procedure is symmetrical for
a missing suffix in the corrected sequences. This procedure is extremely important for correctors that output
numerous split reads, which would induce extremely long runtime due to large sequence MSA computations
described before.

2.3 Inference of quality assessment metrics from MSA

2.3.1 Classification of corrected reads

We report different categories of corrected reads in ELECTOR. First, the reads which quality is so bad
they were removed before the MSA step. As mentioned before, these are the reads for which an insufficient
number of seed k-mers were found. We only report their number as no metric can be computed, since they
are not aligned. Second the split reads. The corrected fragments come from a single original read that could
only be corrected on one or several distinct parts that are reported apart. We collect all fragments that come
from a single initial read and report how many reads were split. For each trimmed or split corrected read,
we report the total uncorrected length of its associated reference read (i.e. the length that is covered by
no fragment). Third, extended reads are reads that have a subsequence at their left and/or right end that
was not present in the reference sequence. These reads can be chimeras from the correction step. However
they can also be reads that were over-corrected by a graph-based correction method, that kept on traversing
the graph after reaching the uncorrected reads’ extremities. We do not compute quality assessment metrics
on the extended regions, but we report the number of extended reads, as well as their mean extension
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size, with respect to the reference reads. Fourth, “normal” corrected reads that are neither trimmed/split
nor extended. Figure 4 shows how we deduce reads categories from the MSA result. Finally, soft clipped
reads are reads from a real dataset for which the extremities were soft clipped during the alignment to the
reference genome. This category can only arise when processing real data, as we only retrieve reference reads
by aligning the uncorrected reads to the reference genome in the case of real data. For such reads, we do
not compute quality assessment metrics on the soft clipped regions, as they could not be properly aligned to
the reference genome, and were therefore not used to determine the reference read. In addition to this soft
clipped category, such reads can also be trimmed, split, extended or “normal”.

Figure 4: Three scenarios of corrected read categories in MSA result. Trimmed/split reads have a
corrected version with missing left or right part. Extended corrected reads have a corrected version with a
longer left or right part, which is not present in the two other versions.

2.3.2 Recall, precision, error rate

Once the MSA is computed, we have a base-wise information of the differences and similarities in nucleotide
content for each of the three versions of a sequence. Insertions or deletions are represented by a ”.” in the
deleted parts, and by the corresponding nucleotide (A,C,T or G) in the sequence containing an insertion
relatively to the two others. Let us denote nt(R, pi), nt(C, pi), nt(U, pi) the characters of reference, corrected
and uncorrected versions in {A,C,G, T, .}, at position pi (0 ≤ i < N), in a MSA of size N . Figure 5
shows how recall and precision are computed. The set of positions to correct P contains positions pi such
as nt(R, pi) 6= nt(U, pi). The set of existing position in the corrected version E is defined by including any
position px from the corrected version that is not counted in a trimmed/split/extended region. The processed
positions set C is defined as P ∪ {pj/nt(C, pj) 6= nt(R, pj)} ∩ E . The correct positions set Co is defined as
C ∩ {pj/nt(C, pj) = nt(R, pj)}. The recall, precision and error rate are computed as such:

Recall =
card(C ∩ P)

card(P)
(1)

Precision =
card(Co ∩ C)

card(C)
(2)

Error rate = 1− card(Co)
c−1∑
i=0

i

(3)

7

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


with c the length of the corrected read.

Figure 5: Compute recall and precision using triple base-wise comparison at each MSA’s position. nt(R)
(respectively nt(U), nt(C)) represents the character in reference (respectively uncorrected, corrected) line of
the MSA at a given position.

2.3.3 Additional metrics

ELECTOR’s first module also provides information on the number of split or trimmed corrected reads, on
the mean missing size of the trimmed / split reads, and on the mean extension size of the extended reads.
The size distribution of sequences before and after correction is presented graphically. In the case of split
reads, we report the length of each split fragment in the distribution. The %GC is also output, as well as the
insertion/deletion/substitution counts, before and after correction. We show the ratio of homopolymer sizes
in the corrected version over the reference version. The closer it is to one, the better the corrector overcame
possible non-systematic errors in ONT reads. More details on the computation of these metrics are shown
in Supplementary.

2.3.4 Remapping of corrected reads

We perform remapping of the corrected reads to the reference genome using BWA-MEM [14], due to the
high quality of the long reads after error correction. We report the average identity of the alignments, as well
as the genome coverage, i.e. the percentage of bases of the reference genome to which at least a nucleotide
aligned.

2.3.5 Post-correction assembly metrics

We perform the assembly of the corrected reads using Miniasm [3], as we mainly seek to develop a pipeline
providing fast results. We acknowledge that assemblers such as Smartdenovo [15] or Canu [16] are more
sensitive, but as they display much larger runtimes, Miniasm provides a satisfying compromise.

As for the metrics of the assembly, we output the overall number of contigs, the number of contigs that
could be aligned, the number of breakpoints of the aligned contigs, and the NGA50 and NGA75 sizes of the
aligned contigs. The alignment of the contigs is also performed with BWA-MEM [14], and the computation
of the different metrics is performed by parsing the generated SAM file.
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Experiment Recall Precision Correct bases Time
”1k” MSA 93.964% 93.479% 97.639% 11h
”1k” segmentation + MSA 93.809% 93.507% 97.631% 38min
”10k” MSA 84.505 % 88.347% 95.290% 107h
”10k” segmentation + MSA 84.587 % 88.278% 95.250% 42min

Figure 6: Comparison of the two multiple alignment strategies on a simulated datasets from E. coli
genome.The reads from the ”1k” experiment were simulated with a 1k mean length, a 10% error rate
and a coverage of 100X. The reads from the ”10k” experiment were simulated with a 10k mean length, a
15% error rate and a coverage of 100X. The reads were corrected with MECAT with default parameters.

3 Results

3.1 Validation of segmentation strategy for MSA

3.1.1 Comparison of regular and segmentation strategies for strategies for multiple alignment

In order to validate our segmentation strategy for MSA, we show to which extent its results differ from the
classic MSA approach. We expect that recall, precision and correct base rate hardly differ, thus showing
that both behaviors produce very similar results. Conversely, we expect an important gain in time with
our segmentation strategy compared to the original algorithm. We thus compared multiple alignment re-
sults obtained with our strategy to results obtained with the regular implementation of the partial ordered
alignment on two datasets of different read lengths, which affects the runtime of the alignments. Results are
presented in Table 6.

They show that our segmentation strategy and the regular approach only differ by a few digits in the
presented metrics for both experiments. However, using segmentation, a substantial gain in time is achieved.
Moreover, while the classic MSA strategy runtime raises with respect to the read length, our approach no
longer suffers from this drawback.

3.1.2 Validation of metrics values

In the following sections, we show comparisons of ELECTOR and LRCstats results. However, LRCstats
is itself based on alignment schemes, and thus does not provide a “ground truth”, unbiased by alignment
or mapping, to compare ELECTOR to. Moreover some of ELECTOR’s metrics do not exist in LRCstats
outputs. Thus, in order to obtain a “ground truth” to assess ELECTOR’s results, we designed a simula-
tion experiment where both corrected and uncorrected reads / versions are produced. The simulation of
uncorrected reads follows typical long reads error rates and profiles. The uncorrected reads simulated using
a genomic reference from E. coli genome by extracting read sequences at random positions. The simulation
of correction for a read is performed by choosing for each position on the read whether it is modified by the
corrector. If the position is modified, the corrected base is a false positive (wrongly transformed during the
correction), a false negative (not corrected although it needed a correction) or a true positive (corrected).
This way we control recall, precision, error rate and indels/substitution levels. We simulated a correction
process so that precision and recall would reach around 99%, as observed in best current correctors.

We used a 10X, 20% error rate dataset, designed to represent a difficult case. Then we ran ELECTOR
on these two datasets and compared the results to ground truth metrics. Results are shown in Table 1. In
the second column we show ELECTOR’s values. In the third column we assess how different ELECTOR is
from ground truth by computing abs(GT−EL)

GT ×100, as the percent of the ground truth the difference between
ELECTOR’s value and ground truth’s value represents, with GT the ground truth for a given metric and
EL the ELECTOR’s value.

The highest percentage of difference is reached for the sum of indels and mismatches in the uncorrected
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Metric ELECTOR difference (% ground truth)
recall(%) 98.99 4.0 E-2
precision(%) 99.92 1.0 E-1
error rate 9.920E-2 2.3
indels/mismatches in uncorrected 8380984 4.1
indels/mismatches in corrected 491728 3.4

Table 1: ELECTOR results on 10X E. coli simulated reads and comparison with ground truth. The third
column presents how far ELECTOR’s output values are from the ground truth values we computed during
our simulation.

sequence (4.1%). The precision and recall displayed by ELECTOR show little difference with the real values
(1.0 E-1% or less).

3.2 Assessment of metrics on genomic datasets

3.2.1 Datasets

We present results of ELECTOR on several simulated datasets of several species (A. baylyi, E. coli, S.
cerevisiae, C. elegans). Further details on each data set are given in Supplementary Material.

3.2.2 ELECTOR results

We display the ELECTOR pipeline results using reads corrected by the following list of correctors: HALC [17],
HG-CoLoR [18], LoRDEC [19], Canu, Daccord [20], MECAT [21] and LoRMA [22]. The complete results
provided by LCRstats and ELECTOR on each corrected dataset are presented in Supplementary Material.
As previously detailed in Section 2.3.2, the first module of ELECTOR computes general metrics: mean recall,
precision, correct base rate and other additional metrics. For the three first results, a graphic representation
of their distribution is also made available.

Examples of results as output by this first module of ELECTOR are also presented for the six correction
methods and three datasets in Table 3. This table shows that ELECTOR reported recalls from 95 to almost
100% and precisions from 94 to more than 99% for all tools. These results are consistent with results pre-
sented in the different tools’ publications on datasets from the same species.

The second module of ELECTOR performs remapping of the reads on the reference and assembles them,
thus providing additional information that are not available through LRCstats. The metrics output by this
second module are detailed in Section 2.3.4 and Section 2.3.5.

3.2.3 Comparison to LRCstats

The comparison of the metrics displayed by ELECTOR and LRCstats are shown in Table 2. This Table
shows the results obtained for each tool, and the supplementary metrics offered by ELECTOR that are not
displayed by LRCstats. We chose to present two different examples using a self and a hybrid correction
method, respectively HALC and Canu, on the S. cerevisiae data set. ELECTOR’s novel metrics point out
important differences between the two correction methods, such as the high quantity of trimmed and/or
split reads when using HALC in comparison to Canu. Results computed by LRCstats and ELECTOR on
other data sets and other correction methods can be found in Supplementary Materials.

Both LRCstats and ELECTOR compute metrics for uncorrected and corrected versions of the reads. The
first result to notice is that the error rate announced in uncorrected sequences can differ from one correction
method to another, both for ELECTOR and LRCstats. This is explained by the fact that HALC and Canu
do not correct the same set of reads. As a result, the corresponding uncorrected reads used to compute the
error rates are not the same either.
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Metric Uncorrected Corrected by HALC
ELECTOR LRCstats ELECTOR LRCstats

Throughput 298,370,918 237,655,341 212,266,193 214,152,119
Error Rate 0.1403 0.1751 0.0042 0.0023
Insertions 28,772,841 32,589,970 100,874 215,507
Deletions 5,235,890 8,991,984 1,035,978 120,743

Substitutions 4,058,953 1,633,123 198,853 221,646
Recall - - 0.9997 6

Precision - - 0.9959 6
Trimmed/split - - 12,043 6

Mean missing size - - 577.5 6
Extension - - 71 6

Mean extension size - - 53.2 6
Low quality - - 160 6
Small reads - - 3436 6

%GC - - 38.2 6

Uncorrected Corrected by CANU
Throughput 244,560,743 244,633,066 229,555,492 229,825,812
Error Rate 0.1425 0.1781 0.0506 0.0694
Insertions 30,090,583 34,105,075 12,252,413 12,942,568
Deletions 5,483,119 9,489,618 2,574,320 3,134,365

Substitutions 4,375,017 1,748,302 2,197,172 1,591,650
Recall - - 0.9515 6

Precision - - 0.9495 6
Trimmed/split - - 2,216 6

Mean missing size - - 35.1 6
Extension - - 178 6

Mean extension size - - 30.7 6
Low quality - - 43.0 6
Small reads - - 0.0 6

%GC - - 38.7 6

Table 2: Comparative results of ELECTOR’s and LRCStats’ ouptuts on the S. cerevisiae dataset using a
hybrid corrector (HALC) and a self corrector (Canu). Dashes indicate that the metric is not accessible.
Crosses indicate that the assessment tool does not provide this metric.

Second, as it can be seen from the throughput metrics, ELECTOR and LRCstats do not process the same
quantity of reads. This is due to the fact that they rely on different rules to exclude reads that are too difficult
to process in the alignment schemes, but also because of their respective behaviors toward split reads. These
differences thus have an impact on the metrics displayed for corrected reads. ELECTOR’s throughput is a
little smaller than LRCstats’, however reads uncounted in the throughput are directly reported in precise
categories in ELECTOR (very small reads and low quality reads), while they are lost in LRCstats’ output.

Different alignment strategies in both tools also have impacts on the results, which explains the differences
seen in indels and substitution counts. However, ELECTOR and LRCstats globally report the same trends
of two successful corrections that decreased the error rates.

3.2.4 Performances comparison

We compared LRCstats and ELECTOR’s runtimes on several datasets in Tables 5,4. The datasets are chosen
to represent different factors of pitfalls. We thus vary genome sizes and read throughput, as well as reads
size distribution. ELECTOR’s runtime and memory peaks are computed for the two independent modules
of the ELECTOR pipeline: the read triplets multiple alignment step, allowing to access general metrics, and
the remapping and assembly step. The first module is comparable to the LRCstats pipeline, as both perform
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Metric HALC HG-CoLoR LoRDEC CANU daccord MECAT
uncorrected corrected uncorrected corrected uncorrected corrected uncorrected corrected uncorrected corrected uncorrected corrected

E. coli
Throughput 101829227 81199351.0 93003632 84089814.0 132043801 77969503.0 91933413 86443218.0 93273280 83773362.0 81143184 58979203.0
Error Rate 0.1415 0.0015 0.1428 0.0007 0.1384 0.0015 0.1432 0.0524 0.1433 0.004 0.1332 0.0052

Recall - 0.9999 - 1.0 - 0.9999 - 0.9495 - 0.9988 - 0.9983
Precision - 0.9985 - 0.9993 - 0.9986 - 0.9476 - 0.9961 - 0.9949

S. cerevisiae
Throughput 298370918 212266193.0 259555450 219744436.0 529254926 188228237.0 244560743 229555492.0 251569142 222050951.0 219909311 162057920.0
Error Rate 0.1403 0.0042 0.1414 0.003 0.1325 0.0054 0.1425 0.0506 0.1426 0.0054 0.1339 0.0066

Recall - 0.9997 - 0.9999 - 0.9995 - 0.9515 - 0.9986 - 0.998
Precision - 0.9959 - 0.9971 - 0.9947 - 0.9495 - 0.9946 - 0.9936

C.elegans
Throughput 3547144593 1588220052.0 2158838211 1726223265.0 3954331369 1154508245.0 2063369590 1934674074.0 1289267335 870965775.0
Error Rate 0.1377 0.0153 0.1397 0.0065 0.1242 0.0126 0.1427 0.0496 0.1199 0.0065

Recall - 0.9989 - 0.9997 - 0.9989 - 0.9527 - - 0.9982
Precision - 0.985 - 0.9936 - 0.9875 - 0.9505 - - 0.9936

Table 3: Examples of the main statistics reported by ELECTOR on simulated datasets. A dash in a
row/column indicates that the metric in not computable from the data. On the C. elegans dataset, daccord
could not be run.

similar operations. However, LRCstats does not include modules to perform read remapping and assembly,
thus we present this second module of ELECTOR apart.

We first assess in Table 5 the performances of both tools on simulated data with different read length.
We observe that the runtime and memory consumption of LRCstats grow with the read length and we were
unable to run it from the 100,000 base pairs dataset on our 250GB cluster. This behavior may be a problem
to work on very long reads. Due to its segmentation strategy ELECTOR is able to handle larger reads, up
to one megabase length. Furthermore its time and memory consumption do not raise much with the read
length. This shows that ELECTOR is able to scale to extremely long reads. Considering the availability and
usefulness of such very long reads library, we believe that this ability to efficiently handle long sequences is
one of the main advantages of ELECTOR.

In another experiment, represented Table 4, we evaluate the respective runtime of ELECTOR and LRC-
stats on several corrected datasets. We added, for the perspective, the runtime of the correction method
itself. Interestingly we observe that LRCstats is often more time consuming than the correction method,
which is not desirable. ELECTOR presents reduced runtime, showing that it could be used to mitigate that
heavy analysis time.

3.3 Assessment of real data

3.3.1 Validation of ELECTOR on real data

In order to validate the real data mode of ELECTOR, we ran the following experiment, reported in Table 6.
For this, we used a simulated dataset, and assessed its correction using the two different ELECTOR mode,
simulated and real data. First, we ran it classically, by providing the simulation files as input, so ELECTOR
could retrieve the actual reference reads by parsing the files. Second, we ran it by only providing the fasta file
of simulated reads as input, so ELECTOR had to retrieve the reference reads my mapping the uncorrected
long reads to the reference genome, as if they were actual real long reads. We ran this experiment on the
S. cerevisiae dataset, and to further validate ELECTOR’s behaviour on real data, we assessed correction
of both a hybrid corrector, HALC, and a self-corrector, Canu. Results of these experiments are shown in
Table 6. We observe that ELECTOR’s results in simulated and real mode are consistent. In particular, the
recalls and precisions are very similar. The same trend appears as for the comparison to LRCstats: the two
modes show some differences in the input reads (as shown by the throughputs), that have an impact on the
differences observed between their results. This is due to the bias induced by the additional alignment step
that is required in the real mode. The main differences that appear in the metrics occur on metrics that
are highly dependent on the alignment results, such as the number of trimmed and extended reads, and the
sizes of these events.
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Method HALC HG-CoLoR LoRDEC Canu daccord MECAT
A. baylyi
Corrector 22min 47min 6min 10min 20min 43sec
LRCstats 3h50 3h52 3h38 3h10 3h59 2h02
ELECTOR 14min 10min 45min 9min 12min 9min
E. coli
Corrector 24min 45min 8min 12min 27min 52sec
LRCstats 4h58 5h02 4h37 4h05 4h20 2h30
ELECTOR 28min 13min 1h17 11min 12min 11min
S. cerevisiae
Corrector 1h19 4h32 28min 31min 1h15 2min
LRCstats 10h56 12h26 12h14 10h46 12h04 6h59
ELECTOR 1h55 1h07 4h59 32min 44min 32min
C. elegans
Corrector 5h59 88h56 6h01 4h33 - 22min
LRCstats 83h29 81h05 70h00 85h08 - -
ELECTOR 32h35 10h30 29h48 4h19 - 3h12

Table 4: Runtimes of ELECTOR and LRCstats on different datasets and different correctors. Both were
launched with 9 threads. The runtimes of the correctors are also included as a matter of comparison. The
speediest assessment method is shown in bold for each case. When the assessment method is also speeder
than the correction method itself, it is underlined. daccord could be run on the C. elegans dataset, and
LRCstats crashed on the C. elegans dataset corrected by Canu.

Genome Read length Memory (MB) Elapsed time CPU time
E. coli 1k 699 2:07 9:37
E. coli 10k 621 2:13 9:13
E. coli 100k 604 2:14 9:39
E. coli 1M 817 2:44 11:05

Table 5: Performance results obtained from a simulated coverage of 10x of the respective reference genome
on a 20 core cluster with 250GB.

3.3.2 Results on a real human dataset

In order to demonstrate ELECTOR’s results in a realistic scenario for large genomes, we selected a correction
of human sequencing data, and show results in Table 7. The reads were corrected with MECAT before
running ELECTOR. Using 20 threads, we were able to obtain the results for the 123,410 corrected reads of
the dataset in less than 7 hours. We report ELECTOR’s metrics and runtime on this correction in Table 7.
ELECTOR shown that MECAT is able to correct human reads with a 20% error rate with more than 90%
of recall and precision. Such results are consistent with results shown in MECAT’s publication.

4 Discussion and perspectives

We described and demonstrated ELECTOR’s heuristics for multiple sequence alignment and its important
speedup in comparison to LRCstats. While showing same trends in the results they display for correctors,
LRCstats and ELECTOR have differences in their common metrics. This is explained by a set of different
choices and heuristics between the two tools. First, split reads are not aligned and reported the same way.
LRCstats concatenates the different parts of a split read before aligning the concatenation, even if a missing
zone can exist between two fragments. This behavior can complicate the alignment task and introduce a
bias in the output metrics. On the contrary, ELECTOR processes the different fragments separately be-
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Metric Uncorrected Corrected by Halc
Simulated Real Simualted Real

Throughput 298,370,918 297,798,663 212,266,193 212,141,319
Error Rate 0.1403 0.1449 0.0042 0.0104

Recall - - 0.9997 0.9938
Precision - - 0.9959 0.9897
Insertions 28,772,841 26,796,500 100,874 90,737
Deletions 5,235,890 5,042,365 1,035,978 1,490,680

Substitutions 4,058,953 3,682,863 198,853 182,590
Trimmed/split - - 12,043 13,320

Mean missing size - - 577.5 896.0
Extension - - 71.0 39.0

Mean extension size - - 53.2 72.0
Low quality - - 160.0 152.0
Small reads - - 3436.0 3438.0

%GC - - 38.2 38.2
Uncorrected Corrected by Canu

Throughput 244,560,743 244,402,568 229,555,492 229,403,697
Error Rate 0.1425 0.1442 0.0506 0.052

Recall - - 0.9515 0.9499
Precision - - 0.9495 0.9481
Insertions 30,090,583 28,452,967 12,252,413 10,965,458
Deletions 5,483,119 5,800,286 2,574,320 2,916,564

Substitutions 4,375,017 4,081,445 2,197,172 1,940,888
Trimmed/split - - 2216.0 4943.0

Mean missing size - - 35.1 74.7
Extension - - 178.0 169.0

Mean extension size - - 30.7 31.9
Low quality - - 43.0 42.0
Small reads - - 0.0 0.0

%GC - - 38.7 38.7

Table 6: Comparative results output ELECTOR’s results using simulated and real modes on the same set
of reads from yeast reads using a hybrid corrector (HALC) and a self corrector (Canu).
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uncorrected corrected with MECAT
Throughput 1108877795 1017050250
Recall(%) - 91.48
Precision(%) - 90.11
Error rate 0.2111 0.1002
Average correct bases rate 0.7889 0.8998
Number of trimmed/split reads - 109228
Mean missing size in trimmed/split reads - 423.4
Number of over-corrected reads by extention - 48
Mean extension size in over-corrected reads - 101.8
%GC 47.4 47.0
Small reads - 131
Low quality corrected reads - 313
Insertions 49191851 2524376
Deletions 152684864 104724600
Substitutions 30976164 1619551
Homopolymer ratio - 0.8179
Runtime - 6h27min

Table 7: ELECTOR results for MECAT correction of real human dataset. ELECTOR assessed 123,410
reads. Small reads are corrected reads which length is lower than 10.0% of the original read. Homopolymer
ratio is the ratio of homopolymer sizes in corrected vs reference. We reported the wallclock time of the run,
using 20 threads.

fore reconstituting the whole alignment, and takes into account missing parts. Another key point is that
LRCstats starts from the uncorrected versus reference read alignment provided by the SAM file of the sim-
ulation. This SAM file is generated sequentially during the simulation, and can thus contain events such as
”1I1D” (one insertion followed by one deletion), that are considered as such by LRCstats. On the contrary,
this example double event is detected as a single mismatch by ELECTOR. Such differences have an impact
on the insertion/deletion/substitution counts. Finally, LRCstats’ general alignment scheme is different from
ELECTOR’s. We could report events where LRCstat’s alignment is suboptimal in comparison to Needleman
and Wunsch results, while ELECTOR’s result is close to Needleman and Wunsch.

ELECTOR is designed to work with simulated reads, and is expected to give the best results when
working with it. The real data mode uses a prior alignment of the reads on a reference genome to retrieve
the reference versions of the reads. We demonstrated that ELECTOR’s main metrics in its real data mode
remain similar to what would be obtained in the simulated mode. This shows two limitations of ELECTOR:
first, even if the data can come from an actual sequencing experiment, a reference genome needs to exist
for the sequenced species in order to retrieve the reference reads. Second, we encourage users to be very
cautious about ELECTOR’s results with real data when looking at trimmed/split reads numbers and their
sizes, since these metrics highly depend on the results of the reference alignment.

With ELECTOR we provide a tool to rapidly assess the quality of a correction through a wide range
of metrics. When looking at recent correctors publications, self-correction seems to be giving better results
than hybrid correction, as soon as the long read coverage is sufficient (over 30X) [1]. This can be explained
by difficulties to align short reads on long reads, for instance because of repeated sequences covered by
long reads. It also seems that self correction leads to less fragmented corrected sequences. However, such
statements lacks a global study that goes over the sum of individual publications. ELECTOR could be the
basis for such a benchmark study.

In ELECTOR we propose an efficient segmentation heuristic for multiple alignment. We adapted this
task for the original and specific long read application. There is a current interest for segmented multiple
alignment schemes [23]. However, these methods are not specifically designed for noisy long reads. In such
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a perspective, a generalization of our segmentation strategy for long reads multiple alignments of any size
would be very interesting.

A future application is the assessment of correction methods directly targeted at RNA long reads se-
quencing. As shown in a recent study [24], RNA long reads have specific requirements that are not met by
current methods, which calls for new correctors in the future. ELECTOR could be coupled with a reference
transcriptome or a RNA long read simulator, although, currently, such simulation software does not exist to
our knowledge.

5 Conclusion

We presented ELECTOR, a tool that enables the evaluation of self and hybrid correction methods, and that
can be used in the conception of a benchmark. ELECTOR provides a wide variety of metrics that include
base-wise computation of recall, precision, error rate of corrected reads as well as indels, substitutions and
homopolymers correction. In particular, recall and precision allow to spot correction methods specific pitfalls,
that remain unclear when only looking at the error rates of the corrected reads. These results are presented
in a text summary and in pdf and png versions, which allows users to easily integrate them in their reports.

We used ELECTOR on a large list of state-of-the-art hybrid and self correctors, ran on reads from small
bacterial genomes to large mammal genomes. With the applications on large genomes and ever increasing
lengths of long reads in mind, we designed ELECTOR to be time-saving and scalable. We shown that for
most datasets and correctors, ELECTOR runs in a similar amount of time as the corrector itself. We also
demonstrated that it can scale to novel ultra long reads.
Thus, it represents a major improvement in comparison to LRCstats. Since ELECTOR is based on multiple
sequence alignment, we adapted this strategy to our scaling objectives. We proposed an innovative and
promising algorithm of segmentation for multiple sequence alignment of noisy long reads. This procedure
drastically reduces the time footprint of the multiple alignment step in ELECTOR. We believe it could be
generalized for broad applications implying multiple sequence alignment.

6 Acknowledgements

References

[1] Fritz J Sedlazeck, Hayan Lee, Charlotte A Darby, and Michael C Schatz. Piercing the dark matter:
bioinformatics of long-range sequencing and mapping. Nature Reviews Genetics, page 1, 2018.

[2] David Laehnemann, Arndt Borkhardt, and Alice Carolyn McHardy. Denoising DNA deep sequencing
data-high-throughput sequencing errors and their correction. Briefings in bioinformatics, 17(1):154–179,
2015.

[3] Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioin-
formatics, 32(14):2103–2110, 2016.

[4] Xiao Yang, Sriram P Chockalingam, and Srinivas Aluru. A survey of error-correction methods for
next-generation sequencing. Briefings in bioinformatics, 14(1):56–66, 2012.

[5] Giles Miclotte, Mahdi Heydari, Piet Demeester, Stephane Rombauts, Yves Van de Peer, Pieter Au-
denaert, and Jan Fostier. Jabba: hybrid error correction for long sequencing reads. Algorithms for
Molecular Biology, 11(1):10, 2016.

[6] Sean La, Ehsan Haghshenas, and Cedric Chauve. LRCstats, a tool for evaluating long reads correction
methods. Bioinformatics, 33(22):3652–3654, 2017.

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 7, 2019. ; https://doi.org/10.1101/512889doi: bioRxiv preprint 

https://doi.org/10.1101/512889
http://creativecommons.org/licenses/by-nd/4.0/


[7] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R
Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al. Nanopore sequencing and assembly
of a human genome with ultra-long reads. Nature biotechnology, 36(4):338, 2018.

[8] Chen Yang, Justin Chu, René L Warren, and Inanç Birol. NanoSim: nanopore sequence read simulator
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