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Abstract 

The human brain is a dynamic networked system that continually reconfigures its connectivity 

patterns over time. Thus, developing approaches able to adequately detect fast brain dynamics is 

critical. Of particular interest are the methods that analyze the modular structure of brain 

networks, i.e. the presence of clusters of regions that are densely inter-connected. In this paper, 

we propose a novel framework to identify fast modular states that dynamically fluctuate over 

time during rest and task. We validated our method using MEG data recorded during a finger 

movement task, identifying modular states linking somatosensory and primary motor regions. 

The algorithm was also validated on dense-EEG data recorded during picture naming task, 

revealing the sub-second transition between several modular states which relate to visual 

processing, semantic processing and language. Next, we validated our method on a dataset of 

resting state dense-EEG signals recorded from 124 patients with Parkinson’s disease and 

different cognitive phenotypes. Results disclosed brain modular states that differentiate 

cognitively intact patients, patients with moderate cognitive deficits and patients with severe 

cognitive deficits. Our new approach tracks the brain modular states, in healthy subjects and 

patients, on an adequate task-specific timescale. 
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1. Introduction 

The human brain is a modular dynamic system. Following fast neuronal activity (Pfurtscheller 

and Aranibar, 1977; Pfurtscheller and Lopes Da Silva, 1999), the functional organization of 

resting (Baker et al., 2014; Damaraju et al., 2014; de Pasquale et al., 2015, 2012; Kabbara et al., 

2017) and task-evoked connectivity (Bola and Sabel, 2015; Hassan et al., 2015; Hutchison et al., 

2013; O’Neill et al., 2017b) are in constant flux. Hence, an appropriate description of time-

varying connectivity is of utmost importance to understand how cognitive and behavioral 

functions are supported by networks.  

Electro/magneto-encephalography (EEG/MEG) are unique noninvasive techniques, which allow 

for the tracking of brain dynamics on a millisecond time-scale, a resolution not reachable using 

other techniques such as the functional Magnetic Resonance Imaging (fMRI) (Cohen, 1972; 

Nunez and Srinivasan, 2007; Penfield and Jasper, 1954). In this context, several methods have 

been proposed to reveal when, and how the functional connections between brain regions vary 

during short-time (sub-second) experiments. Some of these studies proposed to group the 

temporal networks into states, where each state reflect unique spatial connectivity pattern. These 

brain states were mainly generated using Hidden Markov model approaches (Baker et al., 2014; 

Vidaurre et al., 2017), K-means clustering (Allen et al., 2017, 2014; Damaraju et al., 2014) or 

independent component analysis (O’Neill et al., 2017b). Other studies have tried to investigate 

the dynamic topological changes using graph theoretical analysis (de Pasquale et al., 2015; 

Kabbara et al., 2017).  

Due to the modular organization of the human brain network (Sporns and Betzel, 2016a), 

methods for detecting network communities (or modules) are of particular interest (Sporns and 

Betzel, 2016b). These methods decompose the network into building blocks or modules that are 
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internally strongly connected, often corresponding to specialized functions. Importantly, brain 

modularity has been revealed to be related to behavior involved in learning (Bassett et al., 2011), 

remembering, attention and integrated reasoning (Gallen et al., 2016).  

To detect modules, many community detection methods have been proposed (M. Girvan and 

Newman, 2002; Newman and Girvan, 2004). Using the most widely applied community 

detection methods, brain networks are often analyzed as static arrangements of nodes and edges 

with a number of studies starting to explore how the modular organization shapes the dynamics 

of neural activity (Bassett et al., 2015a, 2013, 2011; Sporns and Betzel, 2016b). One of the 

algorithms used to characterize the flow of communities across time is multi-slice modularity 

(also called multi-layer modularity) (Mucha et al., 2010), which has been used to follow changes 

of the modular architecture across time (Bassett et al., 2015b, 2011). However, using this 

technique solely, there are basically two strategies to analyze the modular structures: i) generate 

a community structure consistent over time which will constrain the dynamic analysis or ii) 

consider each temporal community structure as a state which is technically very difficult and 

doesn’t reflect the underlying brain functions. Hence, it does not ‘automatically’ decipher 

functional modular brain states i.e. subset of brain modules implicated in a given brain function 

at a given time period.   

Here, we propose a novel framework aiming to elucidate the main modular brain structures, 

called ‘modular states’ (MS), which fluctuate over time during rest and task. This new method is 

based on temporally categorizing the modular structures that share the same topology by 

quantifying the similarity between their partitions (Figure 1). The proposed framework was 

validated in simulation and on three different MEG/EEG datasets, recorded in rest and task from 

healthy and/or patients. Our method revealed both time-varying functional connectivity and the 
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corresponding spatial patterns. We were able to track the space/time dynamic of brain networks 

in task-adapted timescale. 

2. Materials and methods 

We have developed two versions of the algorithm i) “categorical” where we aim to find the main 

modular structures over time, with no interest in their sequential order and ii) “consecutive” 

where the objective is to find the modular structures in a successive way. The two versions are 

described hereafter. 

2.1. Categorical version 

It includes four main steps: 

1- Compute the dynamic functional connectivity matrices between the regional time-series 

using a sliding window approach (Allen et al., 2014; Hutchison et al., 2013; Kabbara et 

al., 2017). Consequently, a weighted network is generated at each time window (Figure 1. 

A). 

2- Decompose each network into modules (i.e clusters of nodes that are internally strongly 

connected, but externally weakly connected) (Figure 1. A). To do that, different 

modularity algorithms were proposed in the literature (Blondel et al., 2008b; Duch and 

Arenas, 2005; M. Girvan and Newman, 2002; Guimerà and Amaral, 2005).  
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Figure 1. The algorithm procedure. A)  Computation of modules for each temporal network (Wt). B) Assessment 

of the similarity between the dynamic modular structures. C) Clustering the similarity matrix into “categorical 

Modules”. 
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In our study, we adopted the consensus clustering approach which was previously used in many 

studies (Bassett et al., 2013; Kabbara et al., 2017): Given an ensemble of partitions acquired 

from the Newman algorithm (M Girvan and Newman, 2002) and Louvain algorithm (Blondel et 

al., 2008a) repeated for 200 runs, an association matrix is obtained. This results in a N*N matrix 

(N is the number of nodes) and an element 𝐴𝑖,𝑗 represents the number of times the nodes 𝑖 and 𝑗 

are assigned to the same module across all runs and algorithms. The association matrix is then 

compared to a null model association matrix generated from a permutation of the original 

partitions, and only the significant values are retained (Bassett et al., 2013). To ultimately obtain 

consensus communities, we re-clustered the association matrix using Louvain algorithm.  

3- Assess the similarity between the temporal modular structures (Figure 1. B). In this 

context, several methods have been suggested to compare community structures (Traud et 

al., 2008). Here, we focused on the pair-counting method, which defines a similarity 

score by counting each pair of nodes drawn from the N nodes of a network according to 

whether the pair falls in the same or in different groups in each partition (Traud et al., 

2008). We considered the z-score of Rand coefficient, bounded between 0 (no similar 

pair placements) and 1 (identical partitions). This yield a T*T similarity matrix where T 

is the number of time windows.   

4- Cluster the similarity matrix into “categorical” modular states (MS) using the consensus 

clustering method (Figure 1. C). This step combines similar temporal modular structures 

in the same community. Hence, the association matrix of each “categorical” community 

is computed using the modular affiliations of its corresponding networks. 
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2.2. Consecutive version: 

The difference between the two versions of the algorithm is essentially in the fourth step, in 

which the final communities were defined. Particularly, the similarity matrix is segmented in a 

sequential way using the following steps: 

- Threshold the similarity matrix using an automatic thresholding algorithm described in 

(Genovese et al., 2002). Briefly the matrix was converted into a p-value map which is 

then thresholded based on the false discovery rate (FDR) controlling.  

- Apply a median filter in order to get smoother presentation of the similarity matrix. 

- Segment the matrix in a sequential way following the algorithm illustrated in the 

flowchart of Figure 2. In brief, the method groups similar consecutive modular structures. 

As these modular structures show high similarity values with each other, the algorithm 

detects the squares located around the diagonal of the similarity matrix. As presented in 

Figure 2, the condition for which two consecutive structures are associated to the same 

state is the following:  

𝑆𝑖,𝑗 > 𝛼 

Where 𝑆𝑖,𝑗 = ∑ 𝑎𝑖+𝑗,𝑖+𝑘 + ∑ 𝑎𝑖+𝑘,𝑖+𝑗 − 𝑎𝑖+𝑗,𝑖+𝑗
𝑗
𝑘=0

𝑗
𝑘=0              ;               𝑖, 𝑗 𝜖 [1, 𝑇] 

where 𝑎𝑙,𝑚 denotes the similarity value between the modular structure corresponding to 

the time window 𝑙 and that corresponding to the time window 𝑚.  

𝛼  is the “accuracy parameter”, strictly bounded between 0 and 1. It regulates the 

temporal-spatial accuracy of detected modular states. We recommend choosing an 

adaptive value of 𝛼. In this paper, we choose 𝛼 equals to the average of the similarity 

matrix.  A segment is considered as relevant if the number of included time-windows is 

greater than 𝑗𝑚𝑖𝑛 (the minimal size allowed for a segment). 
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Figure 2. The flowchart of the segmentation algorithm. 

The algorithm is illustrated in Figure 3. (I): starting with 𝑖 = 1, 𝑗 = 0; and considering that 

𝑎11 is lower than 𝛼, we obtained 𝑆1,0 = 𝑎11 < 𝛼, and the algorithm moves to the next time 

window 𝑖 = 2. (II): as 𝑆2,0 = 𝑎22 is greater than 𝛼, 𝑗 is incremented by 1. (III): having 

𝑆2,1 =
𝑎23+𝑎23+𝑎33

3
 > 𝛼 , the second and the third time windows are associated to the 

segment. (IV): the algorithm succeeds to add also the fourth time window as 𝑆2,2 =

𝑎24+𝑎42+𝑎34+𝑎43+𝑎44

5
> 𝛼 . (V): Then, for 𝑗 = 3 , we obtain 𝑆2,3 =

𝑎25+𝑎35+𝑎45+𝑎55+𝑎52+𝑎53+𝑎54

7
< 𝛼. This means that the fifth time window differs from the 

previous windows in his modular structure. Afterwards, the algorithm moves toward 

finding another segment by incrementing 𝑖 and repeating the process (IV).  
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- For each detected segment, the modular structure is obtained after computing the 

association matrix of the corresponding time windows modular affiliations.  

 

Figure 3. An illustrative example describing the segmentation algorithm 
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2.3. Simulated data 

We simulated adjacency tensor data following the methodology applied in (O’Neill et al., 

2017b). Briefly, four N*N adjacency matrices 𝑃𝑗 were constructed, where 𝑗 ∈ [1,4] and N is the 

number of ROIs. We used an anatomical atlas of 221 ROIs with the mean of Desikan-Killiany 

atlas sub-divided by (Hagmann et al., 2008), yielding to N=221. The adjacency matrices and the 

3D visualization of the networks are presented in Figure 4.A. Following this step, the time 

evolution of dynamic connectivity in each network is given by: 

𝑀𝑗(𝑡) = 𝑎. 𝑓1𝑗(𝑡) + 𝑏. 𝑓2𝑗(𝑡) 

𝑓1𝑗(𝑡) is the modulation  function, which was represented by Hanning window of unit amplitude. 

𝑓2𝑗(𝑡) represents uncorrelated Gaussian noise added to the  simulated time-courses, and 𝑎 and 𝑏 

are scalar values set to 0.45 and 0.15 as in (O’Neill et al., 2017b).  

In our study, 𝑀𝑗(𝑡) is sampled at 3. 3̅ Hz (to obtain a sliding window of 0.3s as in real data). The 

onset as well as the duration of each module structure is illustrated in Figure 4.B. We then 

combined the four network matrices in order to generate single adjacency matrix at each time 

point 𝑡 over a time-course spanning 60 seconds. As a final step, we added a random Gaussian 

noise to the adjacency tensor, and the standard deviation of the noise was allowed to vary 

between 0.2 and 0.5. 
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Figure 4. The simulation scenario. A) Left: the adjacency matrix Pj of the constructed networks, Right: the 3D 

cortical presentation of the modular structures of the simulated networks. B) the time axis showing the beginning 

and the end of each network Mj (which was generated by combining Pj to uncorrelated noise). 
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2.4. Validation 

On simulated data, we evaluated the performance of the algorithm by computing the similarity 

between the reconstructed and the simulated (reference) networks, taking into account both 

spatial and temporal similarities. The spatial similarity is given by the z-score of Rand 

coefficient between the simulated and the constructed modular structures, while the temporal 

similarity represents the rate of the correct affiliation of time windows. 

2.5. Real data 

2.5.1. Dataset 1- Self paced motor task for healthy participants (MEG data): Previously 

used in (O’Neill et al., 2017b, 2015; Vidaurre et al., 2016), this dataset includes 15 

participants (9 male, 6 female) asked to press a button using the index finger of their 

dominant hand, once every 30 seconds. Using a 275-channel CTF MEG system 

(MISL; Coquitlam, BC, Canada), MEG data were recorded at a sampling rate of 

600Hz. MEG data were co-registered with a template MRI. The cortex was 

parcellated using the Desikan-Killiany atlas (68 regions). The pre-processing, the 

source reconstruction and the dynamic functional connectivity computations were 

performed similarly as in O’Neill et al. (O’Neill et al., 2017b). Briefly, the pre-

processing comprises the exclusion of trials (t= -12s → 12s) contaminated by noise. 

Then, source time courses were reconstructed using a beamforming approach (please 

refer to (O’Neill et al., 2017b) for more details). Afterwards, the regional time-series 

were symmetrically orthogonalized following the method proposed in (Colclough et 

al., 2015) to remove the effects of “signal leakage”. The amplitude envelopes of the 

time courses were obtained using Hilbert transform. Finally, the dynamic connectivity 

was estimated by the Pearson correlation measure using a sliding window approach of 
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6 s of length. The sliding window was shifted by 0.5 s over time. The number of 

connectivity matrices obtained for each trial was then 49. The consecutive scheme of 

the proposed method was tested.  

2.5.2. Dataset 2- Picture naming task for healthy participants (dense-EEG data): Twenty 

one right-handed healthy subjects (11 women and 10 men), with no neurological 

disease participated in this study. In a session of about eight minutes, each participant 

was asked to name 148 displayed pictures on a screen using EPrime 2.0 software 

(Psychology Software Tools, Pittsburgh, PA) (Schneider et al., 2002). Oral responses 

were recorded to set the voice onset time. This study was approved by the National 

Ethics Committee for the Protection of Persons (CPP), conneXion study, agreement 

number (2012- A01227-36), and promoter: Rennes University Hospital. All 

participants provide their written informed consent to participate in this study. A 

typical trial started with the appearance of an image during 3 sec followed by a 

jittered inter-stimulus interval of 2 or 3 sec randomly. Errors in naming were 

discarded from the analysis. A total of 2926 on 3108 events were considered.  

Dense-EEG data were recorded using a system of 256 electrodes (EGI, Electrical 

Geodesic Inc.). EEGs were collected at 1 kHz sampling frequency and band-pass 

filtered between 3 and 45 Hz The pre-processing and the computation of the 

functional connectivity followed the same pipeline applied in (Hassan et al., 2015) . 

In brief, each trial (t=0 → 600ms) was visually inspected, and epochs contaminated 

by eye blinks, muscle movements or other noise sources were rejected. As described 

in the previous study (Hassan et al., 2015), the source connectivity method was 

performed using the wMNE/PLV combination, and the dynamic functional 
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connectivity was computed at each millisecond. Authors also used the Destrieux atlas 

sub-divided into 959 regions (Hassan et al., 2015). Finally, a tensor of dimension 959 

x 959 x 600 was obtained and analyzed using the consecutive scheme of our 

algorithm. 

2.5.3. Dataset 3- resting state in Parkinson's disease patients (dense-EEG data): This 

dataset includes 124 patients with idiopathic Parkinson's disease defined according to 

the UK Brain Bank criteria for idiopathic Parkinson's disease (Gibb and Lees, 1988). 

These patients were separated into three groups: G1) cognitively intact patients 

(N=63), G2) patients with mild cognitive deficits (N=46) and G3) patients with 

severe cognitive impairment (N=15). All participants gave their informed consent to 

participation in the study, which had been approved by the local institutional review 

boards (CPP Nord-Ouest IV, 2012-A 01317-36, ClinicalTrials.gov Identifier: 

NCT01792843). Dense-EEG were recorded with a cap (Waveguard®, ANT software 

BV, Enschede, the Netherlands) with 122 scalp electrodes distributed according to the 

international system 10-05 (Oostenveld and Praamstra, 2001). Electrodes impedance 

was kept below 10 kΩ. Patients were asked to relax without performing any task. 

Signals were sampled at 512 Hz and band-pass filtered between 0.1 and 45 Hz. 

The data were pre-processed according to (Hassan et al., 2017) dealing with the same 

dataset. Briefly, EOG artifact detection and correction was applied following the 

method developed in (Gratton et al) (Gratton et al., 1983). Afterwards, epochs with 

voltage fluctuation >+90 μV and <-90 μV were removed. For each participant, two 

artifact-free epochs of 40s lengths were selected. This epoch length was used 
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previously and considered as a good compromise between the needed temporal 

resolution and the reproducibility of the results in resting state (Kabbara et al., 2017).  

To compute the dynamic functional connectivity, the steps adopted here are the same 

used in many previous studies (Hassan et al., 2017; Kabbara et al., 2018, 2017). First, 

EEG data were co-registered with a template MRI through identification of the same 

anatomical landmarks (left and right pre-auricular points and nasion). Second, the 

lead field matrix was computed for a cortical mesh with 15,000 vertices using 

OpenMEEG package (Gramfort et al., 2010) available in Brainstorm. The noise 

covariance was estimated using one minute resting segment. After that, the time-

series of EEG sources were estimated using the wMNE algorithm where the 

regularization parameter was set according to the signal to noise ratio (λ= 0.1 in our 

analysis). An atlas-based segmentation approach was used to project EEGs onto an 

anatomical framework consisting of 68 cortical regions identified by means of 

Desikan-Killiany (Desikan et al., 2006) atlas. The dynamic functional connectivity 

was then computed using a sliding window over which PLV was calculated (Lachaux 

et al., 1999). In the previous study (Hassan et al., 2017), the disruptions of the 

functional connectivity were found in the alpha2 band (10-13 Hz). For this reason, we 

considered the same frequency band in our analysis. To obtain a sufficient number of 

cycles at the given frequency band, we chose the smallest window length that is equal 

to 
6

central frequency
 as recommended in (Lachaux et al., 1999). This yields to a sliding 

window of 0.52 s. We then adopted a proportional threshold of 10% to remove 

spurious connections from the connectivity matrices. These steps produce, for each 

epoch, a connectivity tensor of dimension N x N x T where N is the number of ROIs 
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(68 regions), and T is the number of time windows (77 time-windows). This tensor is 

formally equivalent to dynamic functional connectivity matrices, and was analyzed 

using the categorical version of the proposed algorithm. 

3. Results 

The dynamic functional connectivity matrices were obtained using a sliding window approach 

giving a weighted network at each time window. By applying a community detection algorithm 

(Louvain method), each network was then decomposed into modules (i.e clusters of nodes that 

are internally strongly connected, but externally weakly connected). The similarity between the 

temporal modular structures was calculated (Figure 1.B). Finally, the modular states (MS) were 

obtained by applying community detection algorithm to the similarity matrix (Figure 1.C). 

We propose two different frameworks i) “categorical” where the objective is to find the main 

modular structures over time, without any interest in their sequential order and ii) “consecutive” 

where the objective is to find the modular structures in a successive way.   

3.1. Validation on simulated data 

Figure 5 shows the results of the categorical method applied on the dynamic networks generated 

by the simulation scenario (𝑆𝑇𝐷𝑛𝑜𝑖𝑠𝑒 = 0.2).  Four modular states were obtained: MS1, MS2, 

MS3 and MS4. Figure 5.A illustrates the modular states’ time courses, showing the most likely 

state at each time-window whilst Figure 5.B shows the 3D representation of the MS. Clearly, the 

four simulated modular structures have been successfully reconstructed. However, one time 

window that actually belongs to the background (i.e. random) has been wrongly affiliated to 

MS2. Moreover, MS3 state time course presented two false time window detection: one belongs 

to MS4, and the other belongs to the background. To quantitatively validate the obtained results, 
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we compared the simulated structures (M1, M2, M3 and M4) to the reconstructed structures 

(MS1, MS2, MS3 and MS4) in terms of spatial and temporal similarities. The spatial similarities 

between the simulated and the reconstructed data are 0.99, 0.98, 0.99 and 0.98 for MS1, MS2, 

MS3, and MS4 respectively. The temporal similarities are 0.79, 0.83, 0.9 and 0.71 for MS1, 

MS2, MS3, and MS4 respectively. 

Using the consecutive method, the algorithm has successfully segmented the similarity matrix 

yielding to the detection of five modular states (Figure 6.A). Their 3D representations are shown 

in Figure 6.B. One can remark that MS1 (spatial similarity=0.94; temporal similarity=0.88), MS2 

(spatial similarity=0.99; temporal similarity=0.94), MS3 (spatial similarity=0.97; temporal 

similarity=0.77), MS4 (spatial similarity=1; temporal similarity=0.88), and MS5 (spatial 

similarity=0.95; temporal similarity=1) matched, temporally and spatially, the simulated 

networks generated at the corresponding time-windows.  

Results corresponding to 𝑆𝑇𝐷𝑛𝑜𝑖𝑠𝑒 = 0.35; 𝑆𝑇𝐷𝑛𝑜𝑖𝑠𝑒 = 0.5 are illustrated in the supplementary 

materials. In brief, results show that using the categorical algorithm, the spatial characterizations 

of the four modular states were successfully detected. However, the state time-course of MS3 

failed to detect the second corresponding segment (Figure S1, S2). Using the consecutive 

algorithm, the five MS were temporally detected (Figure S3, S4).  
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Figure 5. Results of the categorical method applied on simulated data. A) the time course of the four modular 

structures reconstructed. The grey square indicates false time-window detection. B) 3D representation of the four 

modular structures states. 
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Figure 6. Results of the consecutive method applied on simulated data. A) The results of the segmentation 

algorithm used to derive the consecutive modular structures from the similarity matrix by: 1) Thresholding the 

matrix using FDR, 2) applying a median filter on the thresholded matrix and 3) extracting the most significant 

segments (See methods section for more details about the consecutive algorithm steps). B) The 3D representation of 

the five consecutive modular structures (MSs) obtained. C) The difference between the simulated time axis and the 

obtained time axis. 
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3.2. Real data 

3.2.1. Dataset 1- self paced motor task for healthy participants (MEG data): 

The consecutive algorithm was applied on the computed dynamic connectivity matrices averaged 

over all trials and subjects. The same dataset and methods was previously used in (O’Neill et al., 

2017b, 2015; Vidaurre et al., 2016). The algorithm results in one significant MS found between -

0.5s and 1.5 s (Figure 7). As illustrated, this module implicates the sensory motor area, the post 

and pre-central regions of both hemispheres.  

 

Figure 7. The MS of the MEG motor task obtained using the ‘consecutive’ method.  

 

3.2.2. Dataset 2- picture naming task for healthy participants (dense-EEG data): 

The objective of using this dataset was to track the fast space/time dynamics of functional brain 

networks at sub-second time scale from the onset (presentation of the visual stimuli) to the 

reaction time (articulation). Hence, the consecutive version was applied on the dynamic 

connectivity matrices averaged over subjects. 
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Figure 8.A shows the obtained results revealing that the cognitive process can be divided into 

five modular structures: The first MS corresponds to the time period ranging from the stimulus 

onset to 130 ms and presents one module located mainly in the occipital region. The second MS 

is observed between 131 and 187 ms, and involves one module showing occipito-temporal 

connections. The third MS is identified between 188 and 360 ms, and illustrates a module 

located in the occipito-temporal region, and another module located in the fronto-central region. 

This structure was then followed by a fourth MS, found over the period 361-470 ms. MS4 was 

very similar to the previous MS but with additional fronto-central connections. The last MS is 

observed between 471 and 500 ms and it shows a module connecting the frontal, the central and 

the temporal regions. It is worth noting that these MS denote the transitions from the visual 

processing and recognition the semantic processing and categorization to the preparation of the 

articulation process (Hassan et al., 2015; VanRullen and Thorpe, 2001). 
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Figure 8. The sequential MSs of the EEG picture naming task obtained using the consecutive method and 

their corresponding cognitive functions. 

3.2.3. Dataset 3- resting state in Parkinson's disease patients (dense-EEG data): 

Our objective here was to validate the usefulness of the categorical version in detecting the 

modular alterations between G1, G2 and G3. To do that, the dynamic connectivity matrices of 

the three groups were concatenated over time, forming a single data tensor of dimension N x N x 

T, where N is the number of ROIs, and T is equal to the number of time-windows * the number 

of patients (Figure 9). The algorithm was then applied to identify the modular structures that are 

common to the three groups, and those who are specific to each group.  

Results are illustrated in Figure 9. Five modular structures were identified (MS1, MS2, MS3, 

MS4 and MS5). Three MSs were found for G1 and G2. However, the number of MS decreased 

from three to two MSs in G3. Results revealed that MS1 was found to be present in the three 
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groups while MS2 were present only in G1 and G2. The modular structure MS2 (absent in G3) is 

illustrated in Figure 9 and includes two modules involving mainly fronto-central and occipito-

temporal connections. The difference between G1 and G2 was reflected by the absence of the 

structure MS3 replaced by the structure MS4 in G2. Results in Figure 9 showed that the 

difference concerns mainly the fronto-temporal connections. The difference between G2 and G3 

was reflected by the absence of the structure MS4 from G2 and the presence of the structure 

MS5 in G3. Figure 9 showed that the functional disruptions between G2 and G3 are mainly 

fronto-temporal connections. It is worth noting that the fronto-temporal disruptions were widely 

reported in mild cognitive impairments (Beyer et al., 2007; De Haan et al., 2012; Song et al., 

2011; H. Y. Zhang et al., 2009) while the central disruptions are widely observed in severe 

cognitive impairments (Hassan et al., 2017) and dementia (Song et al., 2011). 
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Figure 9. The analysis pipeline and the results of the categorical method applied on Parkinson’s disease EEG 

dataset.  A) The dataset composed of 124 patients partitioned into three groups: G1) cognitively intact patients 

(N=63), G2) patients with mild cognitive deficits (N=46) and G3) patients with severe cognitive impairment 

(N=15). B) The functional dynamic connectivity matrices of the three groups concatenated over time. C) The five 

modular structures obtained after applying the categorical algorithm on the concatenated tensor. D) The modular 

differences between G1 and G2, G1 and G3, G2 and G3. 
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4. Discussion 

In this paper, we have developed a novel framework to explore the fast reconfiguration of the 

functional brain networks during rest and task. This new method can be used to track the 

sequential evolution of brain modules during a task-directed paradigm or to identify the modular 

brain states that arise at rest. The simulation-based analysis showed the ability of the method to 

“re-estimate” the modular network structures over time. 

The new framework was validated on three different EEG/MEG datasets i) MEG data recorded 

from 15 healthy subjects during a self-paced motor task , ii) Dense-EEG data recorded from 21 

healthy subjects during a picture naming task and iii) Dense-EEG data recorded at rest from 124 

Parkinson’s disease patients with different cognitive phenotypes. Results show that our method 

can track the fast modular states of the human brain network at sub-second time scale, and also 

highlights its potential clinical applications, such as the detection of the cognitive decline in 

Parkinson’s disease. 

4.1. “Categorical” and “consecutive” processing schemes 

The two processing schemes proposed here are both derived from the similarity matrix between 

the temporal modules (Step 1→3 in Methods section). However, each version highlights a 

specific characterization of the modular structures, which can be then exploited depending on the 

application (time/condition dependent). . In particular, the results of the categorical algorithm on 

the simulated data reveal high spatial resolution and relatively low temporal resolution compared 

to those obtained using the consecutive algorithm. The low temporal resolution of the categorical 

version is reflected by the false (Figure 5) as well as the missed time-windows detection (Figure 

S1, Figure S2). In contrast, these time-windows were correctly detected by the consecutive 
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version despite their short length (Figure 6, Figure S3 and Figure S4). Yet, the low spatial 

resolution of the consecutive version can be illustrated by MS5 (Figure 6, Figure S3, Figure S4) 

that should represent M2 (Figure 4). This is probably due to the categorical version using the 

maximum number of available data points to generate their corresponding MS, whilst the 

consecutive version treats each temporal segment solely.  

We suggest using the consecutive version where sequential order of MSs is interesting to 

investigate such as the track of cognitive tasks. When the temporal aspects are not necessary, we 

would recommend the categorical version. 

4.2. Tracking of fast cognitive functions 

The brain dynamically reconfigures its functional network structure on sub-second temporal 

scales to guarantee efficient cognitive and behavioral functions (O’Neill et al., 2017a). Tracking 

the spatiotemporal dynamics of large scale networks over this short time duration is a 

challenging issue (Allen et al., 2014; Hutchison et al., 2013). In this paper, we aimed at 

examining how fast changes in the modular architecture shape the information processing and 

distribution in i) motor task and ii) picture naming task.   

Concerning the self-paced motor task, it is a simple task where only motor areas are expected to 

be involved over time. Our results showed indeed that motor module is clearly elucidated related 

to the tactile movement of the button press. The spatial and the temporal features of the obtained 

module are very close to the significant component obtained by (O’Neill et al., 2017b) using the 

temporal ICA method.   

The different MSs obtained in the EEG picture naming task are temporally and spatially 

analogous to the network brain states detected using other approaches such as K-means 

clustering by  (Hassan et al., 2015). In particular, the first MS representing the visual network is 
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probably modulated by the visual processing and recognition processes (Thorpe et al., 1996; 

VanRullen and Thorpe, 2001) .The second MS reflects the memory access reflected by the 

presence of the occipital-temporal connections (Martin and Chao, 2001). In other words, the 

brain tries to retrieve the information related to the picture illustrated from the memory (Martin 

and Chao, 2001). In the third and the fourth MSs, we notice the implication of a separated frontal 

module. This module may be related to the object category recognition  (tools vs. animals) and 

the decision making process (Andersen and Cui, 2009; Clark and Manes, 2004; Rushworth et al., 

2011). After taking the decision, the speech articulation and the naming process is prepared and 

started (Dronkers, 1996). This is reflected by the MS5 that combines the frontal, the motor and 

the temporal brain areas.  

4.3. Modular brain states and cognitive phenotypes in 

Parkinson’s disease 

Emerging evidence show that Parkinson’s disease (PD) is associated with alteration in structural 

and functional brain networks (Fornito et al., 2015). Hence, from a clinical perspective, the 

demand is high for a network-based technique to identify the pathological networks and to detect 

early cognitive decline in PD. Here, we used a dataset  with a large number (N=124) of PD 

patients categorized in three groups in terms of their cognitive performance: G1- cognitively 

intact patients, G2- patients with mild to moderate cognitive deficits and G3- patients with severe 

cognitive deficits in all cognitive domains. See (Dujardin et al., 2015; Hassan et al., 2017; Lopes 

et al., 2017) for more information about this database. 

The obtained MSs presented in Figure 9 show that while some MSs remain unchangeable during 

cognitive decline from G1 to G3, others are altered and replaced by new MS. More specifically, 

the number of MSs detected in G3 has decreased compared to G1 and G2, MS3 in G1 was 
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replaced by MS4 in G2 while MS4 in G2 was replaced by MS5 in G3. In addition, the alterations 

in G3 involve more distributed modules (central, fronto-temporal) than the alterations occurring 

between G1 and G2 (fronto-temporal modules) where the impairment still moderate.  

Interestingly, the underlying modular differences between the MSs of groups are consistent with 

the previously reported studies that explored the networks changes in PD (Beyer et al., 2007; 

Bosboom et al., 2009; Haan and Pijnenburg, 2009; Hassan et al., 2017; Song et al., 2011; Y. 

Zhang et al., 2009). Particularly, the loss of fronto-temporal connections in PD is supported by 

several EEG and MEG studies (Bosboom et al., 2009; Hassan et al., 2017; Y. Zhang et al., 

2009). Similarly, results of structural MRI studies reveal frontal and temporal atrophies in PD 

with mild cognitive impairment (Beyer et al., 2007; Song et al., 2011). Other functional (De 

Haan et al., 2012) and structural (Y. Zhang et al., 2009) studies showed that Alzheimer’s disease 

networks are characterized by fronto-temporal alterations. In addition, the brain regions involved 

in the modular alterations in G3 found in our study are in line with findings obtained by EEG 

edge-wise analysis (Hassan et al., 2017), and by structural MRI studies showing widespread 

atrophy associated with PD patients related dementia (Song et al., 2011). 

 

4.4. Methodological considerations 

First, we used a template anatomical image generated from MRIs of healthy controls for 

EEG/MEG source functional connectivity analysis. The template-based method is common 

practice in the absence of individual anatomical images and was previously employed by 

multiple EEG and MEG source reconstruction studies, because of non-availability of native 

MRIs (Hassan et al., 2017; Kabbara et al., 2018; Lopez et al., 2014).  Furthermore, a recent study 

showed that there are few potential biases introduced during the use of a template MRI compared 

to individual MRI co-registration. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/510727doi: bioRxiv preprint 

https://doi.org/10.1101/510727


Second, the connectivity matrices in Dataset 3 (Parkinson’s disease analysis) were thresholded 

using a “proportional threshold” approach in contrast to other datasets (Picture naming and self-

paced motor tasks) where a statistical threshold (FDR) approach was used (see Methods). The 

reason is that in dataset 3, three groups were compared. The proportional threshold approach, 

compared to other threshold approaches, ensures equal density between the analyzed groups (van 

den Heuvel et al., 2017). Moreover, studies suggest that FDR controlling procedures are 

effective for the analysis of neuroimaging data in the absence of inter-groups comparison 

(Bassett et al., 2013; Genovese et al., 2002; Patel and Bullmore, 2016). 

Third, we are aware that spurious correlations caused by the problem of “source leakage” should 

be carefully considered. Here, we have adopted in each dataset the same pipeline (from data 

processing to networks construction) used by the previous studies dealing with the same dataset. 

Thus, for the MEG dataset, the correction for source leakage was performed by the symmetric 

orthogonalisation method proposed by (Colclough et al., 2015). Using the same pipeline also 

helps to avoid influencing factors caused by changing the source connectivity method, the 

number of ROIs, the connectivity measure or the sliding window length. By relying on previous 

studies (Hassan et al., 2017, 2015; O’Neill et al., 2016), we provide appropriate input -already 

tested and validated - to the algorithm, regardless of how they were obtained. 
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