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Abstract 

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of 

clonal mosaicism, yet our knowledge of the causes and consequences of this is limited. Using a 

newly developed approach, we estimate that 20% of the UK Biobank male population (N=205,011) 

has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 

757,114 men of European and Japanese ancestry. These loci highlight genes involved in cell-cycle 

regulation, cancer susceptibility, somatic drivers of tumour growth and cancer therapy targets. 

Genetic susceptibility to LOY is associated with non-haematological health outcomes in both men 

and women, supporting the hypothesis that clonal haematopoiesis is a biomarker of genome 

instability in other tissues. Single-cell RNA sequencing identifies dysregulated autosomal gene 

expression in leukocytes with LOY, providing insights into how LOY may confer cellular growth 

advantage. Collectively, these data highlight the utility of studying clonal mosaicism to uncover 

fundamental mechanisms underlying cancer and other ageing-related diseases.  
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Introduction 

Each day the human body produces billions of highly specialised blood cells, generated from a self-

renewing pool of 50,000-200,000 haematopoietic stem cells (HSCs)1. As these cells age and divide, 

mutation and mitotic errors create genetic diversity within the HSC pool and their progenitors. If a 

genetic alteration confers a selective growth advantage to one cell over the others, clonal expansion 

may occur. This process propels the lineage to disproportionate frequency, creating a genetically 

distinct sub-population of cells. In the literature this is commonly referred to as clonal 

haematopoiesis, or more broadly (not restricting to considering leukocytes), clonal mosaicism2  or 

aberrant clonal expansion3.  

Population-based studies assessing the magnitude and effect of clonal mosaicism have been largely 

limited by the challenges of accurately detecting the expected low cell-fraction mosaic events in 

leukocytes using genotype-array or sequence read data4. Recent advances in statistical methodology 

have improved sensitivity, with approaches now able to catalogue mosaic events at higher 

resolution across the genome5,6. Detection of large structural mosaic events can vary considerably in 

size – from 50kb to entire chromosomes in length – and are typically present in only a small fraction 

of circulating leukocytes (<5%). It is well established that loss of the sex chromosomes – particularly 

the Y chromosome (LOY) in men – is by far the most frequently observed somatic change in 

leukocytes7–9. It remains unclear if and why absence of a Y chromosome provides a selective growth 

advantage in these cells – we hypothesise this could be due to (amongst other unknown 

mechanisms) the loss of a putative Y-linked cell-growth suppressor gene, loss of a Y-linked 

transcription factor influencing expression of cell-growth related autosomal genes or the reduced 

energy cost of cellular divisions. 

Our understanding of why some individuals, but not others, exhibit clonal mosaicism in blood is also 

limited. Previous studies have demonstrated robust associations with age, sex (clonal mosaicism is 

more frequent in males), smoking and inherited germline genetic predisposition2,4,10–15. Recent 

epidemiological studies have challenged the view that LOY in the hematopoietic system is a 

phenotypically neutral event, with epidemiological associations observed with various forms of 

cancer13,16–20, autoimmune conditions21,22, age-related macular degeneration23, cardiovascular 

disease24, Alzheimer’s disease25, type 2 diabetes15, obesity15, and all-cause mortality15,16. The extent 

to which such observations represent a causal association, reverse causality or confounding is 

unclear. Furthermore, if these do represent causal effects, the mechanisms underlying such effects 

are unknown.  

Key questions are whether loss of a Y chromosome from circulating leukocytes has a direct 

functional effect (for example, impairs immune function) and whether LOY in leukocytes is a 

barometer of broader genomic instability in other cell types. Understanding the mechanisms that 

drive clonal mosaicism and identifying genes which promote proliferative advantage to cells may 

help answer these questions and provide important insights into mechanisms of diseases of ageing. 

To this end we sought to identify novel susceptibility loci for LOY, an attractive form of clonal 

mosaicism to study given its relative ease of detection and high prevalence in the male population. 

Previous genome-wide association studies (GWAS) for LOY identified 19 common susceptibility loci 

and highlighted its relevance as a biomarker of cell cycle efficiency and DNA damage response (DDR) 

in leukocytes13,14.  Here, we develop and apply a new computational approach for detecting LOY to 
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over 200,000 men from the UK Biobank study. We identify 137 novel loci which we use, along with 

the known 19 loci14, to demonstrate a shared genetic architecture between LOY, non-haematological 

cancer susceptibility and reproductive ageing in women. These data, in aggregate, support the 

hypothesis that LOY in leukocytes is a biomarker of genomic instability in other cell types with 

functional consequences across diverse biological systems. 
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Results 

Previous studies assessing LOY have used a quantitative measure derived from the average intensity 

log-R ratio (termed mLRR-Y) of all array-genotyped Y chromosome single-nucleotide polymorphisms 

(SNPs). Here, we adapted a recently developed long-range phasing approach for mosaic event 

detection to estimate a dichotomous classification, which uses allele-specific genotyping intensities 

in the pseudo-autosomal region (we term this PAR-LOY, see Methods). This was applied to 205,011 

men from UKBB (aged 40-70) in whom we identified 41,791 (20%) with detectable LOY. Men 

classified as LOY had an mLRR-Y score (derived using variants outside of the PAR) 0.9 standard 

deviations lower on average (95% CI 0-88-0.9) than non-LOY males (mean mLRR-Y -0.046 vs 0.009), 

reflecting the expected lower level of intensity due to reduced Y chromosome genetic material. 

Consistent with previous observations of clonal mosaicism, current smokers were at a higher risk of 

LOY (odds ratio (OR) 1.62 [95% CI 1.57-1.66]) and there was a strong association with age; the 

prevalence increased from 2.5% at age 40 to 43.6% at age 70 (Figure 1).  

The genetic architecture of mosaic Y chromosome loss 

We estimated a heritability of 31.7% (95CI 29.9 to 33.6%) for LOY, distributed across all individual 

chromosomes in proportion to their relative sizes (Figure S1). To identify individual genetic variants 

underlying this heritability we performed a GWAS for LOY, identifying 18,146 variants with genome-

wide significant associations (P<5x10-8). We resolved these into 156 statistically independent signals 

(Table S1), which included all 19 loci previously reported14. Effect sizes for these 156 associations 

ranged from OR 1.03-2.02, with LOY risk allele frequencies between 0.25% and 99.8% (Figure 2). 

We directly compared the power of our PAR-LOY calls to the previously used mLRR-Y derived 

measures by performing an mLRR-Y based GWAS in the same current study samples (Table S1). 

Across the 156 loci we observed an average ~2.5x increase in χ2 association statistic, exemplified by 

the strongest associated variant (rs17758695-BCL2) increasing in significance from PmLRRy=7.5x10-65 

to PPAR-LOY=4.1x10-147. Only 61 of the 156 loci would have reached genome-wide significance in an 

mLRR-Y based analysis. Across the genome the lambda GC (ratio of expected to observed median 

test statistic) increased from 1.15 to 1.20 (mean χ2 from 1.28 to 1.47), with no evidence of signal 

inflation due to population structure (LD score regression intercept 1.01). 

To confirm the validity of our identified signals we sought replication in three independent datasets. 

Firstly, we used data generated using 653,019 male research participants from the personal genetics 

company 23andMe, Inc. (Table S1). These samples differed from the discovery samples both in 

terms of DNA source (saliva rather than peripheral blood) and LOY measurement type (quantitative 

mLRR-Y rather than dichotomous PAR-LOY calls). Despite this heterogeneity, all but one of the 154 

loci (2 failed QC) had directionally concordant effects (binomial sign test P=1.4x10-44), with 126 

exhibiting nominally significant association (P<0.05) and 88 at a more conservative threshold 

(P<0.05/156). Secondly, we sought further confirmation from the Icelandic deCODE study (N=8,715) 

where LOY was estimated using sequence reads from whole genome sequencing (DNA extracted 

from blood), rather than array data. These data demonstrated an overall directional consistency of 

94% across the associated loci (140/149 variants tested, binomial sign test P=2.3x10-31) and 74 

nominal associations (Table S1). Third, we replicated our loci in a set of 95,380 Japanese ancestry 

men from the BBJ project, with LOY estimated using mLRR-Y in whole blood. Of the 100/156 variants 

which passed QC and were polymorphic in East Asians, 92 had a consistent direction of effect 
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(binomial P=3.2x10-19). Of these, 29 reached genome-wide significance in these data alone and 73 

had at least nominal association (Table S1). 

Finally, a negative control analysis using mLRR-Y estimated in 245,349 UKBB women (Table S1) –

reflecting experimental noise in intensity variation – did not produce any significant associations 

after Bonferroni correction across the 156 loci (Pmax=4.3x10-3). In aggregate, these data strongly 

suggest that our discovery analysis identifies genetic determinants of LOY that are robust to 

ancestry, measurement technique and DNA source. 

Implicated genes, cell types and biological pathways 

We used various approaches to move from genomic association to identifying potentially causal 

variants, functional genes, cell types and biological pathways associated with LOY (see Methods). 

First, we performed Bayesian fine-mapping (see Methods) to quantify the probability that any single 

variant at a locus was causal for LOY by disentangling the effects of linkage disequilibrium (LD) 

(Figure 3, Table S2-S3). Fine-mapping identified at least one variant with reasonable confidence 

(posterior probability [PP] > 10%) in 80% (101/126) of regions, including at least one very high 

confidence variant (PP > 75%) in 25% (31/126) of regions (Figure 3A). These variants were enriched 

in exons of protein coding genes, their promoters, their transcribed but untranslated regions, and in 

hematopoietic regulatory regions marked by accessible chromatin (Figure 3B, Table S4). 

Using both fine-mapped variants and genome-wide polygenic signal (see Methods), we found that 

hematopoietic stem and progenitor cells (HSPCs) were the most strongly enriched cell-types for LOY 

associated variants (Figure 3C, Figure S2, Table S5, Table S6). Amongst the fine-mapped variants, we 

further subdivided this enrichment into 3 distinct temporal modes indicative of increasing regulatory 

capacity across haematopoiesis (Figure 3D). These observations suggest that many of our identified 

variants exert their effects directly in hematopoietic stem cells, rather than further differentiated 

white blood cell types. This is in stark contrast to variants associated with the production of terminal 

blood cell types, which are enriched at terminal blood progenitors and depleted in HSPCs26. 

We next used two approaches (see methods) to map associated genetic variants to genes via 

expression effects (eQTLs) in whole blood, implicating a total of 110 unique transcripts (Table S8-

S10). This included the HLA-A gene, where our lead variant in this region (6:29835518_T_A) tagged 

the HLA-A*02:01 allele (Table S11). We also identified genes harbouring a non-synonymous variant 

either fine-mapped (PP > 10%) or in high LD (r2 > 0.8) with an index variant, highlighting 22 genes 

(Table S8).  

Biological pathway analysis using two approaches (see methods) identified a number of associated 

pathways, the majority of which converged on aspects of cell cycle regulation and DNA damage 

response (Table S12 and S13). 
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Overlap between LOY associated variants and cancer susceptibility loci 

While detectable clonal mosaicism is clearly associated with future risk of haematological cancers6, 

its relationship with other cancers is less clear. Using data curated by the Open Targets platform (see 

Methods), we found that LOY-associated variants were preferentially found near genes involved in 

cancer susceptibility (P=9.9x10-7), somatic drivers of tumour growth (P=7x10-4) and targets of 

approved or in trial cancer therapies (P=0.05). In total, 18 of the 156 mosaic leukocyte LOY 

associated variants were correlated (r2>0.1) with known susceptibility variants for one or more type 

of non-haematological cancer (Table S14), including breast, prostate, testicular, kidney, melanoma 

and brain. Notable examples include a loss-of-function variant in CHEK2 (rs186430430 r2~1 with 

frameshift variant 1100delC) which confers a ~2.3 fold high risk of breast cancer27, and an intronic 

signal (rs56345976) in the telomerase reverse transcriptase (TERT) gene which is in modest LD 

(r2~0.12) with variants associated with longer telomeres and with increased risks of breast, ovarian, 

prostate cancers and glioblastoma, but also seen to be protective in other cancers28.  

 

To systematically assess the relationship between LOY susceptibility and cancer risk, we tested a 

genetic risk score comprised of our 156 variants on two male-specific cancers (Figure 4, Table S15). 

Genetically-predicted LOY was associated with both increased risk of prostate cancer (OR=1.68 95% 

CI 1.33-2.11, P=1.9x10-5) and testicular germ cell tumour (OR 2.97 (1.45-6.07) P=0.003). Additional 

publicly available GWAS data for cancers in both sexes showed directionally consistent associations 

for renal cell carcinoma (OR 1.12 (1.04-1.21) P=0.004), lung cancer (OR 1.28 (0.98-1.68), P=0.07) and 

colorectal cancer (OR 1.18 (0.93-1.50), P=0.16). 

 

Genetic predisposition to LOY is associated with health outcomes in women 

Mosaic LOY in blood cells has been associated with a broad range of diseases, which if causal is likely 

explained by one (or both) of two mechanisms: either LOY in leukocytes has a direct physiological 

effect, for example through impaired immune function, and/or it acts as a barometer and readily 

detectable manifestation of genomic instability occurring in parallel in other tissues. Ideally, this 

question would be addressed by assessing clonal mosaicism in large population studies where DNA 

was extracted from a broad range of cell and tissue types. In the absence of such a study, we 

hypothesised that testing the relevance of our identified LOY associated variants in women would 

help inform this – any association between the two could not be explained by a direct effect of LOY, 

given that females are XX. 

To assess this we tested a polygenic risk score comprised of our 156 lead variants for association 

with three female-specific cancers – breast, endometrial and ovarian (Figure 4, Table S15). We 

observed a significant association with breast cancer (OR 1.25 (1.04-1.49) P=0.016) and directionally 

consistent results in the smaller endometrial (OR 1.18 (0.94-1.48), P=0.14) and ovarian (OR 1.02 

(0.81-1.30), P=0.86) studies. 

We next tested the same score on a female-specific non-cancer trait also underpinned by genome 

instability – age at natural menopause. Previous human and animal studies have shown menopause 

age is substantially biologically determined by the ability of oocytes to detect, repair and respond to 

DNA damage29,30. We found that genetically increased risk of LOY was associated with later age at 

menopause (P=0.003, Table S16), with the CHEK2 locus individually reaching genome-wide 
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significance (P=7.9x10-22). A repeated genetic risk score analysis excluding CHEK2 retained 

significance (P=0.017). 

Given this observation that genetic susceptibility to LOY in leukocytes is impacting broader biological 

systems in these women, it is reasonable to speculate that actual LOY in leukocytes in men similarly 

represents a biomarker of genome instability in other cell and tissue types. 

 

Exploring the impact of LOY at the level of a single cell 

 

To help understand if and why LOY may provide a growth advantage to a cell, and the potential 

mechanisms linking LOY to disease, we performed single cell transcriptomic analyses (scRNAseq) 

using the 10X Genomics Chromium Single Cell 3’ platform. This was performed on peripheral blood 

mononuclear cells (PBMCs) collected from 19 male donors (aged 64-89), unselected for any measure 

of clonal mosaicism. After standard quality control steps (see methods), we sequenced and profiled 

gene expression across 86,160 single cells. Under normal conditions, blood cells express a set of 

genes located in the male specific region of the Y chromosome (MSY). The LOY status of individual 

cells could therefore be determined by the absence of expression from these genes, which we 

identified in 13,418 of the cells (15.6% across all cells, ranging from 7-61% within individuals). 

 

Across the autosomal genome the most strongly differentially expressed gene between cells with 

and without the Y chromosome was TCL1A (Figure 5). This gene maps to one of our identified 

genetic variants (rs2887399, 162bp away), where the LOY risk increasing allele is associated with 

higher TCL1A expression in blood (Table S10). The single cell data showed that, among the major 

types of leukocytes, the TCL1A gene was expressed only in B-lymphocytes (Figure 5) and LOY was 

detected in 11.3% of these cells, ranging from 2% to 56% within individuals. B-lymphocytes without 

the Y chromosome (cell N=277) had 75% higher normalized TCL1A expression compared to those 

with a Y chromosome (N=2,459, Wilcoxon test in Seurat: fold change=1.75, P<0.0001). We also 

performed an in-house resampling test to evaluate this difference and validated a substantial 

upregulation of TCL1A in LOY cells (resampling test: fold change=1.68, P<0.0001) (Figure 5). An 

analysis within each individual demonstrated single cells with LOY had consistently higher TCL1A 

expression, ruling out any bias by TCL1A genotype (Figure S3).  

 

To evaluate the magnitude of the 75% overexpression of the TCL1A gene in LOY B-lymphocytes, we 

compared the expression changes of other genes proximal to our identified GWAS loci. Of the genes 

we prioritized at each of our GWAS loci (“consensus genes”, Table S8), 71 were expressed in >5% of 

the B-lymphocytes and included in the comparison, but only TCL1A demonstrated significant fold 

change (Figure 5).  

 

These data provide a possible explanation for the growth advantage conferred to cells missing a Y 

chromosome. TCL1A is a known oncogene, the product of which (TCL1) mediates intracellular 

signalling and stimulates cell proliferation and survival31. TCL1 has also been associated with down 

regulation of p53 activity through activation of MDM232. While p53 action is associated with the 

G1/S cell cycle checkpoint, it also has post-mitotic checkpoint functions33. It could therefore be 

hypothesised that LOY causes down regulation of p53 via TCL1A upregulation, leading to enhanced 

proliferation and inhibited apoptosis of LOY cells. The independent effect of TCL1A genotype also 
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suggests a possible bidirectional involvement for TCL1A. Ultimately further experimental work will 

be required to fully elucidate the aetiological implications of altered TCL1A expression in these cells. 
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Discussion 

This study provides several advances in our understanding of the likely underlying biology and 

probable consequences of mosaic Y chromosome loss in circulating leukocytes. Our newly developed 

detection algorithm (PAR-LOY) and expanded sample size led to an 8-fold increase in the number of 

associated genetic determinants, which we use to make several important observations. 

The origin of LOY at the level of a single cell is perhaps most readily explained by chromosome mis-

segregation events during mitosis. Consistent with this, many of the identified loci harbour nearby 

genes involved in key mitotic processes (Figure 6), notably central components of condensin which 

affects mitotic chromosome structure (NCAPG2, SMC2)34, and the assembly, structure and function 

of the kinetochore (CENPN, CENPU, PMF1, ZWILCH)  and spindle (SPDL1), which together form the 

main machinery of chromosome congression and segregation35,36.  MAD2L1 (alongside MAD1L1 and 

MAD2L1BP) and ZWILCH are core components of the mitotic spindle assembly checkpoint37, which 

ensures that chromatids are bi-orientated at the metaphase plate and under bipolar tension before 

disinhibiting the anaphase-promoting complex (of which ANAPC5 is a component) to allow 

progression from metaphase.  Many genes governing wider cell cycle progression, including cyclins 

(CCND2, CCND3), regulators of cyclin (CDKN1B, CDKN1C, CDK5RAP1) and major checkpoint kinases 

(ATM) are also identified here, emphasising the importance of processes across the cell cycle in 

determining LOY. A remainder of the genes that we identify encode proteins involved in sensing and 

responding to DNA damage (SETD2, DDB2, PARP1, ATM, TP53, CHEK2) and apoptotic processes 

(PMAIP1, SPOP, LTBR, SGMS1, TP53INP1, DAP).  Of note, FANCL – the nearest gene to one of our 

lead variants - is vital to DNA interstrand crosslink repair and mutations in this gene have been linked 

to a rare autosomal form of Fanconi Anaemia, characterised by cytogenetic instability and 

chromosome breakage38.  The Bcl-2 family, a conserved set of proteins that regulate caspase-

mediated apoptosis by controlling mitochondrial release of Cytochrome-C, are also particularly well-

represented (BCL2, BAX, BCL2L1, BCL2L11)39.  These themes are consistent with the hypothesis that, 

secondary to the initial mis-segregation event, clonal expansion of LOY cells requires an environment 

permissive to proliferation of aneuploid cells, in which normal processes to detect and terminate 

these cells are avoided. 

A link between LOY and cancer susceptibility seems plausible conceptually, given the nature of the 

genes identified. Here, we find substantial overlap of LOY associated variants across known cancer 

susceptibility loci, somatic drivers of tumour growth and genes targeted by licensed or in-trial cancer 

therapeutics. A notable example is the target of PARP inhibitors PARP1, where the lead SNP is highly 

correlated with a missense variant (V762A), the minor allele for which (the alanine substitution) is 

protective for LOY and has experimentally been shown to reduce PARP-1 catalytic activity by 30-

40%40. More broadly, we found evidence for a systematic relationship between genetic susceptibility 

for LOY and risk of breast, prostate, testicular and renal cell carcinomas (Figure 4).  

Based on our observations, we propose that LOY is determined by a “common soil” of shared 

mechanisms that predispose to genome instability and cancer. This is perhaps most readily apparent 

with the observation that genetic susceptibility to LOY is associated with cancer susceptibility in 

women and age at natural menopause. Although in aggregate we found that LOY associated variants 

tended to delay menopause age, there was substantial heterogeneity in dose-response. This was 

exemplified by individually significant associations for LOY risk increasing alleles with both earlier 
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(mapped genes MON1A, NR6A1, FBXL20) and later menopause (PMF1, JMJD1C, USP35/GAB2, 

APOLD1/CDKN1B, PHF11/RCBTB1, HEATR3, TP53 and CHEK2). We hypothesised that the direction of 

effect a LOY associated risk allele has on menopause may shed light on its mechanism of effect. 

Genetic determinants of LOY must broadly act either by promoting chromosomal instability or 

facilitating the clonal expansion of aneuploid cells, both of which are potentially cancer causing 

mechanisms. An allele that promotes clonal mosaicism through predisposition to chromosome mis-

segregation or repair/generation of DNA damage would likely be associated with an earlier 

menopause due to acquired DNA damage in oocytes and their subsequent elimination. This principle 

is most evident in mice and humans with BRCA1/2 loss of function, where diminished double strand 

break repair in oocytes triggers apoptosis and depletion of the ovarian reserve30,41,42. In contrast, any 

process that impairs DNA damage sensing or programmed cell death may also promote clonal 

mosaicism (via greater tolerance of damaged cells) but lead to a later menopause. The clearest 

example of this is CHEK2, which in mice is essential for culling oocytes bearing unrepaired DNA 

double-strand breaks43. Reduced activity of this gene would therefore lead to the survival of 

defective oocytes (hence later menopause), supported for the first time in humans by our 

observation that CHEK2 loss of function is associated with later age at menopause in women and 

increased LOY in men. The overall trend for LOY associated loci to be associated with delayed 

menopause suggests that many genetic determinants may act to inhibit apoptosis and the 

elimination of defective leukocytes. Further experimental work in animal and cellular models should 

aim to investigate more thoroughly the mechanisms linking each of our putatively highlighted genes 

to clonal mosaicism and broader outcomes. 

We also note overlap between our identified LOY associated loci and other complex traits and 

diseases. For example, seven of our current LOY signals are correlated with previously reported44 

susceptibility loci for Type 2 diabetes (TP53INP1, SUGP1, KCNQ1, CCND2, EIF2S2, PTH1R and 

BCL2L11). At six of these overlapping loci, the LOY risk-increasing allele also increases the risk of 

Type 2 diabetes. CCND2 encodes Cyclin D2, the major D-type cyclin expressed in pancreatic β-cells 

and is essential for adult β-cell growth45. TP53INP1 is a p53-inducible gene, whose product regulates 

p53-dependent apoptosis. Additionally, the LOY-associated genes encoding cyclins and cyclin-

dependent kinases, CCND3, CDKN1B and CDKN1C, are also implicated in pancreatic β-cell growth 

and maturation. We hypothesise that the previously reported association between clonal mosaicism 

in blood and T2D15,46 may reflect a common susceptibility to cell cycle dysregulation and genome 

instability, which lead to both increased clonal mosaicism and reduced pancreatic β -cell mass. 

Finally, the “common soil” hypothesis discussed above does not preclude the possibility that LOY in 

leukocytes also has a direct role in disease, for example through impaired immune function47. A 

growing awareness of the physiological importance of chromosome Y outside of reproductive 

development challenges the view of this chromosome as a “genetic wasteland”48. The male-specific 

region (MSY) encodes 27 distinct proteins, with roles in fundamental processes such as chromatin 

modification (KDM5D, UTY), gene transcription (ZFY) and translation (DDX3Y, EIF1AY and RPS4Y1). 

Indeed, our observation in single-cell RNA sequencing data that leukocytes with LOY have 

dysregulated autosomal gene expression supports the notion of a direct physiological effect.  

We hope that future experimental studies may build on these observations, yielding further insights 

into mechanisms that may have broad relevance to a range of cancers and other ageing-related 

diseases. 
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Tables and Figures 

Figure 1 | Prevalence of mosaic Y chromosome loss by age in UK Biobank study participants 
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Figure 2 | Distribution of allele frequency and effect size for the 156 identified LOY loci 
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Figure 3 | Results from fine-mapping analyses. Panel a shows the posterior expected number of 

causal variants (top) as well as the best fine-mapped variant (bottom) in each region. Genomic 

enrichments for variants stratified by posterior probability are shown in panel b. Fine-mapped 

variants were enriched for accessible chromatin in hematopoiesis, as well as in exons, promoters, 

and UTRs of protein coding genes, but not for introns. Panel c shows g-chromVAR cell-type 

enrichments across the hematopoietic tree for LOY. HSCs, MPPs, and CMPs meet Bonferroni 

threshold (α = 0.05 / 18). Developmental patterns of accessible chromatin for variants with posterior 

probability > 10% are shown in panel d, revealing that 14 variants are fully restricted to acting within 

HSPCs, 14 variants can also have regulatory effects in myeloid and lymphocyte progenitors, and 17 

variants are capable of acting across the majority of hematopoiesis. K-means clustering (k = 4 

determined by the gap statistic) was used to identify patterns of accessibility, and cell types were 

hierarchically clustered. HSC, hematopoietic stem cell; MPP, multi-potent progenitor; CMP, common 

myeloid progenitor; HSPC, hematopoietic stem and progenitor cell; M/L, myeloid and lymphoid; PP, 

posterior probability; AC, accessible chromatin; UTR, untranslated region; PChiC, promoter capture 

Hi-C; eQTL, expression quantitative trait locus; corr, ATAC/chromatin-RNA correlations 
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Figure 4 | Association between a genetic risk score of the 156 LOY-associated variants and cancer. 
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Figure 5 | Single-cell RNA sequencing results. Panel a shows clustering and identification of cell 

types using a tSNE plot generated from a pooled dataset including 86160 PBMC’s isolated from 

peripheral blood samples collected from 19 male donors. The TCL1A gene was expressed in the B-

lymphocytes as indicated by blue color in panel b. Analysis of LOY status in the B-lymphocytes 

identified 277 cells with LOY, plotted in red color in panel c. Panel d display the result from a 

resampling test performed to compare the expression of TCL1A in LOY B-lymphocytes with its 

expression in non-LOY B-lymphocytes. The grey and red curves in panel d represent the resampled 

distribution of TCL1A expression in non-LOY and LOY cells, respectively. The resampling test 

established an increased expression of TCL1A in B-lymphocytes with LOY (fold change=1.68, 

p<0.0001). Panel e display fold changes in gene expression between LOY and non-LOY B-

lymphocytes for 71 selected genes from the list of genes mapping to the 156 index variants. Genes 

expressed in >5% of the investigated B-lymphocytes were included. The blue line at fold change 1 in 

panel e represents no differential expression and the red line shows the level of 50% overexpression 

in LOY cells. 
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Figure 6 | Many LOY-associated genes converge on mechanistic and regulatory aspects of the cell 

cycle. All genes shown have been prioritized as potentially functional genes at our reported GWAS 

loci; gene symbols may be shown more than once. Coloured indicators next to each gene symbol 

specify the type of evidence on which it has been prioritized at its respective locus: blue, nearest 

protein-coding gene; green, eQTL; red, contains a highly correlated non-synonymous variant. Red 

boxes indicate each of the three known cell cycle checkpoints. Red inhibition connectors denote that 

a target is inhibited by degradation, green by binding. Green arrows indicate a signaling cascade and 

its effector or final physiological effect. Bidirectional dashed green arrows indicate the formation of 

a complex between the products of the two connected genes. Excepting p53, proteins contained 

within green boxes have not been implicated in this GWAS, but are important interactors of 

implicated genes. CENPA-NAC, CENPA nucleosome-associated complex; APC/C, anaphase-promoting 

complex/cyclosome; MC, mitotic checkpoint; CDK, cyclin-dependent kinase. 
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Methods 

Phenotype preparation in UK Biobank 

We developed a new statistical approach for identifying male individuals with LOY based on allele-

specific genotyping intensities in the pseudoautosomal region (PAR) of the sex chromosomes. In 

contrast to previous work that has quantified Y chromosome loss based on median genotyping 

intensity over the non-pseudoautosomal region of the Y chromosome (mLRR-Y)12–15, our approach 

leverages the diploid nature of the PAR to ascertain mosaic Y loss based on differences between 

maternal (X PAR) vs. paternal (Y PAR) allelic intensities at heterozygous sites: mosaic Y loss causes Y 

PAR intensities to decrease relative to X PAR intensities. This intuition can be harnessed even in 

population cohorts in which absolute phase information (i.e., information about maternal vs. 

paternal inheritance of alleles) is unavailable: we can overcome this obstacle by performing 

statistical phasing and subsequently identifying evidence of an imbalance in allelic intensities 

between the two statistically phased haplotypes (accounting for the possibility of phase switch 

errors)5,6. In general, the signal produced by phased allelic imbalances is typically much cleaner than 

estimates of total genotyping intensities (e.g., mLRR-Y), as the latter can vary substantially across the 

genome due to technical artefacts49. 

We applied this approach to blood DNA genotyping intensity data from the full UK Biobank cohort 

(described extensively elsewhere50, analyzing 1,239 genotyped variants on PAR1 that passed QC (out 

of 1,301 total PAR1 variants). (We ignored the much-shorter PAR2, which only contained 56 

genotyped variants, of which 37 passed QC.) To maximize phasing accuracy, we phased the full 

cohort including both males and females using Eagle251, after which we restricted our attention to 

males. We called mosaic chromosomal alterations (mCAs) in PAR1 using a slightly modified version 

of the pipeline we described previously6. Specifically, in our hidden Markov model, we increased the 

probability of starting in a mosaic state to 0.2 (reflecting our call set; see below), and we also post-

processed our PAR1 mCA calls to identify likely mosaic Y loss events based on two criteria: (i) mCA 

spans the full PAR1 region; and (ii) observed mean log2 R ratio (LRR) is more consistent with a mosaic 

loss event than a CNN-LOH or gain (after taking into account the s.e.m. of LRR and an empirical prior 

on mCA copy numbers6. This procedure produced 44,709 mCA calls in PAR1 (at an estimated false 

discovery rate of 0.05) among 220,924 males passing sample QC, of which 43,306 were classified as 

likely LOY. These calls contained an average of 321 heterozygous variants on PAR1 passing QC that 

were usually phased perfectly (no switch errors detected by the hidden Markov model in 72% of 

calls). 

Recalled age at natural menopause (ANM) was available in 106,237 women with genetic data. We 

included women with ANM who were 40–60 years of age in our analyses, excluding those with 

menopause induced by hysterectomy, bilateral ovariectomy, radiation or chemotherapy and those 

using hormone replacement therapy (HRT) before menopause. 

Genetic association testing in UK Biobank 

We used genetic data from the “v3” release of UK biobank50, containing the full set of HRC and 

1000G imputed variants. In addition to the quality control metrics performed centrally by UK 

Biobank, we defined a subset of “white European” ancestry samples using a K-means clustering 

approach applied to the first four principle components calculated from genome-wide SNP 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 8, 2019. ; https://doi.org/10.1101/514026doi: bioRxiv preprint 

https://doi.org/10.1101/514026
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

genotypes.  Individuals clustered into this group who self-identified by questionnaire as being of an 

ancestry other than white European were excluded. After application of QC criteria, a maximum of 

205,011 male participants were available for analysis with genotype and phenotype data. 

Association testing was performed using a linear mixed models implemented in BOLT-LMM52 to 

account for cryptic population structure and relatedness. Only autosomal genetic variants which 

were common (MAF>1%), passed QC in all 106 batches and were present on both genotyping arrays 

were included in the genetic relationship matrix (GRM). Genotyping chip, age at baseline and 10 

genetically derived principal components were included as covariates. 

We defined statistically independent signals (described as lead or index variants) using 1Mb 

distanced-based clumping across all imputed variants with P<5x10-8, an imputation quality score > 

0.5 and MAF > 0.1%. Genome-wide significant lead variants that shared any correlation with each 

other due to long range linkage disequilibrium (r2>0.05) were excluded from further consideration. 

These loci were additionally augmented using approximate conditional analyses implemented in 

GCTA53. Here, secondary signals were only considered if they were uncorrelated (r2<0.05) with a 

previously identified index variant and genome-wide significant pre and post conditional analysis. 

The total trait variance of all genotyped SNPs was calculated genome-wide and per-chromosome 

using restricted estimate maximum likelihood (REML) implemented in BOLT-LMM52. The 

corresponding observed-scale estimate was transformed to the liability-scale54. 

Replication 

Replication was performed in three independent studies using two separate techniques. 

Firstly, we used data generated from the customer base of 23andMe Inc, a consumer genetics 

company. Genotyping array quality control, imputation and downstream association testing for this 

study has been described extensively elsewhere55. All individuals provided informed consent and 

answered surveys online according to 23andMe’s human subjects protocol, which was reviewed and 

approved by Ethical & Independent Review Services, a private institutional review board 

(http://www.eandireview.com). DNA extraction and genotyping were performed on saliva samples 

by National Genetics Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory 

Corporation of America Mosaic LOY was estimated by calculating the mean log-R ratio (normalised 

signal intensity) across 274 SNPs on the male-specific region of the Y chromosome that are shared 

and perform well across genotyping platforms, using the protocol described previously14. Imputation 

was performed using a combination of the May 2015 release of the 1000 Genomes Phase 3 

haplotypes56 with the UK10K imputation reference panel57. Genetic association testing was 

performed using linear regression in 653,019 male research participants of European ancestry, using 

age, genetically derived principal components and genotyping platform as covariates. Results were 

adjusted for a genomic control inflation factor of 1.129.  

Secondly, we analyzed whole-blood genome sequences of 8,715 Icelandic males58 (age range 41-105 

years, mean 63 years), that had been whole-genome sequenced by Illumina method to a mean 

depth of 37x. As an estimate of chromosome Y copy-number we used the average read depth over 

chromosome Y, using exclusively X-degenerate regions. This was computed by samtools from bam 

files aligned to hg38 and normalized by genome-wide sequencing coverage for the subject. A total of 

12 outlier individuals (copy-number greater than 1.25) were excluded. Association analysis was 
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performed using BOLT-LMM52 after inverse normal transformation and adjustment for age at 

bleeding. Effect sizes for log2(chrY copy-number) were estimated using robust linear regression (rlm 

from R package MASS). 

Third, we used a sample of 95,380 Japanese ancestry men from the BBJ project, a study which has 

been described extensively elsewhere59. The study was approved by the ethical committees in the 

Institute of Medical Science, the University of Tokyo and RIKEN Center for Integrative Medical 

Science.  Mosaic LOY in blood was estimated using the quantitative mLRR-Y measure, using a similar 

protocol as previous studies14. Association testing was performed using a linear mixed model 

implemented in BOLT-LMM52, including age, smoking, disease status and chip array as a covariate. 

Genomic feature enrichment 

We used a previously modified version of GoShifter26,60 to calculate the enrichment of fine-mapped 

(PP ≥ 0.10) and not fine-mapped (PP < 0.10) variants with genomic annotations by locally shifting the 

annotations and computing overlaps to approximate the null distribution. Z-scores and odds ratios 

were calculated from 1000 permutations, and typical two-tailed p-values are calculated from the z-

score statistic. All annotations were obtained as described previously26.  

In order to identify which tissue types were most relevant to genes involved in LOY, we applied LD 

score regression61 to specifically expressed genes (“LDSC-SEG”)62 and g-chromVAR to hematopoietic 

accessible chromatin26. For LDSC-SEG, cell-type specific analyses using GTEx and Epigenome 

Roadmap annotations were performed using the data available on the LDSC-SEG resource page 

(https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses). For g-chromVAR, hematopoietic 

specific analyses were performed using ATAC-seq count matrices as previously processed 

(https://github.com/caleblareau/singlecell_bloodtraits). g-chromVAR estimates were averaged 

across 10 different random background peak sets. We note that, similar to the derivation of cell-type 

specific features or SEGs in LDSC, g-chromVAR z-scores represent relative enrichment for specific 

cell-types compared to other input cell-types, which allows for discrimination between closely 

related cell types in the hematopoietic lineage. 

Gene expression integration 

We used two approaches to map associated genetic variants to genes via expression effects (eQTLs) 

in whole blood. Firstly, Summary Mendelian Randomization (SMR) uses summary-level gene 

expression data to map potentially functional genes to trait-associated SNPs63. We ran this approach 

using a meta-analysis of whole blood eQTL data from 31,684 individuals64. Only transcripts with no 

evidence of pleiotropic effects, as assessed by the HEIDI metric were considered63. Secondly, we 

used the recently described Transcriptome-wide Association Study (TWAS) approach65 to infer gene 

expression association using three whole blood datasets (Young Finns Study, Netherlands Twin 

Registry cohorts and GTEx v6). All data used is available here: http://gusevlab.org/projects/fusion/. 

For all analyses significance thresholds were set to adjust for the number of tested performed.   

Pathway enrichment analysis 

Pathway analysis was performed using two distinct approaches – STRING66 and MAGENTA67. For 

STRING, only the gene closest to one of the 156 lead index variants was included in the analysis. In 
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contrast, MAGENTA performs enrichment analysis using the full genome-wide summary statistic 

data. 

We used the Open Targets Platform (https://www.targetvalidation.org/) to define gene sets 

comprising genes involved in cancer susceptibility (N=249), somatic drivers of tumour growth 

(N=394), targets of approved or in trial cancer therapies (N=458), “affected pathways” (N=216 with 

score = 1) and finally an overall aggregated score for involvement in cancer (N=934 with score = 1). 

The various data sources, and approach applied by Open Targets to score and prioritise target genes 

within each of these categories is described in full at https://docs.targetvalidation.org/getting-

started/scoring). We arbitrarily defined gene set membership based on an assigned score > 0.8 

unless otherwise specified. These pathways were tested for enrichment in downstream analyses 

using MAGENTA.    

Fine-mapping 

Regions for fine-mapping were defined by extended 0.5 Mb in both directions from each sentinel 

and merging when regions overlapped, resulting in 126 total regions. All variants in these regions 

with MAF > 0.005 and INFO > 0.6 were fine-mapped. Dosage LD was estimated from the UKB 

genotype probability files (.bgen) using 167,020 unrelated white British male individuals 

(http://www.nealelab.is/uk-biobank/). Fine-mapping was them performed using v1.3 of the 

FINEMAP software68 with default settings allowing for up to 5 causal variants in each region. The 

UCSC genome browser was used to view individual variants along with hosted features69. 

Integration with cancer data and modelling LOY as a causal exposure 

The NHGRI-EBI GWAS Catalogue database was accessed and downloaded on June 25, 2018. The 

downloaded file was curated to only include studies in which cancer is the associated disease and 

further filtered to remove variants with association p-values greater than 5 × 10−8. Due to a potential 

lag between the time a new GWAS is published and included in the NHGRI-EBI GWAS Catalogue, a 

supplementary literature search of PubMed was performed to identify additional reports of cancer 

susceptibility studies that were not included in the GWAS Catalogue. The literature search was 

completed on July 18, 2018. LDlink70 was used to identify published cancer GWAS-associated genetic 

variants which are in linkage disequilibrium (LD) (r2≥0.1 based on the 1000 Genomes Project 

European Population data) with one of the 154 LOY lead SNPs. Associations with haematological 

malignancies were excluded and additional associations were identified by manual searches. 

The relationship between LOY-associated variants and cancer was assessed using a two-sample 

summary statistic based Mendelian randomisation analysis. Linear regressions of the cancer log odds 

ratios (logOR) for each available SNP on the LOY beta coefficients were carried out, weighted by the 

inverse of the variance of the cancer logORs. This is equivalent to an inverse-variance weighted 

meta-analysis of the variant-specific causal estimates71. Because of evidence of over-dispersion (i.e. 

heterogeneity in the variant-specific causal estimates), the residual standard error was estimated, 

making this equivalent to a random-effects meta-analysis. Unbalanced horizontal pleiotropy was 

tested based on the significance of the intercept term in MR-Egger regression72. 

Summary statistics for the association between the genetic variants and risk of prostate cancer were 

obtained from the PRACTICAL/ELLIPSE consortium, based on GWAS analyses of 67,158 prostate 
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cancer cases and 48,350 controls73. Testicular cancer summary statistics were obtained from two 

GWAS studies conducted at the Institute of Cancer Research comprising 4,192 testicular cancer 

cases and 12,368 controls74,75. The renal cancer analysis used summary statistics from the Kidney 

Cancer GWAS Meta-Analysis Project of 10,784 cases of renal cell carcinoma and 20,406 controls76. 

Colorectal cancer summary statistics were from eight UK-based GWAS studies, totalling 22,372 

colorectal cancer cases and 44,271 controls77,78. The summary statistics for overall lung cancer were 

from GWAS analyses of 29,266 lung cancer cases and 56,450 controls conducted by the International 

Lung Cancer Consortium79. The breast cancer analysis was based on summary statistics from GWAS 

analyses of 105,974 breast cancer cases and 122,977 controls conducted by the Breast Cancer 

Association Consortium (BCAC)80, including summary statistics from analyses restricted to cases with 

estrogen receptor positive or estrogen receptor negative breast cancer81. Summary statistics for the 

ovarian cancer analysis were from GWAS studies of 25,509 ovarian cancer cases and 48,941 controls 

conducted by the Ovarian Cancer Association Consortium (OCAC)82. The endometrial cancer results 

were from GWAS studies of 12,906 endometrial cancer cases and 108,979 controls from the 

Endometrial Cancer Association Consortium (ECAC)83. In addition, MRs for breast and ovarian cancer 

risk specifically in carriers of a BRCA1 or a BRCA2 mutation were carried out using results from GWAS 

studies conducted by the CIMBA consortium81,82. There was some overlap in the control subjects 

used by the breast, ovarian, endometrial and colorectal cancer studies, and between the control 

subjects used in the prostate cancer study, the colorectal cancer study and one of the testicular 

cancer studies. All the cancer MRs were based on summary statistics from analyses restricted to 

participants with European ancestry. 

The pan-cancer summary statistics (breast, prostate, ovarian, and endometrial) were derived using a 

three step procedure. First, the tetrachoric correlation of binary transformed Z-scores was used to 

estimate the correlation between individual-cancer summary statistics that is attributable to control 

sample overlap84. Second, individual-cancer summary statistic standard errors were decoupled to 

account for the estimated correlation85 and third, the METASOFT software86 was used to perform 

fixed effect inverse-variance weighted meta-analyses for the combination of four cancers. 

Sample preparation for single cell gene expression study 

Blood samples from 19 elderly men (median age=80, range=64-89) admitted to the Geriatrics 

Department at Uppsala University Hospital (Uppsala, Sweden) were collected in BD Vacutainer CPT 

cell separation tubes containing sodium citrate and stored on ice. The PBMC fraction was isolated 

from the whole blood samples by density gradient centrifugation following manufacturer 

instructions (Becton, Dickinson and Company, Franklin Lakes). PBMCs were collected and suspended 

in cold 1X PBS solution with 0.04% BSA. Cell concentrations were measured using an EVE cell counter 

(NanoEnTek, Seoul) and diluted to a concentration of 106 cells/ml. All the prepared samples had a 

cell viability above 90%. The local research ethics committee approved the study and all participants 

provided their informed consent. 

Single cell workflow 

We performed single cell RNA sequencing (scRNAseq) using the 10X Chromium Single Cell 3’ gene 

expression solution (10X Genomics, Inc.) at the SNP&SEQ Technology Platform at Uppsala University 

(Sweden). This scRNAseq technology is based on gel beads loaded with barcoded oligos mixed with 

single cells and enzymes, before captured in droplets (GEMs). The transcripts present in individual 
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cells are barcoded with UMI’s (unique molecular identifiers) and used to prepare standard 

sequencing libraries. All transcripts from single cells get barcoded with the same index sequence 

allowing for the transcripts from thousands of single cells to be pooled together in a single 

sequencing run and allowing transcriptional profiling of individual cells. The barcoding and library 

construction were performed for the 19 PBMC samples using the Chromium Single Cell 3’ Reagent 

kit (cat# 120236/37/62) according to the manufacturer protocol (CG00052 Single Cell 3’ Reagent Kit 

v2 User Guide). The entire procedure, from blood sampling to construction of GEM’s was 

accomplished within 5 hours. The generated single cell libraries were sequenced using a NovaSeq 

6000 instrument (Illumina, Inc., San Diego) at the SNP&SEQ Technology Platform and generated a 

median of 64900 reads per cell (range=35213-111643).   

Single-cell bioinformatics pipeline 

Sequenced reads were mapped to the human reference (GRCh37/hg19) using the software 

Cellranger v 2.0.2 (10X Genomics, Inc.). Cellranger produces a count-matrix for each experiment 

containing the UMI barcodes using sequence information from the 3´ end of each transcript in every 

single cell. We used the R library Seurat (v2.3.1) for further processing and implemented the 

standard Seurat workflow7. Specifically, standard QC-steps were performed including removal of 

apoptotic cells (i.e. cells with a large fraction of mitochondrial RNA) as well as removing cells with 

low sequencing coverage and/or a low number of expressed genes, as recommended. Following QC-

steps, normalization of the gene expression within each single cell was performed using the function 

“NormalizeData”. Genes with the most differential expression within single cells were identified for 

cluster analysis and normalized gene expression was scaled using the “ScaleData” function. Principal 

components were calculated using the most variable genes and the number of significant principal 

components was determined. Clustering of the dataset was performed using the function 

“FindClusters” and cell types for each cluster were determined using canonical marker genes. 

Refined clustering was achieved by reclustering within the identified cell types using the above 

pipeline on subsets of the data. The tSNE plots were produced using the generated principal 

components. 

Determination of LOY in single cells 

The LOY status for each sequenced cell was determined under the assumption that cells with LOY 

would not express genes located in the male specific part of chromosome Y (MSY). Hence, non-LOY 

blood cells are normally expressing a series of genes located in the MSY: DDX3Y, EIF1AY, KDM5D, 

RPS4Y1, USP9Y, UTY and ZFY. We took advantage of this information and thus scored LOY in cells 

without any transcripts from the genes located in the MSY. Only cells with expression and good 

quality data from genes located on the autosomal chromosomes were included.  

Single-cell statistical analyses 

To compare differences in autosomal gene expression between LOY cells and non-LOY cells we first 

performed WilcoxDETest’s, implemented in the R library Seurat (v2.3.1). We also developed an in-

house random sampling algorithm to compare the gene expression in LOY cells with non-LOY cells 

within specific cell types. First, we established the observed gene expression in LOY cells in the cell 

type under investigation, by calculating the mean normalized expression values in all subjects, within 

all LOY cells of the tested cell type. Next, we randomly selected from all subjects, a number of cells 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 8, 2019. ; https://doi.org/10.1101/514026doi: bioRxiv preprint 

https://doi.org/10.1101/514026
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

from the non-LOY cells of the examined cell type, and calculated the mean normalized expression in 

the resampled cells. To avoid biases caused by inter-individual variation, we programmed the 

sampling algorithm to sample an equal number of non-LOY cells as observed LOY cells within each 

subject. For example, from subjects with 100 LOY cells of a specific cell type, the same number of 

non-LOY cells from the same cell type was sampled from the set of non-LOY cells. The resampling of 

non-LOY cells from all subjects was repeated 50.000 times and for each iteration, the mean 

normalized expression of the investigated gene in the resampled cells was calculated. The resampled 

data represents a weighted expression level of the examined gene in non-LOY cells within specific 

cell types and thus, the resampled distribution represents the normalized expression of the 

investigated gene in non-LOY cells. The range of variation of gene expression in LOY cells was 

estimated in a similar fashion, by resampling of a subset of the LOY cells within each subject. Exact p-

values were calculated by comparing the observed mean expression in LOY cells to the resampled 

distribution of non-LOY cells. All statistical analyses were performed using R v. 3.4.4. 
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