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Abstract

Gene regulatory networks are composed of sub-networks that are often shared across
biological processes, cell-types, and organisms. Leveraging multiple sources of
information, such as publicly available gene expression datasets, could therefore be helpful
when learning a network of interest. Integrating data across different studies, however,
raises numerous technical concerns. Hence, a common approach in network inference,
and broadly in genomics research, is to separately learn models from each dataset and
combine the results. Individual models, however, often suffer from under-sampling, poor
generalization and limited network recovery. In this study, we explore previous integration
strategies, such as batch-correction and model ensembles, and introduce a new multitask
learning approach for joint network inference across several datasets. Our method initially
estimates the activities of transcription factors, and subsequently, infers the relevant
network topology. As regulatory interactions are context-dependent, we estimate model
coefficients as a combination of both dataset-specific and conserved components. In
addition, adaptive penalties may be used to favor models that include interactions derived
from multiple sources of prior knowledge including orthogonal genomics experiments. We
evaluate generalization and network recovery using examples from Bacillus subtilis and
Saccharomyces cerevisiae, and show that sharing information across models improves
network reconstruction. Finally, we demonstrate robustness to both false positives in the
prior information and heterogeneity among datasets.
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Introduction 1

Gene regulatory network inference aims at computationally deriving and ranking regulatory 2

hypotheses on transcription factor-target gene interactions [1–3]. Often, these regulatory 3

models are learned from gene expression measurements across a large number of 4

samples. Strategies to obtain such data range from combining several publicly available 5

datasets to generating large expression datasets from scratch [4–7]. Given decreasing 6

costs of sequencing and the exponential growth in the availability of gene expression data 7

in public databases [8,9], data integration across several studies becomes particularly 8

promising for an increasing number of biological systems. 9

In theory, multi-study analyses provide a better representation of the underlying cellular 10

regulatory network, possibly revealing insights that could not be uncovered from individual 11

studies [6]. In practice, however, biological datasets are highly susceptible to batch 12

effects [10], which are systematic sources of technical variation due to different reagents, 13

machines, handlers etc. that complicate omics meta-analyses [11,12]. Although several 14

methods to remove batch effects from expression data have been developed, they often 15

rely on evenly distributed experimental designs across batches [13,14]. Batch-correction 16

methods may deflate relevant biological variability or induce incorrect differences between 17

experimental groups when conditions are unbalanced across batches, which can 18

significantly affect downstream analyses [15]. Therefore these batch effect removal 19

methods are not applicable when integrating public data from multiple sources with widely 20

differing experimental designs. 21

In network inference, an approach often taken to bypass batch effects is to learn models 22

from each dataset separately and combine the resulting networks [16,17]. Known as 23

ensemble learning, this idea of synthesizing several weaker models into a stronger 24

aggregate model is commonly used in machine learning to prevent overfitting and build 25

more generalizable prediction models [18]. In several scenarios, ensemble learning avoids 26

introducing additional artifacts and complexity that may be introduced by explicitly 27
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modeling batch effects. On the other hand, the relative sample size of each dataset is 28

smaller when using ensemble methods, likely decreasing the ability of an algorithm to 29

detect relevant interactions. As regulatory networks are highly context-dependent [19], for 30

example, TF binding to several promoters is condition-specific [20], a drawback for both 31

batch-correction and ensemble methods is that they produce a single network model to 32

explain the data across datasets. Relevant dataset-specific interactions might not be 33

recovered, or just difficult to tell apart using a single model. 34

Although it will not be the primary focus of this paper, most modern network inference 35

algorithms integrate multiple data-types to derive prior or constraints on network structure. 36

These priors/constraints have been shown to dramatically improve network model selection 37

performance when combined with the state variables provided by expression data. In 38

these methods [17,21], priors or constraints on network structure (derived from multiple 39

sources like known interactions, ATAC-seq, DHS, or ChIP-seq experiments [22–24]) are 40

used to influence the penalty on adding model components, where edges in the prior are 41

effectively penalized less. Here we describe a method that builds on that work (and similar 42

work in other fields), but in addition we let model inference processes (each carried out 43

using a separate data-set) influence each others model penalties, so that edges that agree 44

across inference tasks are more likely to be uncovered [25–31]. Several previous works on 45

this front focused on enforcing similarity across models by penalizing differences on 46

strength and direction of regulatory interactions using a fusion penalty [25,27,28]. 47

Because the influence of regulators on the expression of targets may vary across datasets, 48

possibly even due to differences in measurement technologies, we look to induce similarity 49

on network structure (the choice of regulators) using a group-sparse penalty. Previous 50

methods also applied this type of penalty [26,29,31], however, they were not robust to 51

differences in relevant edges across datasets. 52

Here we propose a multitask learning (MTL) approach to exploit cross-dataset 53

commonalities while recognizing differences and is able to incorporate prior knowledge on 54

network structure if available [32,33]. In this framework, information flow across datasets 55
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leads the algorithm to prefer solutions that better generalize across domains, thus 56

reducing chances of overfitting and improving model predictive power [34]. Since biological 57

datasets are often under-sampled, we hypothesize that sharing information across models 58

inferred from multiple datasets using a explicit multitask learning framework will improve 59

accuracy of inferred network models in a variety of common experimental designs/settings. 60

In this paper, we explicitly show that joint inference significantly improves network recovery 61

using examples from two model organisms, Bacillus subtilis and Saccharomyces 62

cerevisiae. We show that models inferred for each dataset using our MTL approach (which 63

adaptively penalizes conserved and data-set-unique model components separately) are 64

vastly more accurate than models inferred separately using a single-task learning (STL) 65

approach. We also explore commonly used data integration strategies, and show that MTL 66

outperforms both batch-correction and ensemble approaches. In addition, we also 67

demonstrate that our method is robust to noise in the input prior information. Finally, we 68

look at conserved and dataset-specific inferred interactions, and show that our method can 69

leverage cross-dataset commonalities, while being robust to differences. 70

71

Results 72

Overview of network inference algorithm 73

To improve regulatory network inference from expression data, we developed a framework 74

that leverages training signals across related expression datasets. For each gene, we 75

assume that its regulators may overlap across conditions in related datasets, and thus we 76

could increase our ability to uncover accurate regulatory interactions by inferring them 77

jointly. Our method takes as input multiple expression datasets and priors on network 78

structure, and then outputs regulatory hypotheses associated with a confidence score 79

proportional to our belief that each prediction is true (Fig 1A). As previous 80
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studies [17,35–37], our method also includes an intermediate step that estimates 81

transcription factor activities (TFA), and then, models gene expression as a function of 82

those estimates (Fig 1B). 83

In our model, TFA represent a relative quantification of active protein that is inducing or 84

repressing the transcription of its targets in a given sample, and is an attempt to abstract 85

away unmeasured factors that influence TFA in a living cell [37–39], such as 86

post-translational regulation [40], protein-protein interactions [41], and chromatin 87

accessibility [42]. We estimate TFA from partial knowledge of the network topology 88

(Fig 1C) [21,43–47] and gene expression data as previously proposed (Fig 1D) [17]. This 89

is comparable to using a TF’s targets collectively as a reporter for its activity. 90

Next, we learn the dependencies between gene expression and TFA and score predicted 91

interactions. In this step, our method departs from previous work, and we employ multitask 92

learning to learn regulatory models across datasets jointly, as opposed to single-task 93

learning, where network inference is performed for each dataset independently (Fig 1E). 94

As genes are known to be regulated by a small number of TFs [48], we can assume that 95

these models are sparse, that is, they contain only a few nonzero entries [3]. We thus 96

implement both approaches using sparsity-inducing penalties derived from the lasso [49]. 97

Here the network model is represented as a matrix for each target gene (where columns 98

are data-sets/cell-types/studies and rows are potential regulators) with signed entries 99

corresponding to strength and type of regulation. 100

Importantly, our MTL approach decomposes this model coefficients matrix into a 101

dataset-specific component and a conserved component to enable us to penalize 102

dataset-unique and conserved interactions separately for each target gene [32]; this 103

separation captures differences in regulatory networks across datasets (Fig 2). Specifically, 104

we apply an l1/l∞ penalty to the one component to encourage similarity between network 105

models [50], and an l1/l1 penalty to the other to accommodate differences [32]. We also 106

incorporate prior knowledge by using adaptive weights when penalizing different 107
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coefficients in the l1/l1 penalty [33]. Finally, we perform this step for several bootstraps of 108

the conditions in the expression and activities matrices, and calculate a confidence score 109

for each predicted interaction that represents both the stability across bootstraps and the 110

proportion of variance explained of the target expression dependent on each predictor. 111

Our method is readily available in an open-source package, Inferelator-AMuSR (Adaptive 112

Multiple Sparse Regression), enabling TF activity estimation and multi-source gene 113

regulatory network inference, ultimately facilitating mechanistic interpretations of gene 114

expression data to the Biology community. In addition, this method allows for adaptive 115

penalties to favor interactions with prior knowledge proportional to the user-defined belief 116

that interactions in the prior are true. Finally, our implementation also includes several 117

mechanisms that speed-up computations, making it scalable for the datasets used here, 118

and support for parallel computing across multiple nodes and cores in several computing 119

environments. 120

Model organisms, expression datasets, and priors 121

We validated our approach using two model organisms, a gram-positive bacteria, B. 122

subtilis, and an eukaryote, S. cerevisiae. Availability of validated TF-target regulatory 123

interactions, hereafter referred to as the gold-standard, make both organisms a good 124

choice for exploring inference methods (3040 interactions, connecting 153 TFs to 1822 125

target genes for B. subtilis [17,46], 1198 interactions connecting 91 TFs to 842 targets for 126

S. cerevisiae [51]). For B. subtilis, we use two expression datasets. The first one, B. 127

subtilis 1, was collected for strain PY79 and contains multiple knockouts, competence and 128

sporulation-inducing conditions, and chemical treatments (429 samples, 38 experimental 129

designs with multiple time-series experiments) [17]. The second dataset, B. subtilis 2, was 130

collected for strain BSB1 and contains several nutritional, and other environmental 131

stresses, as well as competence and sporulation-inducing conditions (269 samples, and 132

104 conditions) [52]. For S. cerevisiae, we downloaded three expression datasets from the 133
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SPELL database [53]. S. cerevisiae 1 is a compendium of steady-state chemostat cultures 134

with several combinations of cultivation parameters (170 samples, 55 conditions) [54]. S. 135

cerevisiae 2 profiles two yeast strains (BY and RM) grown with two carbon sources, 136

glucose and ethanol, in different concentrations (246 samples, and 109 conditions) [55]. 137

Finally, S. cerevisiae 3 with expression profiles following several mutations and chemical 138

treatments (300 samples) [56]. Each dataset was collected using a different microarray 139

platform. Cross-platform data aggregation is well known to cause strong batch effects [10]. 140

For each species, we considered the set of genes present across datasets. 141

In our inference framework, prior knowledge on network topology is essential to first 142

estimate transcription factor activities and to then bias model selection towards 143

interactions with prior information during the network inference stage of the algorithm. 144

Therefore, to properly evaluate our method, it is necessary to gather prior interactions 145

independent of the ones in the gold-standard. For B. subtilis, we adopt the previously used 146

strategy of partitioning the initial gold-standard into two disjoint sets, a prior for use in 147

network inference and a gold-standard to evaluate model quality [17]. For S. cerevisiae, on 148

the other hand, we wanted to explore a more realistic scenario, where a gold-standard is 149

often not available. In the absence of such information, we hypothesized that orthogonal 150

high-throughput datasets would provide insight. Because the yeast gold-standard [51] was 151

built as a combination of TF-binding (ChIP-seq, ChIP-ChIP) and TF knockout datasets 152

available in the YEASTRACT [47] and the SGD [57] databases, we propose to derive prior 153

knowledge from chromatin accessibility data [22,23] and TF binding sites [58] (as this is a 154

realistic and efficient genomic experimental design for non-model organisms). Open 155

regions in the genome can be scanned for transcription factor binding sites, which can 156

provide indirect evidence of regulatory function [59]. We then assigned TFs to the closest 157

downstream gene, and built a prior matrix where entries represent the number of motifs for 158

a particular TF that was associated to a gene [60,61]. We obtained a list of regulators from 159

the YeastMine database [62], which we also used to sign entries in the prior: interactions 160

for regulators described as repressors were marked as negative. Because genome-wide 161
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measurements of DNA accessibility can be obtained in a single experiment, using 162

techniques that take advantage of the sensitivity of nucleosome-free DNA to endonuclease 163

digestion (DNase-seq) or to Tn5 transposase insertion (ATAC-seq) [63], we expect this 164

approach to be generalizable to several biological systems. 165

Sharing information across network models via multitask learning 166

improves model accuracy 167

Using the above expression datasets and priors, we learn regulatory networks for each 168

organism employing both single-task and our multitask approaches. To provide an intuition 169

for cross-dataset transfer of knowledge, we compare confidence scores attributed to a 170

single gold-standard interaction using either STL or MTL for each organism. For B. subtilis, 171

we look at the interaction between the TF sigB and the gene ydfP (Fig 3A). The 172

relationship between the sigB activity and ydfP expression in the first dataset B. subtilis 1 173

is weaker than in B. subtilis 2. This is reflected in the predicted confidence scores, a 174

quarter as strong for B. subtilis 1 than for B. subtilis 2, when each dataset is used 175

separately to learn networks through STL. On the other hand, when we learn these 176

networks in the MTL framework, information flows from B. subtilis 2 to B. subtilis 1, and we 177

assign a high confidence score to this interaction in both networks. Similarly, for S. 178

cerevisiae, we look at the interaction between the TF Rap1 and the target gene Rpl12a 179

(Fig 3B). In this particular case, we observe a strong and easier-to-uncover relationship 180

between Rap1 estimated activity and Rpl12a expression for all datasets. Indeed, we 181

assign a nonzero confidence score to this interaction for all datasets using STL, although 182

for S. cerevisiae 2 and 3 these are much smaller than the scores attributed when networks 183

are learned using MTL. 184

In order to evaluate the overall quality of the inferred networks, we use area under 185

precision-recall curves (AUPR) [16], widely used to quantify a classifier’s ability to 186

distinguish two classes and to rank predictions. Networks learned using MTL are 187
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significantly more accurate than networks learned using the STL approach. For B. subtilis 188

(Fig 3D), we observe around a 30% gain in AUPR for both datasets, indicating significant 189

complementarity between the datasets. For S. cerevisiae (Fig 3E), we observe a clear 190

increase in performance for networks inferred for every dataset, indicating that our method 191

is very robust to both data heterogeneity and potential false edges derived from chromatin 192

accessibility in the prior. These experiments were also performed using TF expression as 193

covariates, instead of TF activities, and those results are shown at (Fig S1A, B). Although 194

we recommend using TFA for the organisms here tested, MTL also improves the 195

performance for each dataset-specific network in this scenario. 196

Benefits of multitask learning exceed those from batch-correction and 197

ensemble methods 198

Next, we asked whether the higher performance of the MTL framework could be achieved 199

by other commonly used data integration strategies, such as batch-correction and 200

ensemble methods. Ensemble methods include several algebraic combinations of 201

predictions from separate classifiers trained within a single-domain (sum, mean, maximum, 202

minimum [64]). To address this question, we evaluated networks inferred using all 203

available data. First, we combined regulatory models inferred for each dataset either 204

through STL or MTL by taking the average rank for each interaction, generating two 205

networks hereafter called STL-C and MTL-C [16]. For each organism, we also merged all 206

datasets into one, and applied ComBat for batch-correction [65], because of its perceived 207

higher performance [66]. We then learn network models from these larger batch-corrected 208

datasets, STL-BC. Both for B. subtilis (Fig 4A) and S. cerevisiae (Fig 4B), the MTL-C 209

networks outperform the STL-C and STL-BC networks, indicating that cross-dataset 210

information sharing during modelling is a better approach to integrate datasets from 211

different domains. Interestingly, for B. subtilis, the STL-BC network has a higher 212

performance than the STL-C network, whereas for yeast we observe the opposite. We 213

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/279224doi: bioRxiv preprint 

https://doi.org/10.1101/279224
http://creativecommons.org/licenses/by-nc-nd/4.0/


speculate that the higher overlap between the conditions in the two B. subtilis datasets 214

improved performance of the batch-correction algorithm here used. For yeast, on the other 215

hand, conditions were very different across datasets, and although much new information 216

is gained by merging datasets into one, it is likely that incorrect relationships between 217

genes were induced as an artifact, possibly confounding the inference. Of note, these 218

approaches emphasize the commonalities across datasets, whereas the motivation to use 219

MTL frameworks is to increase statistical power, while maintaining separate models for 220

each dataset, hopefully improving interpretability. These experiments were also performed 221

using TF expression as covariates, instead of TF activities, and those results are shown at 222

(Fig S2A, B). In that case, results hold for yeast, but not for B. subtilis. 223

Our method is robust to increasing prior weights and noise in prior 224

Because genes are frequently co-regulated, and biological networks are redundant and 225

robust to perturbations, spurious correlations between transcription factors and genes are 226

highly prevalent in gene expression data [67,68]. To help discriminate true from false 227

interactions, it is essential to incorporate prior information to bias model selection towards 228

interactions with prior knowledge. Indeed, incorporating prior knowledge has been shown 229

to increase accuracy of inferred models in several studies [3,21,69]. 230

For example, suppose that two regulators present highly correlated activities, but regulate 231

different sets of genes. A regression-based model would be unable to differentiate 232

between them, and only other sources of information, such as binding evidence nearby a 233

target gene, could help selecting one predictor over the other in a principled way. Thus, we 234

provide an option to integrate prior knowledge to our MTL approach in the model selection 235

step by allowing the user to input a “prior weight”. This weight is used to increase presence 236

of prior interactions to the final model, and should be proportional to the quality of the input 237

prior. 238

Sources of prior information for the two model organisms used in this study are 239
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fundamentally different. The B. subtilis prior is high-quality, derived from small-scale 240

experiments, whereas the S. cerevisiae prior is noisier, likely with both high false-positive 241

and false-negative rates, derived from high-throughput chromatin accessibility experiments 242

and TF binding motifs. To understand differences in prior influences for the same 243

organism, we also include the yeast gold-standard as a possible source of prior in this 244

analysis. The number of TFs per target gene in the B. subtilis (Fig 5A) and the S. 245

cerevisiae (Fig 5B) gold-standards (GS) is hardly ever greater than 2, with median of 1, 246

whereas for the chromatin accessibility-derived priors (ATAC) for S. cerevisiae, the median 247

is 11 (Fig 5C). A large number of regulators per gene likely indicates a high false-positive 248

rate in the yeast ATAC prior. Given the differences in prior quality, we test the sensitivity of 249

our method to the prior weight parameter. We applied increasing prior weights, and 250

measured how the confidence scores attributed to prior interactions was affected (Fig 5D) 251

for the three source of priors described above. Interestingly, the confidence scores 252

distributions show dependencies on both the prior quality and the prior weights. When the 253

gold-standard interactions for B. subtilis and S. cerevisiae are used as prior knowledge, 254

they receive significantly higher scores than interactions in the S. cerevisiae chromatin 255

accessibility-derived prior, which is proportional to our belief on the quality of the input prior 256

information. Importantly, even when we set the prior weight value to a very high value, 257

such as 10, interactions in the ATAC prior are not pushed to very high confidence scores, 258

suggesting that our method is robust to the presence of false interactions in the prior. 259

In order to test this hypothesis, we artificially introduced false edges to both the B. subtilis 260

and the yeast gold-standards. We added 1 randomly chosen “false” interaction for every 5 261

true edges in the gold-standard. That affects both TFA estimation and model selection (for 262

prior weights greater than 1). We then ran the inference using the Inferelator-AMuSR 263

method with increasing prior weights, and evaluated both the confidence scores of 264

recovered true and false interactions (Fig 5C) as well as the counts of true and false 265

interactions that receive non-zero confidence scores (Fig 5D). For both B. subtilis and 266

yeast, we notice that confidence scores distributions show dependency on whether edges 267
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are true or false, indicating that the method is not overfitting the prior for the majority of 268

datasets, even when prior weights used are as high as 10 (Fig 5C). We speculate that the 269

greater completeness of the B. subtilis gold-standard and of the expression datasets make 270

it easier to differentiate true from false prior interactions when compared to yeast. Besides, 271

inferring networks for prokaryotes is regarded as an easier problem [16]. Importantly, we 272

also show the number of non-zero interactions in each of these distributions (Fig 5D). 273

Taken together, these results show that our method is robust to false interactions in the 274

prior, but requires the user to choose an appropriate prior weight for the specific 275

application. As in previous studies [43], in the presence of a gold-standard, we 276

recommend the user to evaluate performance in leave-out sets of interactions to determine 277

the best prior weight to be used. In the absence of a gold-standard, priors are likely to be 278

of lower confidence, and therefore, smaller prior weights should be used. 279

Joint network inference is robust to dataset heterogeneity 280

Because multitask learning approaches are inclined to return models that are more similar 281

to each other, we sought to understand how heterogeneity among datasets affected the 282

inferred networks. Specifically, we quantified the overlap between the networks learned for 283

each dataset for B. subtilis and yeast. That is, the number of edges that are unique or 284

shared across networks inferred for each dataset (Fig 6). In this analysis, we consider 285

valid only predictions within a 0.5 precision cut-off, calculated using only TFs and genes 286

present in the gold-standard. Since the B. subtilis datasets share more conditions than the 287

yeast datasets, we hypothesized that the B. subtilis networks would have a higher overlap 288

than the yeast networks. As expected, we observe that about 40% of the total edges are 289

shared among two B. subtilis networks (Fig 6A), whereas for yeast only about 27% 290

(Fig 6B) and 22% (Fig 6C), using gold-standard and chromatin accessibility-derived priors 291

respectively, of the total number of edges is shared by at least two of the three inferred 292

networks. Therefore, our approach for joint inference is robust to cross-dataset influences, 293

preserving relative uniqueness when datasets are more heterogeneous. 294

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/279224doi: bioRxiv preprint 

https://doi.org/10.1101/279224
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 295

In this study, we presented a multitask learning approach for joint inference of gene 296

regulatory networks across multiple expression datasets that improves performance and 297

biological interpretation by factoring network models derived from multiple datasets into 298

conserved and dataset-specific components. Our approach is designed to leverage 299

cross-dataset commonalities while preserving relevant differences. While other multitask 300

methods for network inference penalize for differences in model coefficients across 301

datasets [25–28,30], our method leverages shared underlying topology rather than the 302

influence of TFs on targets. We expect this method to be more robust, because, in living 303

cells, a TF’s influence on a gene’s expression can change in different conditions. In 304

addition, previous methods either deal with dataset-specific interactions [25], or apply 305

proper sparsity inducing regularization penalties [26–30]. Our approach, on the other hand, 306

addresses both concerns. Finally, we implemented an additional feature to allow for 307

incorporation of prior knowledge on network topology in the model selection step. 308

Using two different model organisms, B. subtilis and S. cerevisiae, we show that joint 309

inference results in accurate network models. We also show that multitask learning leads 310

to more accurate models than other data integration strategies, such as batch-correction 311

and combining fitted models. Generally, the benefits of multitask learning are more obvious 312

when task overlap is high and datasets are slightly under-sampled [34]. Our results 313

support this principle, as the overall performance increase of multitask network inference 314

for B. subtilis is more pronounced than for S. cerevisiae, which datasets sample more 315

heterogeneous conditions. Therefore, to benefit from this approach, defining input 316

datasets that share underlying regulatory mechanisms is essential and user-defined. 317

A key question here, that requires future work, is the partitioning of data into separate 318

datasets. Here we use the boundaries afforded by previous study designs: we use data 319

from two platforms and two strains for B. subtilis (a fairly natural boundary) and the 320

separation between studies by different groups (again using different technologies) in 321
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yeast. We choose these partitions to illustrate robustness to the more common sources of 322

batch effect in meta-analysis. In the future, we expect that multitask methods in this 323

domain will integrate dataset partition estimation (which data go in which bucket) with 324

network inference. Such methods would ideally be able to estimate task similarity, taking 325

into account principles of regulatory biology, and apply a weighted approach to information 326

sharing. In addition, a key avenue for future work will be to adapt this method to 327

multi-species studies. Examples of high biological and biomedical interest include joint 328

inferences across model systems and organisms of primary interest (for example 329

data-sets that include mouse and human data collected for similar cell types in similar 330

conditions). These results (and previous work on many fronts [7,25,70]) suggest that this 331

method would perform well in this setting. Nevertheless, because of the increasing 332

practice of data sharing in Biology, we speculate that cross-study inference methods will 333

be largely valuable in the near future, being able to learn more robust and generalizable 334

hypotheses and concepts. Although we present this method as an alternative to batch 335

correction, we should point out that there are many uses to batch correction that fall 336

outside of the scope of network inference, and our results do not lessen the applicability of 337

batch correction methods to these many tasks. There is still great value in properly 338

balancing experimental designs when possible to allow for the estimation of specific gene- 339

and condition-wise batch effects. Experiments where we interact MTL learning with 340

properly balanced designs and quality batch correction are not provided here, but would be 341

superior. Thus, the results here should be strictly interpreted in the context of network 342

inference, pathway inference, and modeling interactions. 343
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Methods 344

Expression data selection, preprocessing and batch-correction 345

For B. subtilis, we downloaded normalized expression datasets from the previously 346

published network study by Arrieta-Ortiz et al [17]. Both datasets are available at GEO, B. 347

subtilis 1 with accession number GSE67023 [17] and B. subtilis 2 with accession number 348

GSE27219 [52]. For yeast, we downloaded expression datasets from the SPELL database, 349

where hundreds of re-processed gene expression data is available for this organism. In 350

particular, we selected three datasets from separate studies based on the number of 351

samples, within-dataset condition diversity, and cross-dataset condition overlap (such as 352

nutrient-limited stress). S. cerevisiae 1 and S. cerevisiae 2 are also available at GEO at 353

accession numbers GSE11452 [54] and GSE9376 [55]. S. cerevisiae 3 does not have a 354

GEO accession number, and was collected in a custom spotted microarray [56]. For 355

network inference, we only kept genes present in all datasets, resulting in 3780 and 4614 356

genes for B. subtilis and for yeast respectively. In order to join merge, for comparison, we 357

consider each dataset to be a separate batch, since they were generated in different labs 358

as part of separate studies, and applied ComBat for batch-correction using default 359

parameters and no reference to experimental designs [65]. 360

Building priors from chromatin accessibility 361

ATAC-seq data download, processing, and peak calling 362

We downloaded chromatin accessibility data for S. cerevisiae from the European 363

Nucleotide Archive (PRJNA276699) [71,72]. Reads were mapped to the sacCer3 genome 364

(iGenomes, UCSC) using bowtie2 [73] with the options –very-sensitive –maxins 2000. 365

Reads with low mapping quality (MAPQ < 30), or that mapped to mitochondrial DNA were 366

removed. Duplicates were removed using Picard. Reads mapping the forward strand were 367
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offset by +4 bp, and reads mapping to the reverse strand -4 bp. Accessible regions were 368

called using MACS2 [74] with the options –qvalue 0.01 –gsize 12100000 –nomodel –shift 369

20 –extsize 40. We defined the union of peaks called in any the ATAC-seq samples as the 370

set of putative regulatory regions. 371

Motifs download, assignment to target genes, and prior generation 372

We obtained a set of expert-curated motifs for S. cerevisiae containing position frequency 373

matrices for yeast transcription factors from The Yeast Transcription Factor Specificity 374

Compendium motifs (YeTFaSCo) [75]. Then, we scanned the whole yeast genome for 375

occurrences of motifs using FIMO with p-value cutoff 1e-4 [59], and kept motifs that 376

intersected with putative regulatory regions. Each motif was then assigned to the gene 377

with closest downstream transcription start site. Gene annotations were obtained from the 378

Saccharomyces Genome Database (SGD) [76]. A list of putative regulators was 379

downloaded from the YeastMine database [62], and then generated a targets-by-regulators 380

matrix (prior) where entries are the count of motifs for a particular regulator assigned to 381

each gene. Finally, we multiplied entries for repressors by -1. 382

Network inference 383

We approach network inference by modeling gene expression as a weighted sum of the 384

activities of transcription factors [17,36]. Our goal is to learn these weights from gene 385

expression data as accurately as possible. In this section, we explain our core model of 386

gene regulation, and of transcription factor activities, and state our assumptions. We also 387

describe how we extend our framework to support learning of multiple networks 388

simultaneously, and integration of prior knowledge on network structure. Finally, we explain 389

how we rank predicted interactions which is used to evaluate the ability of these methods 390

to recover the known underlying network. 391
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Core model 392

We model the expression of a gene i at condition j, Xi,j , as the weighted sum of the 393

activities of each transcription factor k at condition j, Ak,j [17,43]. Note that although 394

several methods use transcription factor expression as an approximation for its activity, we 395

explicitly estimate these values from expression data and a set of a prior known 396

interactions. Strength and direction (activation or repression) of a regulatory interaction 397

between transcription factor k and gene i is represented by i, k. At steady state, we 398

assume: 399

Xi,j =
∑
k∈TFs

wi,kÂk,j (1)

For time-series, we reason that there is a delay τ between transcription factor activities 400

and resulting changes in target gene expression [43]. Given expression of a gene i in time 401

tn, Xi,tn , and activity of transcription factor k at time tn−τ , Ak,tn−τ , we assume: 402

Xi,tn =
∑
k∈TFs

wi,kÂk,tn−τ (2)

If time tn− τ is not available in the expression data, linear interpolation is used to fit 403

Ak,tn−τ . 404

Finally, because we expect each gene to be regulated by only a few transcription factors, 405

we seek a sparse solution for w. That is, a solution in which most entries in w are zero. Of 406

note, we set τ = 15 for B. subtilis [17]. For S. cerevisiae, all experiments are considered 407

steady-state. 408
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Estimating transcription factor activities (TFA) 409

We use the expression of known targets of a transcription factor to estimate its activity. 410

From a set of prior interactions, we build a connectivity matrix P , where entries represent 411

known activation, Pi,k = 1, or repression, Pi,k = −1, of gene i by transcription factor k. If 412

no known interaction, Pi,k = 0. We assume that the expression of a gene can be written as 413

a linear combination of the activities of its prior known regulators [17]. 414

Xi,j =
∑
p∈TFs

Pi,kAk,j (3)

In case of time-series experiments, we use the expression of genes at time tn+τ/2, 415

Xi,tn+τ/2 , to inform the activities at time tn, An. Note that for estimating activities, the time 416

delay used is τ/2. Again, linear interpolation is used to estimate Xi,tn+τ/2 if gene 417

expression at tn+τ/2 was not measured experimentally [17]. 418

Xi,tn+τ/2 =
∑
p∈TFs

Pi,kAk,tn (4)

In matrix form, both time-series and steady-state equations can be written as X = PA. 419

Since there are more target genes than regulators i > p, this is an over-determined 420

system, and thus has no solution, so we approximate A by finding Â that minimizes 421

||PÂ−X||22. The solution is given by Â = P ∗X, where P ∗ = (P TP )−1P T , the 422

pseudo-inverse of P . Finally, for transcription factors with no targets in P , we use the 423

measured expression values as proxy for the activities. 424

Learning regression parameters 425

Given gene expression and activity estimates, the next step is to define a set of regulatory 426

hypotheses for the observed changes in gene expression. For each gene, we find a 427
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sparse solution for the regression coefficients where nonzero values indicate the 428

transcription factors that better explain the changes observed in gene expression. In this 429

section, we explain how we learn these parameters from a single dataset (single-task 430

learning) and from multiple (multitask learning). 431

Single-task learning using lasso regression (l1) 432

The lasso (least absolute selection and shrinkage operator) is a method that performs both 433

shrinkage of the regression coefficients and model selection [49]. That is, it shrinks 434

regression coefficients towards zero, while setting some of them to exactly zero. It does so 435

by adding a penalty on the sum of the absolute values of the estimated regression 436

coefficients. Let Â be the activities matrix, Xi the expression values for gene i, and w the 437

vector of coefficients, lasso estimates are given by: 438

arg min
w

1

2n
||Xi − ÂTw||22 + λ||w||1 (5)

where ||w||1 =
∑

k |wk|. When minimizing the above function, we seek a good fit while 439

subject to a “budget” on the regression coefficients. The hyper-parameter λ controls how 440

much weight to put on the l1 penalty. The lasso became very popular in the last decade, 441

because it reduces overfitting and automatically performs variable selection. We choose 442

the lasso as a single-task baseline because it is equivalent to the S matrix in the multitask 443

case (see below), but with independent choice of sparsity parameter for each dataset. 444

Multitask learning using sparse block-sparse regression (l1/l1 + l1/l∞) 445

We extend our core model to the multiple linear regression setting to enable simultaneous 446

parameter estimation. Here we represent regression parameters for a single gene i as a 447

matrix W , where rows are transcription factors k and columns are networks (or datasets) d. 448
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We seek to learn the support Supp(W ), where nonzero entries Wk,d represent a regulatory 449

interaction between transcription factor k and gene i for network from dataset d. 450

X
(d)
i,j =

∑
k∈TFs

Wk,dÂ
(d)
k,j (6)

For a given gene i, we could assume that the same regulatory network underlies the 451

expression data in all datasets d. That is, rows in W are either completely non-zero or zero. 452

Since a different set of experiments may have different regulatory patterns, this could be a 453

very strong assumption. A more realistic scenario would be that for each gene i, certain 454

regulators are relevant to regulatory models for all datasets d, while others may be 455

selected independently by each model d. Thus, some rows in the parameter matrix W are 456

entirely nonzero or zero, while others do not follow any particular rule. In this scenario, the 457

main challenge is that a single structural constraint such as row-sparsity does not capture 458

the structure of the parameter matrix W . For these problems, a solution is to model the 459

parameter matrix as the combination of structurally constrained parameters [77]. 460

As proposed by Jalali et al. [32], we learn the regression coefficients by decomposing W 461

into B and S, that encode similarities and differences between regulatory models 462

respectively. This representation combines a block-regularization penalty on B enforcing 463

row-sparsity ||B||1,∞ =
∑

k ||Bk||∞, where ||Bk||∞ := maxd |Bk,d| (as the one from the 464

previous section), and an elementwise penalty on S allowing for deviation across 465

regulatory models for each dataset ||S||1,1 =
∑

k,d |Sk,d|. The goal is to leverage any 466

parameter overlap between models through B, while accommodating the differences 467

through S. We obtain an estimate for Ŵ by solving the following optimization problem: 468

arg min
S,B

1

2n

∑
d

||X(d)
i − Â

(d)T (S∗,d +B∗,d)||22 + λs||S||1,1 + λb||B||1,∞ (7)

469

output : Ŵ = B̂ + Ŝ
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Incorporating prior knowledge using the adaptive lasso 470

We incorporate prior knowledge by differential shrinkage of regression parameters in S 471

through the adaptive lasso [33]. We choose to apply this only to the S component, 472

because we wanted to allow the user to input different priors for each dataset if so desired. 473

Intuitively, we penalize less interactions present in the prior network. Let Φ be a matrix of 474

regulators k by datasets d, such that entries Φk,d are inversely proportional to our prior 475

confidence on the interaction between regulator k and gene i for dataset d. We then 476

optimize the following objective: 477

arg min
S,B

1

2n

∑
d

||X(d)
i − Â

(d)T (S∗,d +B∗,d)||22 + λs
∑
k,d

|Φk,dSk,d|+ λb||B||1,∞ (8)

478

output : Ŵ = B̂ + Ŝ

We implement this by scaling λs by Φ, then the penalty applied to Sk,d becomes Φk,dλs. In 479

the extreme Φk,d = 0, the regulator k is not penalized and will be necessarily included in 480

the final model for dataset d. In practice, the algorithm accepts an input prior weight ρ ≥ 1 481

that is used to generate the matrix Φ. We apply the complexity-penalty reduction afforded 482

by Φk,d to Ŝ and not B̂ as this choice penalizes unique terms, creating the correct behavior 483

of encouraging model differences that are in accord with orthogonal data as expressed in 484

the network-prior. This choice is also in accord with the interpretation of the prior as valid 485

in one, but not necessarily all, conditions. If regulator k is in the prior for dataset d, then 486

Φk,d = 1/ρ, otherwise Φk,d = 1. Finally, we rescale Φ∗,d to sum to the number of predictors 487

k. Note that each network model accepts its own set of priors. 488
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Model selection 489

As proposed by Jalali et al. [32], for MTL, we set λb = c
√

d log p
n , with n being the number of 490

samples, d being the number of datasets, and search for c in the logarithmic interval [0.01, 491

10]. For each λb, we look for λs that satisfy 1
2 <

λs
λb
< 1. We choose the optimal 492

combination (λs, λb) that minimizes the extended Bayesian information criterion 493

(EBIC) [78], here defined as: 494

EBIC =
1

d

∑
d

nd ln
1

nd
||X(d)

i − Â
(d)TW∗,d||22 + kd lnnd + 2γ ln

(
pd
kd

)
(9)

with kd being the number of nonzero predictors in W for model d, and 0 ≤ γ ≤ 1. Note that 495

for γ = 0, we recover the original BIC. Whereas for γ > 0, the EBIC scales with the 496

predictor space k making it particularly appropriate for scenarios where p� n, often 497

encountered in biological network inference projects. In this study, we set γ = 1. For STL, 498

we use the same EBIC measure, but we calculate it for each dataset separately. 499

Importantly, model selection using EBIC is significantly faster than when compared to 500

re-sampling approaches, such as cross-validation or stability selection [79]. 501

Cross-validation, for example, was previously reported as an impediment for multitask 502

learning in large-scale network inference due computational feasibility [29]. 503

Implementation 504

We implemented the MTL objective function using cyclical coordinate descent with 505

covariance updates. That is, at each iteration of the algorithm we cycle through the 506

predictors (coordinates), and minimize the objective at each predictor k while keeping the 507

others fixed. Briefly, for a given (λs, λb), we update entries in S and B respectively, while 508

keeping other values in these matrices unchanged, for several iterations until convergence. 509

First, we update values in S by: 510
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Ŝk,d = arg min
Sk,d

1

2
||R(d)

k − Sk,dA
(d)
k ||

2
2 + λs

∑
k

|S∗,d|, ∀k, d (10)

with R(d)
k = X

(d)
i −

∑
l 6=k(Sl,d +Bl,d)A

(d)
l −

∑
k Bk,dAk,d, being the partial residual vector. 511

Intuitively, we remove effect of the previous coefficient value for Sk,d, while keeping Bk,d 512

unchanged and measure how it changes the residuals. This represents a measure of how 513

important that feature is to the prediction, and contributes to the decision of whether a 514

feature is pushed towards zero or not by the lasso penalty. For λs = 0, we can find the 515

least squares update, αk,d = 〈R(d)
k , A

(d)
k 〉, and re-write as 516

αk,d = 〈A(d)
k , X

(d)
i 〉 −

∑
l 6=k(Sl,d +Bl,d)〈A

(d)
l , A

(d)
k 〉 −Bk,d〈A

(d)
k , A

(d)
k 〉. This formulation can 517

be optimized much quicker using the covariance updates explained below. 518

Then, we update B̂k, which represents an entire row in B, by: 519

B̂k = arg min
Bk

1

2

∑
d

||R(d)
k −Bk,dA

(d)
k ||

2
2 + λb||Bk||∞, ∀k (11)

with R(d) = X
(d)
i −

∑
l 6=k(Sl,d +Bl,d)A

(d)
l −

∑
k Sk,dA

(d)
k , being the partial residual vector for 520

this case. In this case, we keep the value Sk,d unchanged, and set Bk,d to zero. Similarly, 521

we remove effects from previous Bk,d and evaluate how this feature is for the prediction; 522

this then contributes to the decision of whether this entire row is sent to zero by the infinity 523

norm penalty. For λb = 0, we can find the least squares update, αk,d = 〈R(d), A
(d)
k 〉, which 524

can be re-written as αk,d = 〈A(d)
k , X

(d)
i 〉 −

∑
l 6=k(Sl,d +Bl,d)〈A

(d)
l , A

(d)
k 〉 − Sk,d〈A

(d)
k , A

(d)
k 〉. 525

Finally, we apply soft-thresholding to penalize the least-squares updates. 526

Using these formulations for the updates, we can use the idea of covariance 527

updates [50,80], where the cross-products ATA and ATX are stored in separate matrices 528

and reused at every iteration. Because these cross-products correspond to over 95% of 529

computation time, this trick decreases runtime significantly. To further decrease runtime, 530

we also employ warm starts when searching for optimal penalty values (λs, λb) [80]. 531

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/279224doi: bioRxiv preprint 

https://doi.org/10.1101/279224
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additionally, since we infer regulators for each gene separately, we can parallelize 532

calculations by gene. 533

Estimating prediction confidence scores 534

For each predicted interaction we compute a confidence score that represents how well a 535

predictor explains the expression data, and a measure of prediction stability. As previously 536

proposed [17,43], we calculate confidence scores for each interaction by: 537

ck,i = 1−
σ2full model for xi

σ2model for xi without predictor k
(12)

where σ2 equals the variance of the residuals for the models, with and without predictor k. 538

The score ck,i is proportional to how much removing regulator k from gene i set of 539

predictors decreases model fit. To measure stability, we perform the inference across 540

multiple bootstraps of the expression data (we used 20 bootstraps for both B. subtilis and 541

yeast), rank-average the interactions across all bootstraps [16,43], and re-scale the 542

ranking between 0 and 1 to output a final ranked list of regulatory hypotheses. 543

Implementation and Availability 544

The Inferelator-AMuSR code and example datasets are available at 545

https://github.com/simonsfoundation/multitask_inferelator/tree/AMuSR. 546
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Figure Legends

Fig 1: Gene regulatory network inference schematic. (A) Our network inference

algorithm takes as input a gene expression matrix, X, and a prior on network structure and

outputs regulatory hypotheses of regulator-target interactions. (B) Using priors on network

topology and gene expression data, we estimate transcription factor activities (TFA), and

subsequently model gene expression as a function of these activities. (C) We use several

possible sources of prior information on network topology. (D) Prior information is encoded

in a matrix P , where positive and negative entries represent known activation and

repression respectively, whereas zeros represent absence of known regulatory interaction.

To estimate hidden activities, we consider X = PA (top), where the only unknown is the

activities. Of note, a time-delay is implemented for time-series experiments (bottom). (E)

Finally, for each gene, we find regulators that influence its expression using regularized

linear regression. We either learn these influences, or weights, for each dataset

independently, single-task learning (top), or jointly through multi-task learning (bottom).

Fig 2: Representation of the weights matrix for one gene in the multitask setting.

We represent model coefficients as a matrix W (predictors by datasets) where nonzero

rows represent predictors relevant for all datasets. We decompose the weights into two

components, and regularize them differently, using a sparse penalty (l1/l1 to S component)

to encode a dataset-specific component and a block-sparse penalty (l1/l∞ to B

component) to encode a conserved one. To illustrate, in this example, non-zero weights

are shown on the right side. Note that, in this schematic example, regulators w3 and w7

are shared between all datasets. We also show the objective function minimized to

estimate S and B on the bottom (for details, see methods).

Fig 3: Multitask learning improves accuracy of inferred networks. (A) Relationship

between TF activity and target expression in B. subtilis 1 (blue) and in B. subtilis 2
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(orange), and corresponding STL and MTL inferred confidence scores for an example of

an interaction in the B. subtilis gold-standard, sigB to ydfP. (B) as shown in (A), but for an

interaction in the S. cerevisiae gold-standard, Rap1 to Rpl12a. (C) Precision-recall curves

assessing accuracy of network models inferred for individual B. subtilis datasets against a

leave-out set of interactions. Barplot show mean area under precision-recall curve (AUPR)

for each method and dataset. Error bars show the standard deviation across 10 splits of

the gold-standard into prior and evaluation set. (D) Precision-recall curves assessing

accuracy of network models inferred for individual S. cerevisiae networks, with the

difference that the prior is from an independent source (no splits or replicates).

Fig 4: Multitask learning performance boost outweights benefits of other data

integration methods. Assessment of accuracy of network models learned using three

different data integration strategies, data merging and batch correction (STL-BC),

ensemble method combining models learned independently (STL-C), and ensemble

method combining models learned jointly (MTL-C). (A) Precision-recall curves for B.

subtilis, again using a leave-out set of interactions. Barplot show mean area under

precision-recall curve (AUPR) for each method. Error bars show the standard deviation

across 10 splits of the gold-standard into prior and evaluation set. (B) Precision-recall

curves for S. cerevisiae, with the difference that the prior is from an independent source

(no splits or replicates).

Fig 5: Recovery of prior interactions depends on prior quality and is robust to

increasing prior weights. Distribution of number of regulators per target in the B. subtilis

prior (A), for the S. cerevisiae gold-standard (B), and for the S. cerevisiae chromatin

accessibility-derived priors (C). (D) Distributions of MTL inferred confidence scores for

interactions in the prior for each dataset. Different colors show prior weights used, and

represent an amount by which interactions in the prior are favored by model selection

when compared to interactions without prior information. (E) Distributions of MTL inferred
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confidence scores for true (yellow) and false (gray) interactions in the prior for each

dataset. (F) Counts of MTL inferred interactions with non-zero confidence scores for true

(yellow) and false (gray) interactions in the prior for each dataset.

Fig 6: Overlap of edges in inferred networks is higher for B. subtilis than for S.

cerevisiae. Edges overlap across networks inferred using multitask learning for B. subtilis

(prior weight of 1.0) (A), for S. cerevisiae (using the gold-standard as priors) (B), for S.

cerevisiae (using the chromatin accessibility-derived priors) (C).

36

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/279224doi: bioRxiv preprint 

https://doi.org/10.1101/279224
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure Legends

Fig S1: Multitask learning (without TF activities) improves accuracy of inferred

networks. (A) Precision-recall curves assessing accuracy of network models inferred

without TF activities for individual B. subtilis datasets against the whole gold-standard set

of interactions. Networks Barplot show mean area under precision-recall curve (AUPR) for

each method and dataset. (B) Precision-recall curves assessing accuracy of network

models inferred without TF activities for individual S. cerevisiae networks, with the

difference that priors are derived from chromatin accessibility data.

Fig S2: Multitask learning (without TF activities) performance boost outweights

benefits of other data integration methods for yeast, but not for B. subtilis.

Assessment of accuracy of network models learned using three different data integration

strategies, data merging and batch correction (STL-BC), ensemble method combining

models learned independently (STL-C), and ensemble method combining models learned

jointly (MTL-C). TF expression was used as predictors of gene expression. (A)

Precision-recall curves for B. subtilis, again using the whole gold-standard set of

interactions. Barplot show mean area under precision-recall curve (AUPR) for each

method. (B) Precision-recall curves for S. cerevisiae, with the difference that priors are

derived from chromatin accessibility data.
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Fig 2. Representation of the weights matrix for one gene in the multitask setting.
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Fig 3. Multitask learning improves accuracy of inferred networks
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Fig 4. Multitask Learning boost in performance outweights benefits of other data
integration methods
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Fig 5. Recovery of prior interactions depends on prior quality and is robust to increasing
prior weights
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Fig 6. Cross-dataset overlap of inferred edges is higher for B. subtilis than for S. cerevisiae
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Fig S1. Multitask learning (without TF activities) improves accuracy of inferred networks.
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Fig S2. Multitask learning (without TF activities) performance boost outweights benefits of
other data integration methods for yeast, but not for B. subtilis.
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