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Abstract 
 

1. Microbial communities are increasingly recognised as crucial for animal health. 

However, our understanding of how microbial communities are structured across wildlife 

populations is poor. Mechanisms such as interspecific associations are important in 

structuring free-living communities, but we still lack an understanding of how important 

interspecific associations are in structuring gut microbial communities in comparison to 

other factors such as host characteristics or spatial proximity of hosts. 

 

2. Here we ask how gut microbial communities are structured in a population of North 

American moose (Alces alces). We identify key microbial interspecific associations 

within the moose gut and quantify how important they are relative to key host 

characteristics, such as body condition, for predicting microbial community composition. 

 

3. We sampled gut microbial communities from 55 moose in a population experiencing 

decline due to a myriad of factors, including pathogens and malnutrition. We examined 

microbial community dynamics in this population utilizing novel graphical network 

models that can explicitly incorporate spatial information.\ 

 

4. We found that interspecific associations were the most important mechanism structuring 

gut microbial communities in moose and detected both positive and negative 

associations. Models only accounting for associations between microbes had higher 

predictive value compared to models including moose sex, evidence of previous pathogen 

exposure, or body condition. Adding spatial information on moose location further 
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strengthened our model and allowed us to predict microbe occurrences with ~90% 

accuracy. 

 

5. Collectively, our results suggest that microbial interspecific associations coupled with 

host spatial proximity are vital in shaping infra communities in a large herbivore. In this 

case, previous pathogen exposure and moose body condition were not as important in 

predicting gut microbial community composition. The approach applied here can be used 

to quantify interspecific associations and gain a more nuanced understanding of the 

spatial and host factors shaping microbial communities in non-model hosts. 

 
Key words: Biotic interactions, Body condition, Co-occurrence networks, Markov random 

fields, Microbiome, Pathogens, Spatial analysis 
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Introduction 1 

 2 

The relative roles of interspecific associations versus the environment in shaping 3 

communities are intensely debated (e.g., Chase & Myers, 2011; Vellend et al., 2014). In 4 

particular, detecting negative (e.g., potential competition) or positive (e.g., potential 5 

facilitation) associations between organisms remains a fundamental challenge of community 6 

ecology (e.g., Barner, Coblentz, Hacker, & Menge, 2018; Dormann et al., 2018; Harris, 2016; 7 

Ovaskainen et al., 2017). Despite the challenges of detecting associations between co-8 

occurring species, associations between species are thought to be essential for structuring 9 

free-living communities (e.g., de Araújo, Marcondes-Machado, & Costa, 2014). For example, 10 

associations between forest animal communities were more important in structuring 11 

communities than habitat attributes such as vegetation (Le Borgne et al., 2018). In contrast, 12 

the roles that interspecific associations play in governing the assembly of microbial systems 13 

(microbial interspecific associations) are less understood (Ganz et al., 2017; Herren & 14 

McMahon, 2018; Zelezniak et al., 2015), particularly for within-host microbial communities. 15 

Even when microbial interspecific associations are quantified in infra-communities, the 16 

relative importance of microbe dispersal (Evans, Martiny, & Allison, 2017; Zhou & Ning, 17 

2017) and host characteristics in shaping microbial infra-communities is rarely assessed 18 

(Clark, Wells, & Lindberg, 2018b). The quantification of interspecific associations of gut 19 

microbes is rare in wildlife populations but, given the significant ecological insights derived 20 

from studies of human gut microbial communities (e.g., Faust et al., 2012), is an important 21 

knowledge gap to fill. 22 

 23 

While our understanding of how microbial communities are structured is poor, it remains a 24 

key goal in microbial ecology, particularly given microbial community relevance to animal 25 
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health. Host characteristics such as sex, body condition, and the presence or absence of 26 

pathogens are recognised as important for shaping microbial infra-communities (Britton & 27 

Young, 2014; Cheng et al., 2015; Ganz et al., 2017; Hooper, Littman, & Macpherson, 2012; 28 

Jani & Briggs, 2014, 2018; McKenney et al., 2015; Mshelia et al., 2018; Näpflin & Schmid-29 

Hempel, 2018). For example, horses in poor body condition have greater microbial diversity 30 

and a different suite of microbial species present compared to horses in good body condition 31 

(Mshelia et al., 2018). High loads of the pathogen Batrachochytrium dendrobatidis can not 32 

only increase amphibian skin microbial diversity but also alter microbial composition (Jani & 33 

Briggs, 2014, 2018). However, the relative importance of host characteristics compared to 34 

other ecological processes, such as interspecific associations, in structuring microbial infra-35 

communities is poorly understood.  36 

 37 

Understanding how microbial infra-communities are shaped, however, is technically 38 

challenging, in part due to the complexity of untangling complex ecological processes in 39 

often species-rich but poorly characterized communities (Zhou & Ning, 2017). Graphical 40 

network models such as conditional random fields (CRF) offer exciting opportunities to 41 

address this challenge by estimating associations between organisms in a community (Clark, 42 

Wells, & Lindberg, 2018b). In effect, these models can untangle relative influences of 43 

microbial interspecific associations and host characteristics in predicting community 44 

compositions. Crucially, inferences gleaned from CRFs can be integrated with phylogenetic 45 

or functional data to provide new insights into mechanisms underlying microbial community 46 

assembly. For example, associations between microbes may be non-random in that 47 

phylogenetically or functionally similar species may co-occur more frequently (e.g., Bauer & 48 

Thiele, 2018). However, non-random associations detected in the human gut have been found 49 

to be often negative and between phylogenetically or functionally distinct bacterial species, 50 
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indicating that competition is likely an important driver of structure in this community (Faust 51 

et al., 2012). Overlaying information such as this on graphical models has the potential to 52 

highlight the broader mechanisms shaping microbial infra-communities. 53 

 54 

Here we use a CRF approach to investigate microbial community composition in a wild 55 

moose (Alces alces) population in Minnesota. Over the last two decades, moose in 56 

Minnesota, which exist on the southern edge of their species range, have experienced 57 

significant population decreases (Delgiudice, 2018; Lenarz, 2009). The most dramatic decline 58 

has been reported for moose in northwest Minnesota, where the population declined from 59 

4,000 animals in the 1980s to less than 100 by the mid-2000’s due to a combination of 60 

pathogens and malnutrition (Murray et al., 2006). Recently, moose in northeast Minnesota 61 

have experienced a 55% population decline, driven largely by parasitic infections in adults 62 

and wolf predation in calves (Carstensen et al., 2018; Severud, 2017; Wünschmann et al., 63 

2015). Moose gut microbial communities are known to vary with sex and age (Ishaq, 64 

Sundset, Crouse, & Wright, 2015; Ishaq & Wright, 2012), but to what extent these host 65 

characteristics, as well as pathogens and malnutrition, shape moose gut microbial 66 

communities is unknown. Other ecological processes such interspecific assocations, even 67 

though rarely quantified in wild populations, are also likely to play a role in shaping the 68 

moose gut microbial community as they do for other ruminants (Henderson et al., 2015). 69 

Furthermore, animals within close proximity to each other may have similar gut microbial 70 

communities due to similarities in diet and/or increased possibilities for microbial dispersal 71 

between individuals; both factors known to be important in gut microbial community 72 

assembly in many host species (Henderson et al., 2015; Moeller et al., 2017).  73 

 74 
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Here we apply a novel CRF approach that can quantify the relative importance of host 75 

characteristics (including moose sex, body condition, pathogen exposure, and pregnancy 76 

status) and microbial interspecific associations in shaping moose gut communities whilst 77 

accounting for underlying spatial autocorrelation in microbial occurrences. Accounting for 78 

spatial autocorrelation not only reduces false detection of interspecific associations that may 79 

arise due to dispersal limitation or diet but quantifies how important these processes could be 80 

in shaping microbial distributions. Specifically, we address the following questions: 81 

1. Do CRF model combinations including host characteristics and spatial proximity 82 

outperform models reflecting just associations between microbes in explaining 83 

microbial communities? 84 

2. After controlling for host characteristics and spatial patterns are there any remaining 85 

non-random negative or positive associations between microbes? 86 

3. If there are non-random associations, are they between microbes that are functionally 87 

or phylogenetically similar? 88 

We hypothesized that host characteristics would be the dominant processes shaping the 89 

moose gut microbial community, and that spatial proximity between hosts and interspecific 90 

associations would also partially explain gut microbial co-occurrence.  91 

Materials and Methods 92 

 93 

Sample collection and sequencing 94 

 95 

Faecal samples were collected from 55 wild moose that were part of companion studies of 96 

survival and cause-specific mortality led by the Minnesota Department of Natural Resources, 97 

Grand Portage Band of Lake Superior Chippewa, and Voyageur’s National Park across north-98 

eastern Minnesota (Fig. 1), placed on ice until transportation to the laboratory, and stored at -99 

20℃ prior to processing. This included moose that were live-captured (n = 52, 2011-2015) 100 
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and sick (n = 3, 2009-2010). Details of the capture and handling of these moose can be found 101 

in Butler et al. (2012) and Carstensen et al. (2018). The metadata provided from these moose 102 

included date and location of capture, pregnancy status, sex, age, body condition, and 103 

serological exposure to Borrelia burgdorferi, West Nile Virus, and leptospira (6 serovars 104 

including L. bratislava, L. canicola, L. grippotyphosa, L. hardjo, L. icterohemorrhagica and 105 

L. pomona). In total, we had serological data for 49 moose (33 females and 16 males) with 106 

the remaining 6 individuals removed from the CRF analysis (but retained for the descriptive 107 

analysis). See Butler et al. (2012) for serological test details. Of the live-captured moose, 21 108 

were observed to be underweight (thin/very thin), and 31 were considered of normal body 109 

condition at winter capture (Jan-Feb). All samples apart from one were collected in winter 110 

between 2011- 2015; the other sample was collected in 2003. Microbial DNA was extracted 111 

from the faecal samples using the PowerSoil DNA Isolation kit (Qiagen), in accordance with 112 

the manufacturer’s protocol. The V4 hypervariable region of the bacterial 16S rRNA gene 113 

was amplified using the barcoding primers 515F and 806R. Amplicons were sequenced on 114 

the Illumina MiSeq platform following the method outlined by Gohl et al., (2016). 115 

 116 

Figure 1: Locations (pink dots) of moose faecal samples in northeastern Minnesota, USA. 117 

The red box shows the location of the study in Minnesota. 118 

 119 
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Bioinformatics pipeline 120 

 121 

Raw sequencing reads were processed using the University of Minnesota’s metagenomics-122 

pipeline (complete description of the pipeline can be found at 123 

https://bitbucket.org/jgarbe/gopher-pipelines/overview), which implements the QIIME 124 

version 1.9.1 analysis software (Caporaso et al., 2010). Briefly, sequencing adaptors were 125 

trimmed using Trimmomatic (Bolger, Lohse, & Usadel, 2014) and read pairs were assembled 126 

and primer sequences removed using PANDAseq (Masella, Bartram, Truszkowski, Brown, & 127 

Neufeld, 2012). Reads without primers, unpaired reads, and assembled reads that were 128 

outside the expected rRNA gene V4 region length were discarded. Chimeras were detected 129 

and removed with QIIME’s identify_chimeric_seqs.py function with the usearch61 algorithm 130 

(Edgar, 2010). Open-reference OTU (operational taxonomic unit) picking was conducted 131 

using QIIME’s pick_open_reference_otus.py with a minimum sequence identity threshold of 132 

97%. Representative OTU sequences were aligned against the Greengenes 18.8 core set 133 

(DeSantis et al., 2006b) using UCLUST (Edgar, 2010) with QIIME default parameters. 134 

Singleton OTUs and those that did not align with PyNAST (Caporaso et al., 2010) were 135 

removed from the analysis. To control for differences in sequencing depth between samples, 136 

read counts were rarefied to the lowest number of reads (101,131) per sample.  137 

 138 

To test for co-occurrence patterns between gut microbes, we filtered out OTUs with ≤ 10% 139 

abundance (i.e., only keeping OTUs that occurred in at least 10% of samples) and converted 140 

the OTU table into a presence-absence matrix. OTUs that were found ≥ 75% of samples were 141 

also filtered from the analysis. Our purpose for removing rare and common OTUs was to 142 

ensure that adequate inferences could be made about the occurrence probability of each OTU 143 

(Ovaskainen, Abrego, Halme, & Dunson, 2016). This would be difficult / impossible to do if 144 

the target OTU shows little variability across sampled environmental gradients by being 145 

either too rare or too common. We transformed the presence-absence matrix into a Jaccard 146 
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similarity matrix and used non-metric multidimensional scaling (NMDS) to select OTUs that 147 

were driving compositional change across the moose samples and therefore likely to differ 148 

with moose characteristics such as body condition (Pearson correlation coefficient > 0.45). In 149 

total, 42 OTUs remained after this filtering process. NMDS was performed using functions in 150 

the R package vegan (Oksanen et al., 2013). 151 

 152 

To reduce the dimensions of the serological exposure data for subsequent analysis, we 153 

converted test results into a binary matrix (0 if the individual tested negative and 1 if 154 

positive), transformed the binary matrix into a Jaccard similarity matrix, and then performed 155 

principal coordinate analysis (PCoA) using the R package vegan (Oksanen et al., 2013). The 156 

first three PCoA axes represented 85% of the variation in exposure across individuals and 157 

eigenvalues from these axes were used as covariates in the CRF analysis below (now called 158 

pathogen exposure PCoA axes). 159 

 160 

Conditional random fields 161 

 162 

Identifying OTU co-occurrence patterns using conditional random fields 163 

The framework we used to investigate OTU co-occurrence probabilities while accounting for 164 

potential influences of covariates is described in detail by Clark et al. (2018a) and references 165 

therein. Briefly, the log-odds of observing OTU j given covariate x and the presence-absence 166 

of OTU k is modelled using: 167 

log � ���� 	 1��\� , 
�
1 � ���� 	 1��\� , 
�� 	  ��� � ���
 � � ����� � ���� 
���    �1�

�:���

 

where yj is a vector of binary observations for OTU j (1 if the OTU was present, 0 if absent), 168 

y\j represents vectors of binary observations for all other OTUs apart from j, αj0 is the OTU-169 

level intercept, and βT
j  is the coefficient for the effect of covariate x on OTU j’s occurrence 170 
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probability. Interaction parameters are represented by αjk0 and βT
jkx (defined below). 171 

Parameterization of the likelihood is estimated using logistic regression, where regression 172 

coefficients represent the effects of predictors on the OTU’s conditional log-odds. Cross-173 

multiplying all combinations of co-occurring OTUs and external covariates allows direct 174 

comparison of the relative influences interspecific associations) and host effects on an OTU’s 175 

occurrence probability. For each OTU-specific regression, sparsity is added to the model 176 

using L1 (e.g., least absolute shrinkage and selection operator [LASSO]) regularisation to 177 

force regression coefficients toward zero if they have minimal effects. Ten-fold cross-178 

validation was implemented to choose the penalty that minimised cross-validated error, as 179 

this is considered an appropriate loss function in binomial classification studies. Following 180 

LASSO variable selection, coefficients representing conditional dependence of two OTUs 181 

and coefficients representing effects of covariates on this dependence were symmetrized by 182 

taking the mean of the corresponding estimates so that αjk0 = αkj0 and βT
jkx = βT

kjx. This means 183 

we can approximate parameters from a unified graphical network, after maximizing the 184 

conditional log-likelihood for each OTU (Lee & Hastie, 2015). Following unification, 185 

inference is straightforward. If αjk0 = 0, we can infer that the occurrence probabilities of 186 

OTUs j and k are conditionally independent, after accounting for covariates and other OTUs. 187 

If αjk0 ≠ 0 but βT
jkx = 0, the occurrence probabilities are still considered conditionally 188 

dependent, but the strength of this dependence is not expected to co-vary with covariate x.  189 

 190 

MRF and CRF model selection 191 

We estimated four graphical model formulations of increasing complexity to identify a best-192 

fitting model for our OTU presence-absence dataset. In the first, we built a Markov random 193 

fields (MRF) graph that did not include any spatial data or host characteristics and used only 194 

the binary occurrences of the 42 OTUs as predictors (hereafter the MRF model). In the 195 
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second model, the GPS coordinates for each observation (latitude and longitude, in decimal 196 

degrees) were used to construct penalised Gaussian process regression splines with 100 197 

degrees of freedom (Kammann & Wand, 2003; Wood, 2003) (hereafter the spatial MRF 198 

model). Including the spatial splines in each OTU’s linear predictor ensured that interspecific 199 

associations on occurrence probabilities were estimated only after accounting for possible 200 

spatial autocorrelation. For the third model, we built a CRF including moose characteristics 201 

covariates (moose sex, body condition, pregnancy status and the pathogen exposure PCoA 202 

axes) as well as longitude and latitude (hereafter the non-spatial CRF model). All covariates 203 

were included as scaled continuous variables with the exceptions of sex and pregnancy status, 204 

which were both included as categorical variables. For the final model, we built a CRF as 205 

above, but we replaced the latitude and longitude variables with spatial splines (hereafter the 206 

spatial CRF model).  207 

 208 

We assessed the fit of each of the above candidate models to the observed data by calculating 209 

the proportion of observations that each model successfully classified. This was done using 210 

ten-fold cross-validation. The best-fitting model was then fit to 100 bootstrapped versions of 211 

the observed data (randomly shuffling observations in each bootstrap iteration) to capture 212 

uncertainty in model parameters. All CRF model fitting was performed using functions in the 213 

MRFcov R package (Clark, Wells, & Lindberg, 2018a). From the OTU co-occurrence data, 214 

we constructed an adjacency matrix and plotted association networks using iGraph R 215 

package (Csárdi & Nepusz, 2006). See Appendix S1 for R code detailing data preparation, 216 

analytical routine and model specification. 217 

 218 

OTU functional predictions 219 

 220 
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We predicted the molecular functions of OTUs using PICRUSt’s precalculated functional 221 

prediction table, where the rows were KEGG orthologs (KOs) and the columns were OTUs 222 

based on Greengeens identification numbers (DeSantis et al., 2006a; Kanehisa, Sato, 223 

Kawashima, Furumichi, & Tanabe, 2016; Langille et al., 2013). This KO table was converted 224 

into a presence-absence matrix (i.e., whether a particular functional ortholog is associated 225 

with that OTU) and calculated the pairwise functional similarity using the Jaccard index. We 226 

applied NMDS to view the broad functional relationships between OTUs and define 227 

functional groups (FGs).  228 

Results 229 

 230 

We found that Firmicutes, followed by Bacteroidetes, were the dominant phyla in all our 231 

moose gut communities making up over 75% of the reads detected (Fig. S1). The ratio of 232 

these groups across samples was relatively consistent with only one individual having a 233 

proportion < 50% of Firmicutes present (Fig. S2). Functionally the OTUs could be grouped 234 

into two FGs (Fig. S3). 235 

 236 

Model fit 237 

 238 

The MRF model, which only quantified associations between microbes, could more 239 

accurately predict OTU occurrence compared to either the spatial CRF or non-spatial CRF 240 

models (both of which included host characteristics; Fig. 2a). Including spatial regression 241 

splines did improve the fit of the CRF model, with this model accurately predicting 78% of 242 

observations compared to 74% of for the non-spatial CRF (Fig. 2a). In contrast, the MRF 243 

could accurately predict 83% of presence-absence observations on average (Fig. 2a). This 244 

result was not due to one model being better able to predict occurrence over absence, as the 245 

MRF had much higher specificity and sensitivity than either of the CRF models (Fig. 2b/c). 246 

However, we still found evidence of spatial clustering in microbial occurrence probabilities, 247 
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as MRF performance improved further when we included spatial splines in the model (Fig. 248 

2a). Adding spatial data to this model enabled us to correctly predict ~90% of OTU 249 

occurrences in the moose gut microbial community. This not only suggests that microbes in 250 

our dataset were more likely to show similar occurrences in moose that were sampled nearby 251 

to one another, but that false associations between microbes could be inferred by models that 252 

do not account for spatial proximity. 253 

 254 

Figure 2: Box and whisker plots showing the predictive performance of the Markov random 255 

field model (MRF – without model covariates), spatial MRF model, non-spatial conditional 256 

random field model (CRF - with model covariates) and spatial CRF as defined by (a) true 257 

prediction performance, b) specificity, and c) sensitivity. Predictions were assessed by fitting 258 

models to a random fold containing 90% of the data (training data) and predicting 259 

observations for the remaining 10% (test data). This process was repeated 100 times to 260 

capture uncertainty in performance. Specificity is the ability of the model to correctly identify 261 

individual moose without the specified OTU (proportion of observed negatives that were 262 
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predicted to be negative), while sensitivity is the ability to correctly identify individuals with 263 

the specified OTU (proportion of observed positives that were predicted to be positive). Box 264 

hinges show the interquartile range (25% and 75% quantiles), lines within boxes indicate the 265 

median (50% quantile), whiskers show 10% and 90% quantiles and dots show values outside 266 

these quantiles.  267 

 268 

Microbial associations 269 

 270 

The co-occurrence network revealed that both positive and negative associations occurred 271 

across taxonomic and functional groups with no clear phylogenetic pattern (i.e., OTUs from 272 

the same phyla/class or function were not preferentially negatively or positively associated 273 

with each other, Fig. 3). On average, we found that positive associations between OTUs were 274 

more common than negative associations (4 vs 2, Table 1). Firmicutes was the best-275 

represented phyla in our moose faecal samples (Fig. S1), and this phylum also had the highest 276 

number of OTU associations. Strikingly, even though Bacteroidetes was the second most 277 

dominant phyla, we did not detect any associations involving OTUs from this taxa. In 278 

contrast, OTUs from Tenericutes were rare (3% of sequences, Fig. S1), but overall, they had 279 

on average 1 more positive association partner than other phyla (4 vs 3), whereas 280 

Cyanobacteria OTUs had more negative association partners than other phyla (3 vs 2, Table 281 

1). FGs showed similar differences, with FG1 (which was dominated by the Tenericutes; Fig. 282 

S3) having more positive associations compared to FG2 (4 vs 3 on average). The opposite 283 

was true for negative associations, with FG2 having more associations on average than FG1 284 

(1 vs 2). Overall, two previously uncharacterized OTUs (identified by the ‘NewReference’ 285 

label) from class Mollicutes (Tenericutes) and class Clostridia (Firmicutes) had the highest 286 

number of associations overall (8, Table 1). Two OTUs from class Clostridia had the highest 287 

numbers of negative associations (5 & 6 respectively, Table 1).  288 
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Table 1: Summary of associations detected in the MRF analysis.  289 

OTU identity Avg.oc Pos Neg Phylum|Class  FG 
338145 0.2043 6 4 Actinobacteria|Coriobacteriia 2 
NewReferenceOTU314 0.6637 2 1 Actinobacteria|Coriobacteriia N 
NewReferenceOTU69 0.6832 2 1 Actinobacteria|Coriobacteriia N 
NewReferenceOTU74 0.7562 3 2 Actinobacteria|Coriobacteriia N 
206930 0.4799 4 4 Cyanobacteria|4C0d-2 2 
NewReferenceOTU123 0.5473 6 3 Cyanobacteria|4C0d-2 N 
NewReferenceOTU73 0.5461 0 2 Cyanobacteria|Chloroplast N 
322906 0.9437 3 4 Firmicutes|Clostridia 2 
325706 0.6148 0 1 Firmicutes|Clostridia 2 
4317006 0.0372 5 4 Firmicutes|Clostridia 2 
4480841 0.5291 2 1 Firmicutes|Clostridia 2 
4314603 0.4536 2 1 Firmicutes|Clostridia 2 
4417708 0.0843 7 4 Firmicutes|Clostridia 2 
296918 0.7692 1 4 Firmicutes|Clostridia 2 
266952 0.6309 3 3 Firmicutes|Clostridia 2 
294064 0.5084 5 3 Firmicutes|Clostridia 2 
294262 0.2403 6 1 Firmicutes|Clostridia 2 
579159 0.2068 3 2 Firmicutes|Clostridia 2 
333577 0.3276 2 1 Firmicutes|Clostridia 2 
1038874 0.3899 2 0 Firmicutes|Clostridia 2 
129755 0.3879 3 0 Firmicutes|Clostridia 2 
738351 0.6364 1 0 Firmicutes|Clostridia 2 
4295783 0.3693 1 0 Firmicutes|Clostridia 2 
574585 0.6326 1 5 Firmicutes|Clostridia 2 
NewReferenceOTU108 0.0809 8 3 Firmicutes|Clostridia N 
NewReferenceOTU74 0.3172 1 0 Firmicutes|Clostridia N 
NewReferenceOTU76 0.2891 5 6 Firmicutes|Clostridia N 
NewReferenceOTU76 0.0827 6 4 Firmicutes|Clostridia N 
NewReferenceOTU157 0.0899 3 0 Firmicutes|Clostridia N 
NewReferenceOTU289 0.1515 5 4 Firmicutes|Clostridia N 
4396877 0.0928 5 1 Firmicutes|Erysipelotrichi 2 
NewReferenceOTU42 0.5286 3 4 Firmicutes|Erysipelotrichi N 
339838 0.063 1 1 Tenericutes|Mollicutes 1 
513605 0.0299 7 1 Tenericutes|Mollicutes 1 
4446732 0.6627 4 2 Tenericutes|Mollicutes 1 
1108356 0.5123 4 2 Tenericutes|Mollicutes 1 
921020 0.1596 5 1 Tenericutes|Mollicutes 1 
NewReferenceOTU413 0.2271 5 2 Tenericutes|Mollicutes N 
NewReferenceOTU493 0.2445 4 1 Tenericutes|Mollicutes N 
NewReferenceOTU390 0.6923 0 0 Tenericutes|Mollicutes N 
NewReferenceOTU404 0.1345 8 2 Tenericutes|Mollicutes N 
NewReferenceOTU528 0.4842 4 4 Tenericutes|RF3 N 
Average  4 2   

Avg.oc: average occurrence in our moose samples. Pos: number of positive associations. 290 

Neg: number of negative associations. ‘NewReference’ indicates that the OTU has not been 291 

previously characterised by the Greengenes database. FG: Functional group (see Figure S3). 292 

N: No functional group could be determined (not previously characterized). 293 
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 294 

 295 

Figure 3: Moose gut microbial MRF co-occurrence network. Blue edges indicate negative 296 

associations and red edges represent positive associations. Edge thickness is scaled by the 297 

strength of association. Node colour indicates taxonomic group of each microbe. Numbers on 298 

the node represent which broad functional group (FG) each OTU belonged to (see Fig. S3). 299 

‘N’ indicates that there was no functional data for this microbe. See Fig. S4 for the OTU 300 

correlation matrix with names included. 301 

Discussion 302 

 303 

Utilizing graphical network models, we show the importance of microbial interspecific 304 

associations over host characteristics in shaping moose gut microbial communities at a 305 

population scale. In this case, both interspecific associations and spatial proximity were 306 

important for shaping microbial communities in this declining moose population. Host 307 

characteristics were relatively less important in predicting the distribution of microbes. Even 308 

though we did not have host genetic or specific diet data from individuals (i.e. stable isotope 309 

data), we could predict microbial distributions using just interspecific associations with 310 

remarkably high accuracy. Across this moose population, we detected non-random negative 311 
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and positive microbial associations with no clear functional or phylogenetic pattern. Our 312 

study not only highlights the importance of accounting for interspecific associations when 313 

trying to quantify how host characteristics shapes host infra-communities but also shows the 314 

value of graphical network models in untangling community dynamics more broadly. 315 

 316 

We found that evidence of pathogen exposure was not particularly important in predicting 317 

moose gut microbial community dynamics. As the serological evidence we used in this study 318 

only infers past infection by a particular pathogen rather than current infection status, perhaps 319 

this is not surprising. Previous studies testing the role of pathogens shaping microbial 320 

communities have used evidence of current infection (e.g., qPCR; Ganz et al., 2017; 321 

McKenney et al., 2015) rather than previous exposure based on serological evidence. When 322 

we sampled the moose gut microbial communities, the animal may not be experiencing the 323 

infection, and this may be the reason we did not detect an effect. It is also possible that 324 

herbivore gut microbial communities are more resilient to pathogen infection than other 325 

trophic groups such as carnivores. Ruminant microbial communities are more dominated by 326 

environmental bacteria cultivated by the host to aid digestion (Muegge et al., 2011) and may 327 

be less regulated by the immune system compared to the gut microbial communities in other 328 

species (Ley et al., 2008). Lower immune regulation, for example, could explain why the 329 

herbivores such as the gorilla (Gorilla gorilla) have microbiomes remarkably resilient to 330 

Simian immunodeficiency virus infection compared to omnivorous chimpanzees (Pan 331 

troglodytes) or for HIV infection in humans (Moeller et al., 2015). In support of this, we find 332 

that across individual moose in our study, the relative proportions of gut microbial taxa were 333 

relatively consistent, despite large differences in body condition and exposure status (Fig. 334 

S2). Similar ratios of the different microbial taxa in moose have also been reported in moose 335 

from the east coast of North America (Ishaq & Wright, 2012) even though samples were 336 
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collected from moose in a different season. Further studies where current pathogen infection 337 

status is known in moose and other herbivores are needed to resolve this question. 338 

 339 

Interspecific associations, in contrast, were much better predictors of moose gut microbial 340 

communities. In free-living communities, the role of interspecific associations in shaping the 341 

distributions of species is increasingly recognised (e.g., Aragón, Carrascal, & Palomino, 342 

2018; C. B. de Araújo et al., 2014). However, the importance of interspecific associations is 343 

likely to decrease with geographic scale (Araújo & Rozenfeld, 2014). Whether this applies to 344 

gut microbial communities, in contrast, is poorly studied.  In our case, host effects may have 345 

been detectable if we sampled a greater number of individuals across a larger portion of 346 

moose home range in central North America. Nonetheless, the scale at which wildlife 347 

surveillance is performed (and thus faecal samples collected for gut microbiome analysis) is 348 

often similar across studies (e.g., Cheng et al., 2015). In general, understanding the role that 349 

scale plays in structuring gut microbial communities, beyond the population scale, is a major 350 

challenge for microbial ecology (Antwis et al., 2017; Camp, Kanther, Semova, & Rawls, 351 

2009). Based on our findings, we suggest that larger geographical and/or temporal scales are 352 

needed to detect possible impacts of host characteristics on the structure of gut microbial 353 

communities.  354 

 355 

Even without accounting for host traits such as host genetics that are thought to be important 356 

in shaping the gut microbial communities in other herbivores (Kohl, Varner, Wilkening, & 357 

Dearing, 2017), our models had high predictive performance. Our results may be due to 358 

samples coming from a relatively well-mixed population, even though our moose samples 359 

were taken over a large area spanning a maximum of ~150 km. Central North America 360 

(including Minnesota) has the highest genetic diversity of all North American moose 361 
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populations (Hundertmark, Bowyer, Shields, & Schwartz, 2003), but to what extent our 362 

samples come from genetically distinct populations is unknown. Future work incorporating 363 

host genetics in moose may help better understand the role of host characteristics, compared 364 

to microbial interspecific associations in shaping infra-communities.  365 

 366 

Our capacity to predict the moose gut microbial community at the population scale increased 367 

when we included spatial information, indicating that either stochastic events such as 368 

microbial dispersal or spatial similarities in diet may be important in structuring associations 369 

between gut microbes. Dispersal of microbes is thought to be passive (Nemergut et al., 2013), 370 

however, these microbial species are often in high abundance and have broad distributions 371 

making dispersal challenging to quantify (Evans et al., 2017; Zhou & Ning, 2017). 372 

Biogeographical studies have shown that dispersal limitation is important for structuring 373 

microbial communities including those of the gut (Evans et al., 2017; Hanson, Fuhrman, 374 

Horner-Devine, & Martiny, 2012; Moeller et al., 2017), but rarely over a relatively small area 375 

within a host population. What role moose diet explicitly played in shaping our moose gut 376 

microbial communities is still an open question. Future studies linking host microbial data to 377 

measures of host diet, such as stable isotope analysis (Hofman-Kamińska, Bocherens, 378 

Borowik, Drucker, & Kowalczyk, 2018), will enable dispersal limitation and diet to be 379 

decoupled in future models. Nonetheless, we show that including host spatial data in future 380 

work is necessary for robustly quantifying microbial co-occurrence patterns. 381 

 382 

We also found strong positive and negative associations between OTUs from different phyla 383 

and divergent functional groups in the moose gut microbial community. Clostridia 384 

(Firmicutes) and Mollicutes (Tenericutes) were network ‘hubs’ involved in a relatively high 385 

number of positive associations in our moose population, and often with each other (Table 1). 386 
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Clostridia OTUs are also hubs for associations in the human gut community (Banerjee, 387 

Schlaeppi, & van der Heijden, 2018; Faust et al., 2012), but the importance of Mollicutes has 388 

not been, to our knowledge, reported elsewhere. Moreover, we detected no negative 389 

associations between Bacteroidetes and Firmicutes even though Bacteroidetes was common 390 

in our samples; this group may not play a dominant role in structuring moose gut microbial 391 

communities as they do in humans (Banerjee et al., 2018; Faust et al., 2012). Whether the 392 

same relationships apply in herbivore populations where Bacteroidetes is dominant, as was 393 

the case in an Alaskan and Swedish moose (Ishaq & Wright, 2014; Svartström et al., 2017), 394 

remains an open question. More generally, Faust et al. (2012) found an increased likelihood 395 

of negative associations between OTUs that were functionally and phylogenetically 396 

dissimilar (with opposite true for more related OTUs). We did not see such a pattern in our 397 

co-occurrence network and why we would get such a different result in moose is unclear. The 398 

Faust dataset consisted of 240 individuals from the Human Microbiome Project (Methé et al., 399 

2012), but large methodological differences make direct comparison difficult, as factors such 400 

as spatial relationships between subjects were not quantified. How robust these relationships 401 

are also likely to be impacted by taxonomic resolution of each network (Faust et al., 2012). 402 

As we used 16S rRNA gene sequencing, we were unable to get sequence identifications to 403 

species level. Further, functional profiles were based on predictions from reference genomes, 404 

not direct identification of functional genes or proteins (Langille et al., 2013). Shotgun 405 

metagenomic sequencing could allow for both classification sequences to species-level and 406 

provide much more detailed insights into the functional patterns shaping microbial species 407 

associations.  408 

 409 

Here we have demonstrated that graphic network models can untangle how interspecific 410 

interactions can shape gut microbial communities in moose. Additionally, we show that MRF 411 
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and CRF models can robustly construct co-occurrence networks (Clark, Wells, & Lindberg, 412 

2018b) and, coupled with taxonomic and functional information, find high-resolution insights 413 

into interspecific associations. Graphical network models, as with other correlation-based 414 

approaches, do have limitations. Correlations identified by techniques such as MRF or CRF 415 

should be treated with caution as they do not imply causation (e.g., Barner et al., 2018; 416 

Dormann et al., 2018). Follow up analysis with tools such as structural equation modelling 417 

(SEM) could be used to go beyond correlations to explore potential causal relationships 418 

between microbes (Banerjee et al., 2018). Nonetheless, by explicitly incorporating spatial 419 

data and covariates into graphical models, our method offers a step forward in characterising 420 

associations between species, and we envisage this method will be broadly useful for 421 

researchers working on micro- and macro-community dynamics alike. Studies analysing 422 

associations between infra-community microbial species are rare in wildlife, even though 423 

they can provide important insights into the ecological dynamics operating within or on the 424 

host. Given the decreasing cost of microbial surveys and analytical advances such as ours, 425 

studies that can disentangle microbial infra-community dynamics in wildlife species will 426 

become more frequent, and this can ultimately provide a more nuanced understanding of 427 

wildlife health.  428 
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