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Abstract  1 

Comprehensive benchmarking of computational methods for single-cell RNA sequencing 2 

(scRNA-seq) analysis is scarce. Using a modular workflow and a large dataset with known cell 3 

composition, we benchmarked feature selection and clustering methodologies for scRNA-seq 4 

data. Results highlighted a methodology gap for rare cell population identification for which we 5 

developed CellSIUS (Cell Subtype Identification from Upregulated gene Sets). CellSIUS 6 

outperformed existing approaches, enabled the identification of rare cell populations and, in 7 

contrast to other methods, simultaneously revealed transcriptomic signatures indicative of the 8 

rare cells’ function. We exemplified the use of our workflow and CellSIUS for the 9 

characterization of a human pluripotent cell 3D spheroid differentiation protocol recapitulating 10 

deep-layer corticogenesis in vitro. Results revealed lineage bifurcation between Cajal-Retzius 11 

cells and layer V/VI neurons as well as rare cell populations that differ by migratory, metabolic, 12 

or cell cycle status, including a choroid plexus neuroepithelial subgroup, revealing previously 13 

unrecognized complexity in human stem cell-derived cellular populations.  14 

Keywords 15 

Single-cell RNA sequencing, data analysis, rare cell types, clustering, software, benchmarking, 16 

human pluripotent stem cells, cortical development, choroid plexus, lineage mapping. 17 

  18 
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Introduction 19 

Single-cell RNA sequencing (scRNA-seq) enables genome-wide mRNA expression profiling 20 

with single cell granularity. With recent technological advances [1,2] and the rise of fully 21 

commercialized systems [3], throughput and availability of this technology are increasing at a 22 

fast pace [4]. Evolving from the first scRNA-seq dataset measuring gene expression from a 23 

single mouse blastomere in 2009 [5], scRNA-seq datasets now typically include expression 24 

profiles of thousands [1–3] to over one hundred thousand cells [6,7]. One of the main 25 

applications of scRNA-seq uncovering and characterizing novel and/or rare cell types from 26 

complex tissue in health and disease [8–15]. 27 

From an analytical point of view, the high dimensionality and complexity of scRNA-seq data 28 

pose significant challenges. Following the platform development, a multitude of computational 29 

approaches for the analysis of scRNA-seq data emerged. These comprise tools for cell-centric 30 

analyses, such as unsupervised clustering for cell type identification [16,17], analysis of 31 

developmental trajectories [18,19] or identification of rare cell populations [9,10,20], as well as 32 

approaches for gene-centric analyses such as differential expression (DE) analysis [21–23]. 33 

Whereas a large number of computational methods tailored to scRNA-seq analysis are available, 34 

comprehensive benchmarking of, and performance comparisons between those, are scarce. This 35 

is mainly due to the lack of reference datasets with known cellular composition. Prior knowledge 36 

or use of synthetic data are commonly used to circumvent the problem of a missing ground truth. 37 

However, former knowledge might be incomplete or inaccurate and synthetic data do not capture 38 

all aspects of experimental biological data. 39 

Here, we generated a benchmark dataset of ~12 000 single cell transcriptomes from eight human 40 

cell lines to evaluate the performance of scRNA-seq feature reduction and clustering approaches 41 
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using a modular, generally applicable workflow for the analysis of scRNA-seq data. Strikingly, 42 

results highlighted a methodology gap for the identification of rare cell types. To fill this gap, we 43 

developed a method which we called CellSIUS (Cell Subtype Identification from Upregulated 44 

gene Sets). For complex scRNA-seq datasets containing both abundant and rare cell populations, 45 

we propose a two-step approach consisting of an initial coarse clustering step followed by 46 

CellSIUS. Using synthetic and biological data, including rare cell populations (<0.16 %), we 47 

showed that CellSIUS outperforms existing algorithms in both specificity and selectivity for rare 48 

cell type and outlier genes (gene signature) identification. In addition, and in contrast to existing 49 

approaches, CellSIUS simultaneously reveals transcriptomic signatures indicative of rare cell 50 

type’s function(s). 51 

Subsequently, we applied the workflow and our two-step clustering approach to biological data 52 

of unknown cell composition. We profiled the gene expression of 4 857 human pluripotent stem 53 

cell (hPSC) derived cortical neurons generated by a 3D spheroid differentiation protocol using 54 

morphogens. Analysis of this in vitro model of corticogenesis revealed distinct progenitor, 55 

neuronal and glial populations consistent with developing human telencephalon. Trajectory 56 

analysis identified a lineage bifurcation point between Cajal-Retzius cells and layer V/VI cortical 57 

neurons, which was not clearly demonstrated in other in vitro hPSC models of corticogenesis 58 

[24–27]. In addition, CellSIUS revealed rare cell populations that differ by migratory, metabolic, 59 

or cell cycle status, including a rare choroid plexus (CP) lineage, for which we experimentally 60 

validated the expression of the identified cell subtype markers at the protein level. Therefore, 61 

scRNA-seq in combination with CellSIUS provided an unprecedented resolution in the 62 

transcriptional analysis of developmental trajectories, revealed previously unrecognized 63 

complexities in human stem cell-derived cellular populations, identified rare cell populations and 64 
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provided the means to isolate and characterize CP neuroepithelia in vitro to study neurological 65 

disorders. 66 

 67 

Results 68 

Benchmarking of feature selection and clustering approaches for scRNA-seq data reveals a 69 

methodology gap for the detection of rare cell populations 70 

To perform a comprehensive assessment and comparison of the most recent feature selection and 71 

clustering methodologies for scRNA-seq data, we generated a scRNA-seq dataset with known 72 

cellular composition generated from mixtures of eight human cell lines. To this end, a total of 73 

~12 000 cells from eight human cell lines (Table 1: A549, H1437, HCT116, HEK293, IMR90, 74 

Jurkat, K562, Ramos) were sequenced using the 10X Genomics Chromium platform [3]. Cells 75 

were processed in batches containing mixtures of two or three cell lines each. One of the cell 76 

lines was present in two separate batches and confirmed that technical batch effects were minor 77 

as compared to the biological variability (Figure 1, Table 1). To infer cell type identity, we 78 

profiled each cell line individually using bulk RNA sequencing. Correlation of the single-cell to 79 

bulk expression profiles was used for cell type assignment as described in Methods (Figure 1A-80 

B). Cells that did not pass quality control (QC) or could not be unambiguously assigned to a cell 81 

line (614 cells, ~5%) were discarded, leaving 11 678 cells of known cell type (Figure 1C and S1, 82 

Table 1). 83 

Using available open source tools from R [28] and Bioconductor [29], we assembled a modular 84 

workflow for the analysis of scRNA-seq data (Figure 2A). The workflow contains five modules; 85 

(i) quality control, (ii) data normalization, (iii) feature selection, (iv) clustering and, (v) 86 
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identification of marker genes. Based on recent publications, the quality control and 87 

normalization modules were based on the popular scater [30] and scran [31] packages. Scran was 88 

set as the default normalization based on a recent benchmarking study by Vallejos et al. [32] 89 

showing that scran was superior for recovering true size factors compared to other methods. For 90 

the marker gene identification module we used the Wilcoxon test [33] by default, and provided 91 

wrappers to MAST [22] and Limma-trend [34], based on Soneson et al.’s [35] comprehensive 92 

assessment of a large number of DE analysis methods for their performance for controlling type I 93 

and type II error rates whilst being scalable to large datasets.  94 

For the feature selection and clustering modules, no comprehensive method performance 95 

comparisons were available. We leveraged our dataset of known cell composition to benchmark 96 

available approaches. Briefly, we benchmarked feature selection methods using either a mean-97 

variance trend to find highly variable genes (HVG, [36]) or a depth-adjusted negative binomial 98 

model (DANB, [37]) for selection of genes with unexpected dropout rates (NBDrop) or 99 

dispersions (NBDisp). The top 10% genes selected by HVG, NBDisp and NBDrop were 100 

included in Tables S1. Using linear modelling as implemented in the plotExplanatoryVariables 101 

function from scater [30], we quantified the influence of these feature selection methods on the 102 

contribution of four predictors to the total observed variance: cell line, total counts per cell, total 103 

detected features per cell and predicted cell cycle phase (Figure 2B). Results highlighted that: i) 104 

for HVG selected genes, cell line accounted for 10% of the total variance only; ii) for NBDisp 105 

and NBDrop selected genes, the percentage of total variance explained by cell line increased to 106 

37% and 47%, respectively, with half of the selected features common to both methods; iii) 107 

genes selected only by NBDisp were generally low-expressed (Table S1), highlighting a 108 

drawback of variance-based feature selection [37] and; iv) NBDrop selected features showed an 109 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/514950doi: bioRxiv preprint 

https://doi.org/10.1101/514950
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

increased contribution of library size (i.e. total detected features and total counts per cell) to the 110 

total variance. In our dataset, the number of total features co-varied with cell type and cell cycle 111 

indicating that library size is partially dependent on the cell line (Figure S1), and thus determined 112 

by both technical and biological factors. 113 

For the clustering module, we performed benchmarking after feature selection using NBDrop. 114 

We investigated methods (Table 2) that were developed specifically for scRNA-seq data (SC3 115 

[16], Seurat [1], pcaReduce [17]) as well as more classical approaches (hclust[38], mclust[39], 116 

DBSCAN[40], MCL[41,42]) by in silico subsampling of our dataset of known composition in 117 

two subsets with different cell type proportions (later referred to as subset 1 and subset 2, Figure 118 

2C-E, Table S2). Subset 1 consisted of 4 999 cells from eight cell types with abundance varying 119 

between 2% and 32%. Subset 2 consisted of 3 989 cells with two major cell populations 120 

including 90% of all cells of this subset, four medium to low abundant (between 1% and 5%)  121 

and two rare cell types with abundances below 1%, containing 3 (0.08%) and 6 (0.15%) cells, 122 

respectively. We applied each clustering method to the complete dataset as well as to both 123 

subsets, using principal component analysis (PCA) [43,44] to project the original expression 124 

values to vectors in a lower dimensional space and calculating all distances based on these 125 

projections. We then assessed the quality of the classification by calculating the adjusted Rand 126 

index (ARI) [45] between assignment and true cell line annotation. 127 

On the full dataset, most methods resulted in a perfect assignemnt (Figure 2F) with only two of 128 

the stochastic methods – pcaReduce and mclust – yielding an average ARI of 0.90 and 0.92. In 129 

contrast, on subset 1, where cell type proportions were no longer equal, k-means based methods 130 

and mclust failed to identify the different cell types correctly and resulted in average ARI of 0.85 131 

(SC3), 0.78 (pcaReduce) and 0.69 (mclust) (Figure 1G). On subset 2, all methods failed to 132 
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correctly identify rare (6 cells, 0.16% of total cells) cell types (Figure 1H). DBSCAN achieved 133 

the highest ARI (0.99) classifying rare cells as outliers (“border points”). All other methods 134 

merged rare cells with clusters of abundant cell types resulting in lower ARI of 0.98 (hclust on 135 

Euclidean distance), 0.96 (MCL), 0.96 (hclust on correlation distance) and 0.76 (Seurat).  136 

In conclusion, our results showed that most clustering methods performed well in identifying 137 

populations defined by more than 2% of total cells. Yet, none of the methods could identify rare 138 

populations, highlighting the need for dedicated tools tailored to detecting rare cell types. 139 

 140 

Development of CellSIUS for rare cell population identification and characterisation 141 

To overcome the above-mentioned limitations, we developed a novel method to identify rare cell 142 

populations which we called CellSIUS (Cell Subtype Identification from Upregulated gene 143 

Sets). CellSIUS takes as input the expression values of N cells grouped into M clusters (Figure 144 

3A). For each cluster Cm, candidate marker genes gm1, gm2, …, gmj that exhibit a bimodal 145 

distribution of expression values with a fold change above a certain threshold (fc_within) across 146 

all cells within Cm are identified by 1-dimensional k-means clustering (with k=2). For each 147 

candidate gene gmi, the mean expression in the second mode is then compared to this gene’s 148 

mean expression level outside Cm (fc_between), considering only cells that have non-zero 149 

expression of gmi to avoid biases arising from stochastic zeroes. Only genes with significantly 150 

higher expression within the second mode of Cm (by default, at least a 2-fold difference in mean 151 

expression) are retained. For these remaining cluster specific candidate marker genes, gene sets 152 

with correlated expression patterns are identified using graph-based clustering. In a last step, 153 

cells within each cluster Cm are assigned to subgroups by 1-dimensional k-means clustering of 154 

their average expression of each gene set. 155 
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The overall idea behind CellSIUS is similar to RaceID3 [46] and GiniClust2 [20], two recent 156 

methods for the identification of rare cell types in scRNA-seq datasets. All of these algorithms 157 

combine a global clustering with a second assignment method tailored to the identification of 158 

rare cell types. However, in contrast to existing methods, CellSIUS requires candidate marker 159 

genes to be cluster specific, and therefore we hypothesized that our method will be more specific 160 

and less sensitive to genes that co-vary with confounders such as the total number of detected 161 

genes per cell. To overcome biases associated to the high dropout rates in scRNA-seq, CellSIUS 162 

considers only cells that have non-zero expression for the selected marker genes. Finally, in 163 

contrast to both RaceID3 and GiniClust2, CellSIUS directly returns a gene signature for each of 164 

the new cell subpopulations recovered. 165 

 166 

CellSIUS outperforms existing algorithms in the identification of rare cell populations 167 

We first compared CellSIUS performance to RaceID3 [46] and GiniClust2 [20], using a 168 

synthetic dataset. Briefly, we used the expression values of 1 000 K562 cells from our dataset to 169 

estimate the parameters for the simulation and generated two homogeneous populations of 500 170 

cells (later referred to as Clusters 1 and 2). We confirmed the mean-variance and mean-dropout 171 

relationships, library sizes and percentage of zero counts per cells and per gene were similar to 172 

the underlying real data (Figure S2A-F). For this data, both CellSIUS and GiniClust correctly 173 

identified the two predefined clusters whereas RaceID3 detected a large number of false 174 

positives clusters by identifying outlier cells and re-assigned those to new cluster centers (Figure 175 

S2G). 176 

To assess the specificity and sensitivity of CellSIUS for the identification of rare cell types, we 177 

simulated a series of cell compositions comprising two abundant and one increasingly rare cell 178 
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types consisting of 2 to 100 cells (0.2–10% of the cluster size) that was generated by permutation 179 

of the expression values of 20 genes. To assess the response of CellSIUS’ output to parameter 180 

changes, we varied fc_within (minimum difference in log2 scale between the first and second 181 

mode of the bimodal gene expression distribution) and fc_between (minimum difference in log2 182 

scale in gene expression between cluster-specific and other cells in the dataset). Results showed 183 

that CellSIUS only failed to detect rare cell populations consisting of 2 cells for fc_within of 1 184 

and 2 and fc_between of 0.5 and 1 and never falsely identified rare populations (Figure S3A).  185 

We next compared the performance of CellSIUS to RaceID3 and GiniClust2 by computing (i) 186 

recall as the fraction of rare cells correctly assigned to new clusters; (ii) precision as the fraction 187 

of true rare cells among all cells not assigned to the two main clusters and (iii) true negative rate 188 

(TNR) as the fraction of abundant cells that were correctly assigned to the two main clusters. To 189 

enable a more direct comparison between the methods, benchmarking analyses were carried out 190 

with a predefined initial clustering for all approaches. CellSIUS had a recall of 1 for rare cell 191 

populations consisting of more than 2 cells. In contrast GiniClust2 did not identify any rare cell 192 

populations and RaceID3 recalled only ~50% of true positives (Figure 3B, top panel). 193 

Additionally, CellSIUS exhibited a TNR of 1.0 and thus a precision of 1.0 (except in the one 194 

case where no true positives were recovered). Whilst GiniClust2’s TNR was also 1.0, the 195 

precision could not be defined due to the lack of identification of true and false positives. 196 

RaceID3 had a low TNR (mean=0.95, sd=0.01), resulting in low precision (mean= 0.1, sd=0.1) 197 

(Figure 3B, middle and bottom panel).  198 

To assess the specificity and sensitivity of CellSIUS for the identification of outlier genes, we 199 

generated a second set of populations. Briefly, 20 cells (~2% of cluster1 cells) were added by 200 

perturbing between 2 and 100 genes. We varied CellSIUS fc_within and fc_between parameters 201 
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as described above. CellSIUS only failed to identify true positive genes if their expression was 202 

lower than fc_within and fc_between (see Figure S3B, top panel), and never falsely identified 203 

outlier genes (see Figure S3B, bottom panel). We next compared the performance of CellSIUS to 204 

RaceID3 and GiniClust2 by computing (i) recall; (ii) precision and (iii) TNR as above with 205 

respect to genes. In comparison to CellSIUS, GiniClust2 showed a poor performance (Figure 3C 206 

top panel), consistent with failing to detect rare cell population. In contrast, RaceID3 performed 207 

slightly better than CellSIUS in terms of recall, however, with a precision cost. Whereas both 208 

precision and TNR were 1.0 for CellSIUS, RaceID3 had a low TNR (0.5) and consequently a 209 

low precision (mean=0.012, sd=0.007) (Figure 3C, top and bottom panels). In summary, using 210 

synthetic data, we showed an increased sensitivity and specificity of our algorithm for rare cell 211 

type identification and outlier gene identification compared to GiniClust2 and RaceID3 (Figure 212 

3B and C). 213 

We next benchmarked CellSIUS’ specificity and selectivity using our dataset of known cell 214 

composition, randomly subsampling 100 HEK293 cells, 125 Ramos cells, and including 2, 5 or 215 

10 Jurkat cells. Only cells assigned to be in cell cycle phase G1 were considered to ensure 216 

within-cluster homogeneity. To simulate varying degrees of transcriptional difference between 217 

the rare cell type (Jurkat) and its closest more abundant cell type (Ramos), we adapted an 218 

approach recently presented by Crow et al. [47]. Briefly, from the initial dataset, 25 Ramos cells 219 

were held out. Subsequently, an increasing fraction of gene expression values in the Jurkat cells 220 

were replaced by the respective values in the held out Ramos cells, thus diluting the Jurkat-221 

specific gene expression profile and making the Jurkat cells more and more similar to Ramos 222 

(Figure 4A). Using this approach, we generated datasets with two equally sized abundant 223 

populations (HEK293 and Ramos, 100 cells each) and one rare population (Jurkat, varying 224 
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between 2, 5 and 10 cells). We predefined two initial clusters: Cluster 1 contained all HEK293 225 

cells, and cluster 2 combined Ramos and Jurkat cells.  226 

We then tested the ability of CellSIUS, RaceID3 and GiniClust2 to identify rare cell types for 227 

varying incidence (i.e. total number of rare cells) and subtlety (i.e. fraction of Jurkat genes 228 

replaced by Ramos genes). We assessed the recall (Figure 4B) and precision (Figure 4C) as 229 

above. Results showed a high sensitivity of all three methods for very subtle transcriptional 230 

signatures (99.5% of genes replaced, corresponding to 230 unperturbed genes) and low incidence 231 

(down to two cells except for GiniClust2). However, CellSIUS exhibited high precision (88.4% 232 

on average), in comparison to GiniClust2 (51.6% on average) and RaceID3 (15.6% on average).  233 

Having shown that CellSIUS is more sensitive and specific for the identification of rare cell 234 

types and outlier genes using synthetic and simulated biological data, we tested its ability to 235 

reveal transcriptomic signatures indicative of rare cell type’s function(s). We applied CellSIUS 236 

to subset 2 of our dataset of known composition (Table S2) with 6 clusters predefined using 237 

MCL (Figure 4D). CellSIUS identified three subgroups (Jurkat, H1437 and a small subgroup of 238 

IMR90 cells) within the 6 initial clusters characterized by upregulation of three or more genes 239 

(Figure 4E). Notably, the two strongest signatures were obtained for the two subgroups 240 

corresponding to Jurkat and H1437 cells with top marker genes consistent with previous 241 

knowledge: CD3G and CD3D, both of which are known T-cell markers [48] being the top 242 

markers for Jurkat (T-cell lymphoma) and TFF1 and BPIFA2, both shown to function in the 243 

respiratory tract, [49] [50] being the top markers for H1437 (lung adenocarcinoma, 244 

epithelial/glandular cell type).  245 
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Taken together, these results show that CellSIUS outperforms existing methods in identifying 246 

rare cell populations and outlier genes from both synthetic and biological data. In addition, 247 

CellSIUS simultaneously reveals transcriptomic signatures indicative of rare cell type’s function. 248 

 249 

Application to hPSC-derived cortical neurons generated by 3D spheroid directed-250 

differentiation approach 251 

As a proof of concept, we applied our two-step approach consisting of an initial coarse clustering 252 

step followed by CellSIUS to a high quality scRNA-seq dataset of 4 857 hPSC-derived cortical 253 

neurons generated by a 3D cortical spheroid differentiation protocol with patterning factors 254 

(Figure 5A, Table S3, Methods). During this in vitro differentiation process, hPSCs are expected 255 

to commit to definitive neuroepithelia, restrict to dorsal telencephalic identity and generate 256 

neocortical progenitors (NP), Cajal-Retzius (CR) cells, EOMES+ intermediate progenitors (IP), 257 

layer V/VI cortical excitatory neurons (N), and outer radial-glia (oRG) (Figure 5B). Generation 258 

of layer V/VI neuronal populations was confirmed by immuno-fluorescence analysis of D86 259 

cultures upon dissociation and plating, showing robust expression of deep-layer cortical neuronal 260 

markers TBR1 and CTIP2 (Figure 5C). 261 

Cortical neurons generated by the 3D spheroid protocol co-cultured with rat glia for four weeks 262 

were positive for pre- and post-synaptic markers Synaptophysin I and PSD-95 (Figure S4A). 263 

Calcium imaging by FDSS 7000EX platform demonstrated spontaneous intracellular calcium 264 

oscillations, indicating that spontaneous firing was synchronized between the majority of the 265 

cortical neurons in the 96-wells (Figure S4B). Taken together these results suggest that the 3D 266 

spheroid protocol generate cortical neurons with expected transcriptional identity that continue to 267 
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mature upon platedown with expression of synaptic markers and features of neuronal 268 

connectivity at network level [51]. 269 

Initial coarse-grained clustering using MCL identified four major groups of cells that specifically 270 

express known markers for NPs [52], mixed glial cells (G), CR cells [53] and neurons (N) [54] 271 

(Figure 6A,B). A small population of contaminating fibroblasts (0.1% of total cells) was 272 

removed from the dataset for downstream analyses. CR cells, expressed DCX, CALB2, STMN2, 273 

and MAPT consistently with developing mouse and human cortex (Figure 6B) [55–57]. The 274 

robust expression of FOXG1 in the general population (Figure S5A) and the expression of PAX6, 275 

EMX2, and LHX2 in NPs (Figure 6B) indicated our differentiation protocol mainly generates 276 

cells with dorsal telencephalic identity [58].  277 

Applying CellSIUS to this data identified 7 subpopulations (Figure 6C). Notably, within the 278 

mixed glial cells (G), CellSIUS identified a rare subgroup (1.1% of total population, G.sub_1) 279 

characterized by a signature of 10 genes. Nine of those ((TRPM3, PTGDS, TTR,  CXCL14, 280 

HTR2C, WIF1, IGFBP7, MT1E, DLK1)  are enriched in primary pre-natal human choroid 281 

plexus (CP) (Figure 6E) compared to the other tissues from the developing human cortex as 282 

defined in the harmonizome database [59,60] using a cutoff of 1.3 for the standardized value, 283 

sorresponding to p<0.05. This G.sub1 population is therefore consistent with formation of CP, a 284 

secretory neuroepithelial tissue that produces cerebrospinal fluid (CSF), and that has multiple 285 

origins along the rostro-caudal axis of the developing nervous system including the dorsal 286 

telencephalic midline [61]. We further validated the presence of CP neuroepithelia in our 3D 287 

human cortical cultures by confocal microscopy analysis. Using neurosphere cryosections, we 288 

demonstrated co-localisation of canonical CP marker Transthyretin (TTR) with Prostaglandin D2 289 

Synthase (PTGDS), another CP enriched protein described in primary mouse and human tissue, 290 
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in a limited number of cells located almost exclusively on the periphery of neurospheres (Figure 291 

6F). Collectively these results suggest that the 3D spheroid human cortical differentiation 292 

protocol described here can generate developmentally relevant cell types and that CellSIUS can 293 

identify rare cell populations within the heterogeneity and complexity of stem cell-based models.  294 

CellSIUS identified a second subgroup in the mixed glial cells (G) characterized by high 295 

expression levels of glycolytic enzymes (G.sub_2, 2.6%) (Figures 6C,D and S6A). analysis 296 

between G.sub_2 and the rest of the G cells revealed upregulation of HOPX, PTPRZ1, CLU, 297 

BCAN, ID4, and TTYH1 in the main group, a transcriptional signature consistent with developing 298 

human outer radial glia (oRG) [62], (Table S4, Figure S6A). oRG cells also upregulated 299 

mitochondrial genes (Table S4) that are crucial for oxidative phosphorylation, highlighting the 300 

metabolic difference between these two groups. We hypothesize the G.sub_2 subgroup to be a 301 

progenitor population that is located closer to the hypoxic interior of neurospheres, a common 302 

feature of the 3D spheroid differentiation protocols.  303 

In addition, CellSIUS identified a subgroup of NP cells (NP.sub, 10.6%) defined by upregulation 304 

of cell-cycle related genes such as HMGB2, TOP2A and MKI67 (Figures 6C,D and S6A) as well 305 

as a subgroup of CR cells (CR.sub, 0.8%) characterized by SEMA3E, BTG1, and PCDH11X 306 

(Figures 4B and S5) which may represent CR cells at a different stage of migration [63–65]. 307 

Finally, CellSIUS revealed a split in the neuronal population (N), identifying 2 groups, N.sub_2 308 

(8.6%) and N.sub_1 (16.7%) (Figures 6C, D and S6A). In addition to NHLH1 and PPP1R17 309 

known to be enriched in immature neurons [62], N.sub_2 expressed EOMES (Figure S5B), a 310 

well characterized marker of cortical intermediate progenitors [54,66] that give rise to TBR1+ 311 

cortical neurons (Figure S5C) and is likely a mixed population of intermediate progenitors and 312 

immature neurons. In contrast, markers identified by CellSIUS for the N_sub1 neuronal 313 
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population were unexpected. Although co-expression of FEZF2, CRYM, PCDH17 and 314 

RUNX1T1 in this cortical neuronal population is consistent with recent scRNA-seq data from the 315 

developing human cortex (Figure S7B, EN-V1-1: Early-born deep-layer/sub-plate excitatory 316 

neurons, EN-PFC1: Early-born deep-layer/sub-plate excitatory neurons prefrontal cortex), robust 317 

NTS expression in developing cortical neurons has not been reported so far to the best of our 318 

knowledge. The expression of FEZF2 (Figure S5D) in this culture is consistent with the general 319 

dorsal telencephalic identity of these cells and co-expression of FEZF2 and BCL11B (CTIP2) in 320 

this particular post-mitotic neuronal sub-population (Figure S5E) could suggest patterning 321 

towards cortico-spinal motor neurons (CSMNs). However, the presence of NTS, which encodes a 322 

13 amino acid neuropeptide called neurotensin highly expressed in the hypothalamus and 323 

amygdala, is not in line with the overall transcriptional identity as discussed above. Analysis of a 324 

recently published scRNA-seq dataset from different regions and developmental stages of the 325 

human cortex [54] revealed that only a few cells derived from the fetal primary visual cortex 326 

(age 13 pcw) express NTS (Figure S7B). However, the number of cells in our dataset were too 327 

low to draw any firm conclusions. 328 

To further characterize the transition from progenitors to the two different neuronal cell types 329 

(CR cells and all N populations), we applied Monocle for trajectory analysis to a subset of the 330 

cells corresponding to these three identities. This analysis revealed a tree with two branches 331 

(Figure 7A). As expected, cells progress from the tree root which is composed of progenitors via 332 

the NHLH1high/PPP1R17high population towards either N (branch 1) or CR cells (branch 2). 333 

Along the trajectory, the NP marker VIM decreases gradually whereas NHLH1 increases up to 334 

the branch point, then decreases again (Figure 7B). The CR branch ends with cells expressing 335 

high levels of RELN, and the N branch is characterized by gradual increase of FEZF2 expression 336 
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and ending in the N.sub_1 population (Figure 7B). Notably, at the very tip of this branch, we 337 

also find a very small number of cells expressing LDB2 and DIAPH3 which are markers of 338 

CSMNs in the mouse [67]. It is plausible that, given more time, this population may eventually 339 

give rise to CSMNs with a more defined transcriptional signature. 340 

Comparison of CellSIUS, RaceID and Giniclust2 performance for rare cell type 341 

identification in hPSC-derived cortical neurons 342 

Finally, to compare CellSIUS’ performance for rare cell type identification in complex and 343 

heterogenous stem cell data, we compared its output to GiniClust2 and RaceID3 results. 344 

Application of GiniClust2 to the hPSC-derived cortical neurons initially grouped by MCL into 4 345 

main clusters resulted in a total of 20 clusters. The main differences between GiniClust2 and 346 

CellSIUS (Figure S6B) results can be summarized as follow:  GiniClust2 generated clusters that 347 

merge major known cell types (for example cluster 24 merges glia, glia_1 (=CP), glia_2, 348 

neurons, N.sub-1 (late neurons) and N.sub_2 (early neurons)), (ii) GiniClust2 did not detect CP 349 

(G.Sub_1), cycling NPs (NP.sub) nor the well described immature neurons (N.sub_2). 350 

Application of RaceID to the hPSC-derived cortical neurons initially grouped by MCL into 4 351 

main clusters resulted in a total of >50 clusters with default parameters consistently with the high 352 

false positive rate observed with synthetic and cell line data. With a more stringent outlier 353 

probability cutoff (10^-20), RaceID3 identifies 10 clusters with a similar overall assignment to 354 

CellSIUS (Figure S6C). However, if RaceID3 did detect CP (G.Sub_1), it split this cluster across 355 

several other clusters with the majority of cells assigned to either cluster 3 (19 CP together with 356 

4 other cells) or cluster 5 (mixed with a large number of G, N and NP cells). The CP markers 357 

PTGDS and TTR are co-expressed in 49/53 CP cells identified by CellSIUS but only in 19/54 CP 358 

cells identified by RaceID3 suggesting that RaceID3 incorrectly assigned most of the CP cells to 359 
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a merged glia / NP / N cluster. In addition, and similarly to GiniClust2, RaceID3 did neither 360 

identify cycling NPs (NP.sub) nor the above described progenitors and immature neurons 361 

population (N.sub_2). 362 

In summary, we show that CellSIUS demonstrates superior performance for specificity and 363 

sensitivity compared to other approaches in complex and heterogenous data and enables the 364 

identification of rare populations as small as 0.4% within major cell types that differ by their 365 

metabolic state, cell cycle phase, or migratory state.   366 

Discussion  367 

We generated a comprehensive benchmark dataset of ~12 000  single cell transcriptomes from 8 368 

cell lines to evaluate the performance of scRNA-seq feature reduction and clustering approaches. 369 

Our findings suggest that for unsupervised feature selection, the DANB methods implemented in 370 

the M3Drop package outperformed HVG. Whilst all clustering methods tested performed equally 371 

well on data with balanced and abundant cell populations, k-means and model-based methods 372 

performed poorly on subsampled datasets with unequal cell type proportions, typically splitting 373 

clusters containing many cells while merging those containing few cells.  This is likely a 374 

consequence of feature selection and PCA-based dimensionality reduction prior to clustering 375 

where these methods select or assign weights to genes based on mean expression and variance 376 

across the whole cell population, which are both low if a gene is specifically expressed in a small 377 

subset of cells only. 378 

In contrast, hclust in combination with dynamicTreeCut, MCL and DBSCAN resulted in 379 

accurate cluster assignments across all subsampled datasets. Strikingly, none of the methods we 380 

tested was able to identify rare cell types (<1%). It is worth noting that although DBSCAN does 381 
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classify rare cell types as border points, it does not reliably identify these populations for two 382 

reasons: (i) additional cells that did not belong to the rare populations are also classified as 383 

border points; (ii) DBSCAN does not perform well if there are points connecting clusters, which 384 

is often the case in scRNA-seq datasets. 385 

To overcome these limitations, we developed CellSIUS, a novel algorithm that takes initial 386 

coarse clusters as input and identifies rare cell subtypes based on correlated gene sets specific to 387 

subpopulations. The overall idea behind CellSIUS is similar to RaceID3 [46] and GiniClust2 388 

[20], two recent methods for the identification of rare cell types in scRNA-seq datasets. All of 389 

these algorithms combine a global clustering with a second assignment method which is tailored 390 

to finding rare cell types. There are however, important differences between the approaches 391 

which are at the basis of CellSIUS’ superior performance for both rare cell type as well as outlier 392 

genes identification in terms of specificity and selectivity.  393 

RaceID3’s initial step is a k-medoids clustering, followed by outlier cell identification in each 394 

cluster in four steps: (i) calibration of a background model of gene expression by fitting a 395 

negative binomial distribution to the mean and variance of each gene in each cluster; (ii) 396 

identification of outlier cells by calculating for each gene and each cell the probability of 397 

observing this expression value under the assumption of the background model; (iii) merging of 398 

potential outlier cells into new clusters based on the similarity of their gene expression; and (iv) 399 

definition of new cluster centers for both the original and the outlier clusters. In a final step, cells 400 

are assigned to the cluster they are closest to. In contrast to CellSIUS, RaceID3 does not require 401 

the outlier genes to be cluster specific; consequently, it may select genes that co-vary with 402 

technical confounders such as the total number of detected genes per cell. In addition, whereas 403 

CellSIUS only considers subcluster-specific genes to assign cells to final clusters, the final 404 
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cluster assignment in RaceID3 is done based on the similarity of each cell’s whole transcriptomic 405 

signature to each cluster center. In cases where the distance between the outlier cluster and 406 

neighboring clusters is small, this leads to a high number of false positives, with many cells 407 

initially not identified as outliers being merged into the nearest outlier cluster.  408 

GiniClust2 runs two independent clustering steps on the same data. The first clustering aims at 409 

capturing global structure of the data by running a k-means clustering on the expression of genes 410 

with a high Fano factor. This is motivated by the fact that a high Fano factor is associated with 411 

genes that are differentially expressed between abundant cell types. The second clustering is 412 

performed by running a density based clustering on genes with a high Gini index which is 413 

typically associated with genes being differentially expressed between rare and abundant cells. In 414 

a final step, the results of both clustering are merged based on a weighted consensus association. 415 

The main differences to CellSIUS are as follows: (i) the selection of the genes for the rare cell 416 

type assignment is performed using a global metric (i.e. the Gini coefficient across the whole 417 

dataset), whereas CellSIUS takes into account the information on the global clustering (e.g. 418 

considers only cluster specific genes); (ii) the final assignment is a weighted average of the 419 

results from both clustering steps, whereas we use a two-step approach consisting of an initial 420 

coarse clustering step followed by CellSIUS for the identification of rare cell types and outlier 421 

genes. 422 

In addition to CellSIUS’ superior performance described above, which potentially reflects the 423 

propensity of RaceID3 and GiniClust2 to interpret technical variation as biological signal in 424 

single cell transcriptomic data, our novel approach simultaneously reveals transcriptomic 425 

signatures indicative of rare cell type’s function. 426 
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In order to use our methods in a real-world setting, we applied the workflow presented here to a 427 

dataset from hPSC derived neurons and identified major neural cell types of early human 428 

corticogenesis such as cycling and quiescent NPs, EOMES+ IPs, CR cells, immature and mature 429 

neurons with a transcriptional identity indicative of layer V/VI neurons, and oRG. Overall, the 430 

transcriptional fingerprint of each major group was in line with a recent scRNA-seq data set from 431 

the developing human cortex. CellSIUS analysis also revealed a transcriptional signature in the 432 

mature neuronal population that begins to deviate from the expected cortical trajectory, typified 433 

by the high expression levels of NTS detected in N.sub_1, highlighting the importance of 434 

unbiased characterization of hPSC differentiation platforms at single cell level.  Single-cell 435 

trajectory analysis of NP, CR and N cells using Monocle revealed a pseudo-temporal order of 436 

progenitors gradually differentiating into neurons, with a lineage split between Cajal-Retzius 437 

cells and FEZF2+ neurons.  438 

Importantly, CellSIUS analysis identified rare cell types within the major groups, such as 439 

putative CP (G.sub_1) making up 1.1% of the cell population, which were not identified by 440 

existing approaches for rare cell type identification. We validated the presence of CP 441 

neuroepithelia in our 3D cortical spheroid cultures by confocal microscopy and cross-referenced 442 

CP-specific gene list identified by CellSIUS to primary pre-natal human data.  In addition, 443 

CellSIUS analysis provided a signature gene list for human PSC-derived CP cells in vitro for the 444 

first time,  paving the way for isolation, propagation, and functional characterization of this 445 

lineage.  446 

One drawback of CellSIUS is that it is sensitive to the initial cluster assignments. In practice, this 447 

should only be an issue if there is no clear global structure in the data and cluster assignments are 448 
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not consistent between different clustering methods and/or parameter settings. In such cases, one 449 

could use a consensus assignment from a combination of different clustering assignments.  450 

In summary, we developed, benchmarked and implemented CellSIUS, a novel method for 451 

detection and characterization of rare cell types from complex scRNA-seq data. The large single-452 

cell RNA-seq dataset of known cell composition generated for this work, represents a biological 453 

ground truth for benchmarking of future novel methods. We exemplify the use of CellSIUS for 454 

the characterization of a novel human pluripotent cell differentiation protocol recapitulating 455 

deep-layer corticogenesis in vitro. scRNA-seq in combination with highly sensitive and specific 456 

computational approaches such as CellSIUS provide an unprecedented resolution in the 457 

transcriptional analysis of developmental trajectories, revealing previously unrecognized 458 

complexities in human stem cell-derived cellular populations. This study represents a rich dataset 459 

as benchmark for derivation of cortical neurons from human PSCs using small molecules, can 460 

inform refinement of directed-differentiation approaches to ultimately generate bona fide 461 

CSMNs and upper-layer excitatory neurons, and enable isolation and characterization of CP 462 

neuroepithelia that are crucial to study neurological disorders in vitro. 463 

 464 

Methods 465 

Human cell lines 466 

For the benchmarking dataset, 8 different human cell lines from the ATCC biorepository have 467 

been used (Table 2). 468 

Single-cell RNA-sequencing of cell lines 469 
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Cellular suspensions were loaded on a 10x Genomics Chromium Single Cell instrument to 470 

generate GEMs. Single-cell RNA-seq libraries were prepared using GemCode Single Cell 3’ Gel 471 

Bead and Library Kit according to CG00052_SingleCell3'ReagentKitv2UserGuide_RevB. 472 

GEM-RT was performed in a Bio-Rad PTC-200 Thermal Cycler with semi-skirted 96-Well Plate 473 

(Eppendorf, P/N 0030 128.605): 53 °C for 45 minutes, 85 °C for 5 minutes; held at 4 °C. After 474 

RT, GEMs were broken and the single strand cDNA was cleaned up with DynaBeads® 475 

MyOneTM Silane Beads (Life Technologies P/N, 37002D). cDNA was amplified using a Bio-Rad 476 

PTC-200 Thermal cycler with 0.2ml 8-strip non-Flex PCR tubes, with flat Caps (STARLAB, 477 

P/N I1402-3700): 98 °C for 3 min; cycled 12x: 98 °C for 15 s, 67 °C for 20 s, and 72 °C for 1 478 

min; 72 °C for 1 min; held at 4 °C. Amplified cDNA product was cleaned up with the SPRIselect 479 

Reagent Kit (0.6X SPRI). Indexed sequencing libraries were constructed using the reagents in 480 

the Chromium Single Cell 3’ library kit V2 ( 10x Genomics P/N-120237), following these steps: 481 

1) Fragmentation, End Repair and A-Tailing; 2) Post Fragmentation, End Repair & A-Tailing 482 

Double Sided Size Selection with SPRIselect Reagent Kit (0.6X SPRI and 0.8X SPRI); 483 

3) adaptor ligation; 4) post-ligation cleanups with SPRIselect (0.8X SPRI); 5) sample index 484 

PCR using the Chromium Multiplex kit (10x Genomics P/N-120262); 6) Post Sample Index 485 

Double Sided Size Selection- with SPRIselect Reagent Kit (0.6X SPRI and 0.8X SPRI). The 486 

barcode sequencing libraries were quantified using a Qubit 2.0 with a Qubit TM dsDNA HS 487 

Assay Kit (Invitrogen P/N Q32854) and the quality of the libraries were performed on a 2100 488 

Bioanalyzer from Agilent using an Agilent High Sensitivity DNA kit (Agilent P/N 5067-4626). 489 

Sequencing libraries were loaded at 10pM on an Illumina HiSeq2500 with 2 × 50 paired-end kits 490 

using the following read length: 26 cycles Read1, 8 cycles i7 Index and 98 cycles Read2. The 491 

CellRanger suite (2.0.2) was used to generate the aggregated gene expression matrix from the 492 
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BCL files generated by the sequencer based on the hg38 Cell Ranger human genome annotation 493 

files. 494 

Bulk RNA-sequencing of cell lines 495 

For each individual cell line, RNA was isolated from 5x105 cells using the RNeasy Micro kit 496 

(Qiagen, Cat# 74104). The amount of RNA was quantified with the Agilent RNA 6000 Nano Kit 497 

(Agilent Technologies, Cat# 5067-1511). RNA sequencing libraries were prepared using the 498 

Illumina TruSeq RNA Sample Prep kit v2 and sequenced using the Illumina HiSeq2500 platform. 499 

Samples were sequenced to a length of 2x76 base-pairs. Read pairs were mapped to the Homo 500 

sapiens genome (GRCh38) and the human gene transcripts from Ensembl version 87 [68] by using 501 

an in-house gene quantification pipeline [69]. Genome and transcript alignments were used to 502 

calculate gene counts based on Ensembl gene IDs. 503 

 504 

Differentiation of cortical excitatory neurons from human pluripotent stem cells in suspension 505 

H9-hESCs (WA09) were obtained from WiCell and maintained in TeSR-E8 medium (Stemcell Tech., 506 

05990) on tissue-culture plates coated with vitronectin (Gibco, A14700). hESCs were passaged using 507 

ReLeSR (Stemcell Tech., 05873) to dissociate into cell clumps and were replated in E8 plus thiazovivin 508 

(Selleckchem, S1459) at 0.2 μM. H9-hESC line was free of myoplasma and was tested using the 509 

Mycoalert detection kit (Lonza). 510 

hESCs were changed to mTesR1 (Stemcell Tech., 85850) media when they were 70-80% confluent and 511 

maintained in mTesR1 for minimum of two days before confluent monolayer of hESCs were neurally 512 

converted by changing the media to Phase I (Table S5). Seven days post induction, cells were dissociated 513 

to single-cell suspension with Accutase (Gibco A1110501), seeded at 1.5E6 cells /mL in spinner flasks 514 

with Phase II media (Table S5) supplemented with 2 μM Thiazovivin and 10 ng/mL FGF2 (Peprotech, 515 
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100-18B) (final) and incubated at 37oC on a micro-stir plate at 40 rpm for 4 days. Media was then 516 

changed to Phase III (Table S5) and neurospheres were further cultured for 17 days at 60 rpm, changing 517 

media 50% twice a week. On day 28 media was changed to Phase IV (Table S5) and cultures were 518 

maintained 21 more days with 50% media change twice a week. From day 49 onwards cultures were 519 

switched to Ph IV media for maintenance. Neurospheres were dissociated with Papain kit (Worthington) 520 

at day 86 for single-cell RNAseq or neuronal platedowns on laminin (Sigma, L2020), fibronectin 521 

(Corning, 354008), and Matrigel (Corning, 354230) coated plates.  522 

Immunofluorescence and cryosectioning 523 

Cells were fixed with 4% PFA, permeabilised with 0.2% Triton X-100 at room temperature, and then 524 

blocked in 3% goat serum, followed by incubation with primary (TBR1 - Abcam, ab31940; CTIP2 – 525 

Abcam, ab18465; 3 tubulin – Biolegend, 801202; PSD-95 – Synaptic Systems, 124 011; Synaptophysin 526 

1 – Synaptic Systems, 101 002; Transthyretin – Novus Biologicals, NBP2-52575, Prostaglandin D 527 

Synthase (PTGDS) – Abcam, ab182141) and secondary antibodies (Alexa Flours, Invitrogen). The 528 

nuclei were counter- stained with 49,6-diamidino-2-phenylindole (DAPI, Sigma). Cryosectioning of 529 

neurospheres were performed as previously described [70]. Cells were imaged using an Observer D1 530 

(Zeiss) microscope or Olympus SD-OSR spinning-disk confocal microscope (60x oil immersion). The 531 

images were processed using Zen 2 (Zeiss), MetaMorph or Image J (brightness and contrast adjustments, 532 

thresholding for composite images) and assembled using Adobe Photoshop CS6.  533 

 534 
Calcium imaging 535 

The intracellular Ca2+ oscillations in human cortical neuron and rat glia co-cultures were 536 

assessed using the FLIPR Calcium 6 Kit (Molecular Devices LLC, San Jose, California). Briefly, 537 

96-well Greiner -clear plates (655097) were seeded with 2500 rat glia (Lonza, R-CXAS-520) 538 

per well in Ph IV media and cultured for seven days. Human cortical neurospheres were 539 
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dissociated with papain as described above at DIV 56 and 50,000 single cells per well were 540 

plated on rat glia in Phase IV media. Co-cultures were maintained for four weeks with twice 541 

weekly 50% media exchange. Cells were loaded with Calcium 6 dye for an hour which was 542 

reconstituted in imaging buffer (NaCl 2.5 mM, KCl 125 mM, KH2PO4 1.25 mM, CaCl2 2 mM, 543 

MgCl2 2 mM, HEPES (acid) 25 mM, D-glucose 30 mM, pH 7.4, filter-sterilised). Kinetics of 544 

Ca2+ oscillations were determined as fluorescence intensity at 540 nm following excitation at 545 

480 using the FDSS 7000EX Functional Drug Screening System (Hamamatsu) maintained at a 546 

constant 37oC throughout the assay. A total of 3000 reads per assay were recorded. The exposure 547 

time per read was 100 ms with sensitivity set to 1.   548 

 549 

Single-cell RNA-sequencing of neuronal cells 550 

Cells were resuspended to 1 million cells/mL and run through the 10X Chromium, Version 2 single cell 551 

RNA-seq pipeline per vendor’s instructions. Reverse transcription master mix was prepared from 50µL 552 

RT reagent mix (10X, 220089), 3.8µL RT primer (10X, 310354), 2.4µL additive A (10X, 220074), and 553 

10µL RT enzyme mix (10X, 220079). 4.3µL cell solution was mixed with 29.5µL H2O and 66.2µL 554 

reverse transcription master mix. 90µL sample was loaded onto the 10X Single Cell 3’ Chip along with 555 

40µL barcoded gel beads and 270µL partitioning oil, and the microfluidics system was run to match gel 556 

beads with individual cells. The droplet solution was then slowly transferred to an 8-tube strip, which was 557 

immediately incubated for 45 minutes at 53°C to perform reverse transcription, then 5 minutes at 85°C. 558 

The sample was treated with 125µL recovery agent (10X, 220016), which was then removed along with 559 

the partitioning oil. 200µL of cleanup solution containing 4µL DynaBeads MyOne Silane Beads (Thermo 560 

Fisher, 37002D), 9µL water, 182µL Buffer Sample Clean Up 1 (10X, 220020), and Additive A (10X, 561 

220074) was added to the sample, and the solution was mixed 5 times by pipetting and allowed to 562 
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incubate at room temperature for 10 minutes. Beads were separated via magnetic separator and 563 

supernatant was removed. While still on the magnetic separator, the beads were then washed twice with 564 

80% ethanol. The separator was then removed and the beads were resuspended in 35.5µL elution solution 565 

consisting of 98µL Buffer EB (Qiagen, 19086), 1µL 10% Tween 20 (Bio-Rad, 1610781), and 1µL 566 

Additive A (10X, 220074). The solution was then incubated for 1 minute at room temperature, and placed 567 

back onto the magnetic separator. 35µL of eluted sample was transferred to a new tube strip. cDNA 568 

amplification reaction mix was prepared from 8µL water, 50µL Amplification Master Mix (10X, 569 

220125), 5µL cDNA Additive (10X, 220067), and 2µL cDNA Primer Mix (10X, 220106). 65µL of 570 

amplification master mix was added to the sample, mixed 15 times via pipetting, and briefly centrifuged. 571 

The sample then underwent 12 amplification cycles (15 seconds at 98°C, 20 seconds at 67°C, 1 minute at 572 

72°C). 573 

SPRIselect beads (Beckman Coulter, B23318) were then applied at 0.6X, and solution was mixed 15 574 

times via pipetting. The sample was incubated at room temperature for 5 minutes, placed onto a magnetic 575 

separator, and washed twice with 80% ethanol. Sample was air dried for 2 minutes and eluted in 40.5µL 576 

Buffer EB. cDNA yield was measured on a 2100 Bioanalyzer (Agilent, G2943CA) via DNA High 577 

Sensitivity Chip (Agilent, 5067-4626). 578 

Fragmentation mix was prepared at 4°C from 10µL fragmentation enzyme blend (10X, 220107) and 5µL 579 

fragmentation buffer (10X, 220108). 35µL of sample cDNA was then added to the chilled fragmentation 580 

mix. Sample was incubated for 5 minutes at 32°C, then 30 minutes at 65°C to conduct enzymatic 581 

fragmentation, end repair, and A-tailing. Sample was then purified using 0.6X SPRIselect reagent (see 582 

above). Adaptor ligation mix was prepared from 17.5µL water, 20µL Ligation Buffer (10X, 220109), 583 

10µL DNA Ligase (10X, 220110), and 2.5µL Adaptor Mix (10X, 220026). The ligation mix was added to 584 

50µL of sample and mixed 15 times via pipetting. Sample was then incubated for 15 minutes at 20°C to 585 

conduct the ligation. The sample was purified using 0.8X SPRIselect reagent (see above). Sample index 586 

PCR mix was prepared from 8µL water, 50µL Amplification Master Mix (10X, 220125), and 2µL SI-587 
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PCR Primer (10X, 220111). 60µL sample index PCR mix, 30µL purified sample, and 10µL of sample 588 

index (10X, 220103) were combined and mixed 15 times via pipetting. Indexing was conducted via 9 589 

cycles of 20 seconds at 98°C, 30 seconds at 54°C, then 20 seconds at 72°C. Sample was purified via 590 

double-sided SPRI selection at 0.6X and 0.8X, respectively. Sample was then quantified via DNA High 591 

Sensitivity Chip. 592 

Additional quantification was conducted via KAPA Library Quantification Kit (Illumina, KK4828-593 

07960166001). Sample was diluted at 10-fold increments from 1:100 to 1:1,000,000, and mixed 1:9 with 594 

KAPA qPCR mix. qPCR was conducted on a Viia7 qPCR machine (Life Technologies).  595 

Sample was then sequenced on a HiSeq 4000 (Illumina) using 2 x 50-cycle SBS kits (Illumina, FC-410-596 

1001). Sample library was diluted to 2nM in EB buffer with 1% PhiX spike-in. 5µL nondenatured library 597 

was then mixed with 5µL 0.1N NaOH, then vortexed and briefly centrifuged. Denaturing was conducted 598 

at room temperature for exactly 8 minutes, then stopped via addition of 5µL 200mM Tris-HCl pH 8.0 599 

(Fluka, 93283). Sample was mixed, briefly centrifuged, and placed on ice. ExAmp reaction mix (Illumina, 600 

PE-410-1001) was prepared, added to the sample, and clustering was done on a HiSeq 4000 flow cell via 601 

cBot2 (Illumina). The library was then sequenced with paired-end reagents, with 26xRead 1 cycles, 8xi7 602 

index cycles, and 98xRead 2 cycles.  603 

The 10X Cell Ranger 1.3.1 pipeline was utilized to convert raw BCL files to cell-gene matrices. FASTQ 604 

files were aligned to the GRCh37.75 human reference genome, UMI-filtered, and barcodes were matched 605 

via the CellRanger count script 606 

Computational analysis 607 

Software requirements 608 

All computational analysis was carried out using R v. 3.4.1 with Bioconductor v. 3.5.  609 

Generation of synthetic data 610 
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A synthetic dataset was generated based on estimated parameters for the gene-wise mean 𝜇௜ and 611 

variance 𝜎௜
ଶ from experimentally determined counts of 1000 K562 cells from our benchmarking 612 

dataset. 613 

Because gene expression within each cell is typically not independent but cells that have 614 

high/low count number for one gene also tend to have high/low counts for another, we sampled 615 

for each cell j a scaling factor 𝜃௝  such that logଶ൫𝜃௝൯~ 𝒩(0,0.25), as described in [31]. Simulated 616 

counts for gene i and cell j were generated by sampling from a negative binomial with mean 617 

𝜇௜௝ =  𝜃௝ ∗ 𝜇௜ 618 

and dispersion1 619 

𝜆௜௝ =  
𝜇௜௝

ଶ

 𝜎௜ 
ଶ − 𝜇௜௝

 620 

A second order polynomial was fit to the sample variance as a function of the mean in 621 

logarithmic space as described in [9]. This polynomial served as an estimate of the global mean-622 

variance relationship. Replacing the term 𝜎௜
ଶ in the equation above with this estimate, the 623 

dispersion can be expressed as a function of 𝜇௜௝: 624 

𝜆௜௝ =  
𝜇௜௝

ଶ

𝑓(𝜇௜௝) − 𝜇௜௝
 625 

Where 626 

𝑓൫𝜇௜௝൯ = 2^(𝑎 ∗ 𝑙𝑜𝑔ଶ(𝜇௜௝)^2 + 𝑏 ∗ logଶ( 𝜇௜௝) + 𝑐)   627 

is derived from the second order polynomial approximating the gene-wise variance as a function 628 

of mean expression. For genes exhibiting Poissonian behavior (i.e. equal mean and variance), we 629 

set 𝜆 to a fixed value of 1010. 630 

                                                 
1 We use this nomenclature in order to be consistent with the definition in R. Note that there is an alternative 
nomenclature, which defines 𝛼 = 1/𝜆 as dispersion and is used in edgeR [73] and DESeq2 [74]. 
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Main cell populations were obtained by permutation of the expression values of 100 randomly 631 

chosen genes with mean counts larger than 2. 632 

Cell subgroups characterized by high expression of a small set of marker genes were generated 633 

by replacing the base mean values 𝜇௜ in a small set of genes with low expression (𝜇௜ < 0.1) by a 634 

value of 2௫ where 𝑥 ~ 𝒩(2.5,1). Thus, the upregulated genes exhibit a log2 fold change of 2.5 635 

on average. 636 

Simulating varying degrees of subtlety in transcriptional differences 637 

An initial small dataset was subsampled from the benchmarking (8 human cell lines) dataset, 638 

comprising 100 HEK293, 125 Ramos, and between 10 Jurkat cells. We used scran to predict cell 639 

sycle stage and only included cells in G1 phase. 640 

From this initial dataset, 25 Ramos cells were held out. From the remaining dataset (100 641 

HEK293, 100 Ramos, 10 Jurkat), datasets with varying incidence of a rare cell type and subtlety 642 

of its transcriptional signature were generated in silico, following an approach recently described 643 

by Crow et. al[47]: First, a number of Jurkat cells (i.e. incidence of 2,5 or 10) were sampled form 644 

the initial dataset. Then, to simulate varying degrees of transcriptional difference between the 645 

rare cell type (Jurkat) and its closest abundant cell type (Ramos), an increasing fraction of gene 646 

expression values, ranging form 0 to 0.995 in steps of 0.05 (0.045 for the very last step) in the 647 

Jurkat cells were replaced by the respective values in the held out Ramos cells.  648 

This procedure was repeated 5 times for each incidence of the rare cell type and each value of the 649 

subtlety parameter.  650 

The performance of CellSIUS, GiniClust2 and RaceID3 was evaluated in terms of recall, 651 

precision and true negative rate (TNR) for each configuration. To this end, a confusion matrix 652 

between the true cell type and the predicted cell type was generated. “Main clusters” were 653 
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defined as the two clusters containing the majority of the HEK293 and Ramos cells, respectively. 654 

The TPR was then defined as the fraction of Jurkat cells that were not assigned to the main 655 

clusters, precision was defined as the fraction of Jurkat cells among all cells not assigned to the 656 

two main clusters, and the TNR was defined as the fraction of HEK293 and Ramos cells that 657 

were assigned to the main clusters. 658 

Data pre-processing  659 

Initial pre-processing was applied to each batch of cell lines separately prior to annotating cell 660 

types. 661 

First, cells were filtered based on the total number of detected genes, total UMI counts and the 662 

percentage of total UMI counts attributed to mitochondrial genes. Cutoffs were set individually 663 

per batch based on the overall distributions (Table S3). 664 

Second, genes have to present with at least 3 UMIs in at least one cell. After this initial QC, 665 

remaining outlier cells were identified and removed using the plotPCA function from the scater 666 

[30] R package with detect_outliers set to TRUE. 667 

Data were normalized using scran [31], including a first clustering step as implemented in the 668 

quickCluster function and with all parameters set to their default values. 669 

Cell type annotation 670 

First, the top 10% overdispersed genes were selected using the NBDrop method described in 671 

[37]. Cell types were then annotated based on Pearson correlation of the expression profile 672 

(log2(normalized counts+1)) of the selected features with bulk RNA-seq data obtained for each 673 

individual cell line (Figure 1A-B). For the batches 1-3 that contained only two cell lines each, the 674 

Pearson correlation coefficients were scaled to z-scores prior to the assignment, for batch 4, the 675 

raw correlation values were used instead. A cell was then assigned to the cell line with the 676 
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highest value unless this maximum was below 0.2 or if the second highest value was within 5% 677 

of the maximum in which case no assignment was given. We found that the latter applied only to 678 

a small percentage of cells (1–2%), which most likely correspond to cell doublets. Furthermore, 679 

for the cell line mixes IMR90/HCT116 and A549/Ramos additional potential doublets were 680 

identified and excluded from the cell line assignment employing a visual inspection of the tSNE 681 

plot by looking for (small) clusters of cells having high correlation to both cell lines as well as a 682 

high UMI count (Table S3). 683 

After cell type annotation, the raw count matrices from all four batches were concatenated. Cells 684 

that had not passed the initial QC or could not be annotated were discarded. The gene filtering 685 

step described above was then repeated for the aggregated dataset, leaving a final cleaned dataset 686 

containing a total of 12 718 genes and 11 678 cells. 687 

Dimensionality reduction and calculation of distance matrix 688 

The original expression (log2(normalized counts + 1) coordinates were projected into low 689 

dimensional space by PCA, using an implicitly restarted Lanczos method as implemented in the 690 

irlba [44] R package. The number of dimensions to retain was determined by visual inspection of 691 

a screeplot. It was 10 for all cell line data and 12 for the neuron dataset, and the first k principal 692 

components accounted for 40–50% of the total variance in each case. Cell-cell distances 693 

(Euclidean or Pearson, Table 2) were then calculated on these projections. 694 

Benchmarking of clustering approaches 695 

The accuracy of each prediction was assessed by the adjusted rand index (ARI). Given two 696 

partitions 𝑋 = 𝑋ଵ, … , 𝑋௠  and 𝑌 = 𝑌ଵ, … , 𝑌௞ of a set S with 𝑛 elements, the ARI is defined as 697 

𝐴𝑅𝐼 =  
∑ ൫

௡೔ೕ

ଶ
൯ − [∑ ൫௔೔

ଶ
൯ ∑ ൫

௕ೕ

ଶ
൯]/൫௡

ଶ
൯ ௝  ௜  ௜௝

1
2

[∑ ൫௔೔
ଶ

൯ + ∑ ൫
௕ೕ

ଶ
൯] − [∑ ൫௔೔

ଶ
൯ ∑ ൫

௕ೕ

ଶ
൯]/൫௡

ଶ
൯ ௝  ௜௝  ௜

 698 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/514950doi: bioRxiv preprint 

https://doi.org/10.1101/514950
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 
 

Where 𝑛௜௝ denotes the elements that are common between 𝑋௜ and 𝑌௝, and 𝑎௜ , 𝑏௝ are the total 699 

number of elements in 𝑋௜ and 𝑌௝, respectively. 700 

CellSIUS 701 

CellSIUS detects cell subpopulations and their gene signatures (Figure 3A). Starting from an 702 

initial partitioning of 𝑁 cells into 𝑚 clusters 𝐶ଵ, … , 𝐶௠ , the method identifies cell subpopulations 703 

and their signatures as follows: 704 

1. Identification of genes with bimodal expression: For each gene 𝑔௜, within each cluster 𝐶௝, 705 

a 1-dimensional k-means clustering is used to partition the cellular expression levels 706 

(log2 normalized UMI counts) into two groups (“low” and “high”). Candidate marker 707 

genes are selected according to three criteria: (i) the average expression fold change 708 

between “low” and “high” is at least 2 on a log2-scale, (ii) less than a user defined 709 

percentage (50% by default) of all cells in cluster 𝐶௝ fall in the “high” category, (iii) there 710 

is a significant difference (t-test and Benjamini-Hochberg correction, p-value < 0.1) 711 

between the “low” and “high” expression values. 712 

2. Testing cluster specificity: For the list of candidate genes, it is assessed whether the cell 713 

subgroup expressing them is specific to cluster 𝐶௝. Required for each gene 𝑔௜ are (i) a 714 

significant difference in the expression of 𝑔௜ in cells with “high” expression compared to 715 

cells not in Cj (t-test and FDR correction, p-value < 0.1), and (ii) the average expression 716 

fold change between all cells with “high” expression and all other cells with non-zero 717 

expression of 𝑔௜ to be at least 1 on a log2-scale. 718 

3. Identification of correlated gene sets: For each cluster 𝐶௝, the correlation matrix of the 719 

expression of all candidate genes 𝑔ଵ,..,௡ across all cells in cluster 𝐶௝  is transformed into a 720 
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graph where genes correspond to nodes and edges are weighted by correlations between 721 

them. Edges with weights below a fixed threshold are assigned a weight of 0. By default, 722 

this threshold is set to the 95th percentile of all correlations if this value lies between 0.35 723 

and 0.5, and to the lower and upper bound if it is below or above, respectively. The lower 724 

bound is set such that it is higher than the maximum of all gene-wise correlations on 725 

simulated data from an entirely homogeneous population, which serves as an estimate of 726 

the background correlation. Setting an upper bound ensures that gene sets are not falsely 727 

split in cases where all candidate genes are highly correlated. Subsequently, MCL [41,42] 728 

is used to identify correlated gene sets, denoted 𝑠௝௞, where 𝑗 is the index of the main 729 

cluster and 𝑘 the index of the gene set within this cluster. 730 

4. Assigning cells to subgroups: For each cluster 𝐶௝  and each gene set 𝑠௝௞, a 1-dimensional 731 

k-means is run on the mean expression of 𝑠௝௞. Cells falling in the “high” mode of this 732 

clustering are assigned to a new cluster 𝐶௝௞. 733 

5. Final cluster assignment: Cells are assigned to a final cluster which is the combination of 734 

all subgroups they belong to. Only subgroups characterized by a minimum of 735 

min_n_genes (default: 3 genes) are considered. 736 

Identification of rare cell types with RaceID and Giniclust 737 

RaceID3 [46] was obtained from github (dgrun/RaceID3_StemID2, version as of March 26th 738 

2018). Analysis was run with all parameters at their default values, except that we fixed the 739 

initial clusters (RaceID@kpart) instead of determining them by k-medoids. On biological data 740 

(cell line subset 2 and neuronal population), we in addition changed the probability threshold to 741 

10-20 and set the minimum number of outlier genes (outlg) to 3. 742 
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GiniClust2 [20] was obtained from github (dtsoucas/GiniClust2, version as of 4th May 2018). All 743 

analysis was run with dataset specific parameters: MinPts = 3, eps = 0.45, k=2 for the simulated 744 

data and MinPts = 3, eps = 0.45, k=8 for the cell line dataset. All other parameters were set to 745 

their defaults. 746 

Trajectory analysis using Monocle 747 

Analysis was run using monocle version 2.4.0. As input, the counts of the top 10% genes 748 

selected by NBDrop were used. Prior to monocle analysis, all genes annotated with the GO term 749 

cell cycle (GO:0007049) as well as mitochondrial genes and genes encoding ribosomal proteins 750 

were removed from the dataset. All parameters were set to default values. 751 

Code and Data availability  752 

The code and processed data to reproduce the analyses presented here are included in this 753 

published article (see compressed supplementary folder). Raw data will be deposited to the 754 

NCBI Sequence Read Archive (SRA) upon publication. The workflow and CellSIUS are written 755 

in the R programming language. CellSIUS is provided as a standalone R package. It requires R 756 

>= 3.4.1 and uses an external installation of the Markov Clustering Algorithm (MCL) [41,42]. 757 

The R implementation is platform independent, the external MCL runs on any UNIX platform. 758 

The code, vignette and an example dataset for the computational workflow are included in this 759 

published article (see compressed workflow folder). The code and processed data will be 760 

available on github under the GNU GPL license upon publication).  761 

 762 

List of Abbreviations 763 
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scRNA-seq: single-cell RNA sequencing 764 

DE: differential expression 765 

hPSC: human pluripotent stem cell 766 

HVG: high variance gene 767 

DANB: depth-adjusted negative binomial 768 

PCA: principal component analysis 769 

GMM: Gaussian mixture model 770 

ARI: Adjusted Rand index 771 

NP: neocortical progenitor 772 

CR: Cajal-Retzius 773 

IP: intermediate progenitor 774 

N: neuron 775 

oRG: outer radial glia 776 

G: glia 777 

CP: choroid plexus 778 

GC: glycolytic cell 779 
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Figures with captions 1013 

 1014 
 1015 
Figure 1: Generation of a scRNA-seq dataset with known cellular composition. A: Schematic 1016 
illustration of the experimental setup. Eight human cell lines were individually profiled by bulk 1017 
RNA-seq and mixed in four batches containing mixtures of two or three cell lines each for 1018 
scRNA-seq profiling. Correlation of the single-cell to bulk expression profiles was used for cell 1019 
type assignment as described in Methods. B: Visualization of correlations between single cell 1020 
and bulk expression profiles for each batch.  The top row represents cell type assignment. Single 1021 
cells were assigned to the cell type correlating most with their expression profile as described in 1022 
Methods. Cells with z-scored correlations below 0.2 were not assigned to any cluster. Cells that 1023 
correlate strongly with more than one bulk expression profile likely represent doublets and were 1024 
excluded from future analyses. C: tSNE map, colored by batch. 1025 
  1026 
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 1027 
Figure 2: Performance assessment of feature selection and clustering methods. A: Overview of 1028 
the computational analysis workflow. B: Benchmarking of feature selection methods. In each 1029 
case, the top 10% of features were selected using either a mean-variance trend to find highly 1030 
variable genes  (HVG, left) or a depth-adjusted negative binomial model (DANB) followed by 1031 
selecting genes with unexpected dropout rates (NBDrop, middle) or dispersions (NBDisp, right). 1032 
Plots show the percentage of variance explained by each of the four predictors to t the total 1033 
observed variance: cell line, total counts per cell, total detected features per cell and predicted 1034 
cell cycle phase. The blue dashed line indicates the average for the predictor cell line. C-E: tSNE 1035 
projections of the full dataset (C) and two sub-sampled datasets with unequal proportions 1036 
between different cell lines (D,E). F-H: Comparison of clustering assignments by different 1037 
methods on the full dataset (F), subset 1 (G) and subset 2 (H). Stochastic methods (SC3, mclust, 1038 
pcaReduce) were run 25 times. Bars represent mean adjusted rand index (ARI) and dots 1039 
correspond to results from individual runs. All other methods are deterministic and were run only 1040 
once. 1041 
 1042 
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 1044 
 1045 
Figure 3: Development and benchmarking of CellSIUS.  A: Schematic overview of CellSIUS. 1046 
Starting from an initial assignment of N cells in M clusters (i), within each cluster, genes with a 1047 
bimodal distribution are identified (ii) and only genes with cluster-specific expression are 1048 
retained (iii). Among the candidate genes, sets with correlated expression patterns are identified 1049 
by graph-based clustering (iv). Cells are assigned to subgroups based on their average expression 1050 
of each gene set (v). B, C: Performance comparison of CellSIUS to GiniClust2 and RaceID3 in 1051 
detecting cells from sub-clusters and their signatures. B: Recall, precision and true negative rate 1052 
(TNR) with regards to the detection of rare cells in synthetic data when varying the number of 1053 
rare cells from 2 (0.2%) to 100 (10%) C: Recall, precision and true negative rate (TNR) with 1054 
regards to the detection of outlier genes (gene signature) in synthetic data when varying and the 1055 
number of signature genes from 2 to 100. 1056 
 1057 
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Figure 4: CellSIUS benchmarking on cell line data. A: Schematic overview of dataset 1060 
perturbations. Starting from a dataset containing three cell types (100 HEK293 cells, 125 Ramos, 1061 
10 Jurkat), we first generated a defined number of rare cells by subsampling. In addition, we 1062 
partitioned the Ramos cells in two, leaving out 25 cells from the dataset for later use. Next, we 1063 
adjusted the subtlety of the transcriptional difference between the rare (Jurkat) cells and their 1064 
closest neighbor (Ramos) by swapping a fraction of gene expression values in the Jurkat cells 1065 
with the corresponding value in the left-out Ramos cells. We then pre-defined an initial cluster 1066 
assignment as Cluster 1 = HEK293, Cluster 2 = Ramos and Jurkat and assess whether different 1067 
algorithms for detecting rare cell types are able to correctly classify the Jurkat cells as rare.  B, C: 1068 
Comparison of CellSIUS to GiniClust2 and RaceID3 for varying incidence of the rare cell type 1069 
and varying subtlety of the transcriptional signature. For each algorithm, we assessed the recall 1070 
(A), i.e. the probability of detecting a rare cell type, and precision (B), i.e. the probability that a 1071 
cell which is classified as rare is actually a rare cell. D: tSNE projection of subset 2 of the cell 1072 
line dataset, colored by CellSIUS assignment.  Cluster numbers correspond to the main clusters 1073 
identified by MCL, clusters labeled x.sub indicate the CellSIUS subgroups. Symbols correspond 1074 
to the cell line annotation. E: Violin plot showing the main markers identified by CellSIUS, 1075 
grouped by cluster. 1076 
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 1078 

 1079 
 1080 
Figure 5: In vitro differentiation of hPSCs into cortical excitatort neurons. A: Schematic 1081 
overview of the 3D cortical spheroid differentiation protocol. hPSCs grown as a monolayer were 1082 
patterned to telencephalon and differentiated in suspension culture by stage-specific application 1083 
of small molecules. B: Illustration of neurogenesis. After committing to definitive neuroepithelia 1084 
and restricting to dorsal telencephalic identity, hPSCs generate neocortical progenitors which 1085 
further give rise to Cajal-Retzius (CR) cells, EOMES+ intermediate progenitors (IPs), layer VI 1086 
and V cortical excitatory neurons (N) and outer radial glia (oRG). C: Immunofluorescence 1087 
confirms the robust expression of deep-layer cortical neuronal markers (TBR1, CTIP2) in hPSC 1088 
derived neurons (3-tubulin). 1089 
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 1092 
 1093 
Figure 6: Characterization of hPSC derived cortical excitatory neurons by scRNA-seq. A: tSNE 1094 
projection of 4857 single-cell trancriptomes of hPSC derived neuronal cell types after 86 days of 1095 
differentiation. Unsupervised clustering using MCL groups cells into four major classes: 1096 
Neurons (N), neuroepithelial progenitors (NP), mixed glial cells (G) and Cajal-Retzius cells 1097 
(CR). In addition, a small population of fibroblasts (Fib) is identified.  B: The identified cell 1098 
populations are characterized by expression of known markers for the expected cell types. 1099 
Expression values are shown as log2 (normalized UMI counts + 1). C: tSNE projection, colored 1100 
by CellSIUS assignment. Main clusters are denoted .main, subclusters .sub. D: Mean expression 1101 
of each marker gene set identified by CellSIUS, projected onto the same tSNE map as shown in 1102 
A. The top markers are indicated for each gene sets, numbers in brackets refer to how many 1103 
additional genes are part of the marker gene set. E: Comparison of the gene signature uncovered 1104 
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by CelSIUS to genes found to be enriched (p<0.05) in choroid plexus of the Fourth ventricle 1105 
according to harmonizome[59,60]F: Single optical sections of neurosphere cryosections acquired 1106 
by confocal microscopy showing co-localisation of TTR and PTGDS in cells predominantly on 1107 
the periphery of neurospheres (panel left – compositie image of a neurosphere; panels right - 1108 
split images from a different neurosphere). 1109 
 1110 
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 1113 
 1114 
Figure 7:  Monocle analysis of the NP, N and CR cluster. A: Consistent with the subgroup 1115 
assignment by CellSIUS, monocle orders cells on a trajectory from NP via immature neurons 1116 
(N_early) to either mature N or CR cells. B: Gene expression along pseudotime. Shown are a 1117 
marker for NPs (VIM), immature neurons (NHLH1), N.sub_2 (FEZF2) and CR cells (RELN). 1118 
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Table 1: Cell lines and culture conditions used in this study 1120 

 1121 

  1122 

Cell line Gender Cell type Tissue of origin Obtained 
from 

Culture conditions 

A549 M Alveolar basal 
epithelial (adherent) 

Lung adenocarcinoma ATCC  
CCL-185 

ATCC F12K (ATCC, P/N 30-
2004) +10% FCS (AMIMED, P/N 
2-01F36-I). 

H1437 M Epithelial / glandular 
(adherent) 

Lung adenocarcinoma, 
derived from metastatic site: 
pleural effusion 

ATCC  
CRL-
5872 

RPMI (Invitrogen, P/N A1049101) 
+10% FBS (ATCC, P/N SCRR-30-
2020) 

HCT116 M Epithelium-like 
(adherent) 

Colon carcinoma ATCC  
CCL-247 

ATCC McCoy's 5A (ATCC, P/N 
30-2007) + 10% FCS (AMIMED, 
P/N 2-01F36-I) 

HEK293 F adherent Transformed cell line, 
derived from embryonic 
kidney 

ATCC, 
P/N CRL-
1573  

ATCC EMEM (ATCC, P/N 30-
2003) +10% FCS (AMIMED, P/N 
2-01F36-I) 

IMR90 F Fibroblast (adherent) Fetal lung ATCC  
CRL-186 

ATCC EMEM (ATCC, P/N 30-
2003) 10% FCS (AMIMED, P/N 
2-01F36-I) 

Jurkat M T-cell (suspension) Childhood T acute 
lymphoblastic leukemia 

ATCC, 
P/N TIB-
152  

RPMI  (Invitrogen, P/N 61870-
044) + 10% FCS (AMIMED, P/N 
2-01F36-I) 

K562 F Undifferentiated, 
lymphoblast with 
granulocyte/ 
erythrocyte/monocyte 
chracteristics 
(suspension) 

Chronic myelogenous 
leukemia, BCR-ABL1 
positive 

ATCC, 
P/N CRL-
1573  

RPMI (Invitrogen, P/N 61870-044) 
+ 10% FCS (AMIMED, P/N 2-
01F36-I). 

Ramos M B-cell (suspension) Burkitt’s lymphoma ATCC, 
P/N CRL-
1596  

Batch 3: RPMI (Invitrogen, P/N 
A1049101) +10% FBS (ATCC, 
P/N SCRR-30-2020) 
 
Batch 4: RPMI (Invitrogen, P/N 
61870-044) + 10% FCS 
(AMIMED, P/N 2-01F36-I)  
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Table 2: Overview of clustering algorithms benchmarked in this study 1123 

 1124 

Method  Unsupervised  
# clusters? 

Input  Underlying model Expected cluster 
shape and size2 

Run time3  

SC3 [16] Yes Normalized data as an 
SCESet, distances and 
transformations are 
calculated internally 

K-means clustering on 
various distances & 
transformations, hierarchical 
clustering of consensus 
matrix 

Spherical, equal 
sizes 

35 min 
(using 
hybrid 
SVM 
approach) 

Hclust  + 
dynamic 
tree cut 
[38,71] 

No Pearson or euclidean 
distance in PCA space 

Agglomerative clustering  None 1 min 

pcaReduce 
[17] 

No Normalized data, PCA 
is performed internally 

K-means + hierarchical 
clustering 

Spherical, equal 
sizes 

3 min 

Seurat [1] Yes Normalized, log2 
transformed counts as 
a Seurat object 

Graph based None 9 min 

MCL 
[41,42] 

Yes Pearson distance in 
PCA space 

Graph based None Build 
graph: >1h 
Run MCL: 
7 min 

mclust [39] Yes (via 
cross-
validation or 
BIC) 

Principal component 
scores 

Gaussian mixture model Ellipsoid, size can 
vary 

6 min 

DBScan 
[40,72] 

Yes Euclidean distance in 
PCA space 

Clusters are defined as 
regions of high density 
separated by regions of low 
density 

None, but clusters 
have to be compact 
and clearly 
disconnected 

2 min 

 1125 

                                                 
2 By size, we are referring to the actual distribution of the points in space, NOT the number of points in the cluster. 
For a Gaussian ellipsoid, size is parameterized by the covariance matrix. 
3 Run time was estimated using the system.time() function in R. The time shown here refers to the full dataset 
(12000 cells). Analysis was run on 64-bit Intel(R) Xeon(R) CPU E7-4850 v2 @ 2.30GHz with 1TB of RAM in R 3.4.1 
under Red Hat Enterprise Linux Server release 6.9 (Santiago). SC3 was run on 8 cores, all other methods on a single 
core. 
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