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Abstract:  
Disease heterogeneity of immune gene expression patterns of luminal breast cancer (BC) has not 
been well studied. We performed immune gene expression profiling of tumor and adjacent 
normal tissue in 92 Asian luminal BC patients and identified three distinct immune subtypes. 
Tumors in one subtype exhibited signs of T-cell activation, lower ESR1/ESR2 expression ratio 
and higher expression of immune checkpoint genes, nonsynonymous mutation burden, 
APOBEC-signature mutations, and increasing body mass index compared to other luminal 
tumors. Tumors in a second subtype were characterized by increased expression of interferon-
stimulated genes and enrichment for TP53 somatic mutations. The presence of three immune 
subtypes within luminal BC was replicated in cases drawn from The Cancer Genome Atlas and a 
Korean breast cancer study. Our findings suggest that immune gene expression and associated 
genomic features could be useful to further stratify luminal BC beyond the current luminal A/B 
classification.  
 
Introduction: 
  
Breast cancer (BC) is a heterogeneous disease comprised of several molecular subtypes (luminal 
A, luminal B, HER2-enriched, and basal-like) with distinct molecular features and clinical 
behaviors1,2. Within each subtype, substantial heterogeneity still exists in terms of genomic 
features and clinical outcomes3-5. Luminal BC is the predominant subtype; currently we cannot 
precisely identify patients who do not respond to endocrine therapy and carry a poor prognosis6. 
The commonly used luminal A/B classification based on proliferation does not fully capture 
heterogeneity in luminal tumors7,8. A recent study9 partitioned luminal breast tumors of The 
Cancer Genome Atlas (TCGA) into two distinct prognostic subgroups that exhibited differential 
expression of immune-related genes. This partition showed better discriminative prognostic 
value than the luminal A/B classification, suggesting that the immunogenicity of luminal tumors 
is heterogeneous. 
 
The investigation of tumor-infiltrating lymphocytes (TILs) has greatly improved our knowledge 
of the nature of tumor-immune interactions. The presence of TILs has been associated with a 
favorable prognosis across multiple cancer types including BC, although TILs might be 
associated with treatment responses and survival in a subtype-specific manner10,11,12, suggesting 
a dependence of the immune infiltration on BC subtypes.  Recent TCGA Pan-Cancer studies 
identified substantial heterogeneity in immune profiles across and within cancer types as well as 
within cancer subtypes13,14. For example, Thorsson et al.13 identified perhaps six immune 
subtypes spanning multiple cancer types and most breast tumors fell into three of these immune 
subtypes. Among BC molecular subtypes, luminal-A tumors showed the greatest heterogeneity, 
with a similar number of tumors classified into each of the three immune subtypes. Nevertheless, 
variation in immune profiles within luminal tumors may not be sufficiently characterized in these 
Pan-Cancer analyses. In analyses including all BC subtypes, the immune stratification was likely 
driven by HER2-enriched and basal-like tumors since TILs are more abundant in these subtypes 
than in luminal BC15. A more detailed understanding of the variation in TILs among luminal 
tumors could provide new insights into luminal BC heterogeneity and identify a subset who 
might be amenable to immunomodulation and benefit from immunotherapy. 
 
So far, most studies that conduct profiles of immune cells in BC have used data from TCGA, 
which does not represent the general patient population, particularly for non-European subjects. 
Previous studies have shown that tumor immunobiology might vary by race/ethnicity16,17 but the 
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contribution of biological factors to racial differences is largely unknown. Different germline 
genetic architecture may play a role but how germline variants contribute to immune phenotype 
has not been extensively studied. For example, the germline APOBEC3B deletion polymorphism, 
which is more common in East Asians (31.2%) than in Europeans (9.0%) and West Africans 
(4.2%) based on HapMap, is not well represented in TCGA. This deletion has been associated 
with increased BC risk18 and immune gene expression19,20, suggesting that East Asian BCs may 
exhibit a distinct immune profile compared to other BC populations. In this study, we profiled 
immune gene expression in paired tumor/normal luminal breast tissue collected from a hospital-
based case-control study of Asian BC patients in Hong Kong (HKBC), for whom extensive 
clinical and epidemiologic data were collected.  
 

Results: 

The analysis included 92 luminal tumors and 56 normal samples (including 56 tumor/normal 
tissue pairs) with good quality of RNA-Sequencing data (HKBC). The mean age at diagnosis 
was 58.7 years; the majority of these patients were postmenopausal (76.1%). 49 (53.3%) and 43 
(46.7%) patients were classified as luminal-A and luminal-B, respectively, according to PAM50. 
Although our analyses were focused on luminal patients, we also present data for HER2-enriched 
and basal-like patients as a comparison group (n=40). The distribution of clinical characteristics 
and key BC risk factors among these patients is shown in Supplementary Table 1.  
 
Immune gene expression stratified luminal tumors into three subtypes 
We conducted unsupervised consensus clustering of 92 luminal tumors using expression of 130 
immune-related genes (within 13 previously reported metagenes)21 (Supplementary Table 2). 
The best separation was achieved by dividing the luminal patients into three subtypes (lum1: 
n=40; lum2: n=36; lum3; n=16; Figure 1a); lum1 and lum3 were enriched with luminal-A tumors 
and lum2 enriched with luminal-B tumors (Supplementary Table 3). Lum1 expressed low levels 
of most immune genes (Figure 1b) and therefore was designated as low-TIL. Lum2 had high 
expression of STAT1 and other interferon-stimulated genes (ISGs), but low expression of other 
immune genes (Figure 1b), designated as high-ISG. Lum3 (defined as high-TIL) showed the 
highest expression level of most immune genes (Figure 1b) such as immune checkpoint genes 
(e.g. PD-L1 and CTLA-4), chemokine genes and their receptors (e.g. CXCL9 and CXCL10) and 
effectors (e.g. GZMK and PRF1) (Supplementary Figure 1), reflecting a T cell-inflamed 
phenotype. Compared to low-TIL and high-ISG tumors, high-TIL tumors had significantly 
higher abundance of most immune subpopulations (estimated by MCP-counter, Figure 2a), 
except for neutrophils and cells of monocytic lineage. The abundance score for each immune 
subpopulation in high-TIL luminal tumors was comparable to that of HER2-enriched and basal-
like tumors (Figure 2a; P values see Supplementary Table 4). Adjusting for tumor purity, which 
was inferred using ESTIMATE purity score, did not significantly change the results 
(Supplementary Figure 2). Representative images of immune infiltration in high-TIL tumors are 
shown in Supplementary Figure 3. 
  
We also inferred the fractions of 23 immune cell subpopulations in these patients using 
CIBERSORT. Unlike MCP-counter, CIBERSORT estimates the relative fraction of each cell 
population in a sample rather than the absolute abundance. Most analyzed immune cell 
subpopulations had low fractions in our samples. Figure 2b shows the fractions of seven 
subpopulations with the average fraction >10% across all samples. We found that high-TIL 
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tumors showed significantly higher fractions of CD8+ T cells and tumor-killing M1 
macrophages22 than those of low-TIL and high-ISG tumors, while they had lower frequencies of 
tumor-promoting M2 and undifferentiated M0 macrophages (P values see Supplementary Table 
5). 
 
The presence of luminal immune subtypes was replicated in independent studies 
Based on expression levels of the same 130 immune genes used in HKBC, luminal tumors in 
each TCGA population (Asian, African American, and White) and KBC were similarly assigned 
to three subtypes using consensus clustering, with the presence of a high-TIL luminal subtype 
seen in all populations (Figure 3). The pattern was more similar in the three Asian populations, 
with a more pronounced separation of the high-TIL subtype from the other two subtypes. 
Consistent with HKBC results, high-TIL tumors in all replication datasets showed higher overall 
immune score (by ESTIMATE, Figure 3), higher abundance of most immune subpopulations (by 
MCP-counter, Supplementary Figure 4a), and higher fractions of CD8+ T cells and M1 
macrophages (by CIBERSORT, Supplementary Figure 4b). Like HKBC, high-TIL tumors 
showed upregulation of genes in immune activation and regulation activities (Supplementary 
Figure 4c), while high-ISG tumors expressed higher levels of ISGs (e.g. DDX58) than tumors in 
the other two luminal immune subtypes (Supplementary Figure 4d).  
 
Clinical characteristics, breast cancer risk factors, and genomic features associated with 
immune subtypes 
In HKBC, most clinical characteristics or BC risk factors examined, such as tumor grade, nodal 
status, age at menarche, parity, age at first birth, breastfeeding, and age at menopause, did not 
vary significantly across immune subtypes (Supplementary Table 1). However, the average body 
mass index (BMI) was significantly higher in high-TIL (mean = 27.9) than in low-TIL (mean = 
24.1) and high-ISG patients (mean = 24.6). The differences remained significant after the 
adjustment of age, menopausal status, and tumor purity (P=0.0018 for high-TIL vs. low-TIL and 
P=0.0057 for high-TIL vs. high-ISG). In addition, high-TIL tumors had slightly lower ESR1 
(estrogen receptor alpha) but significantly higher ESR2 (estrogen receptor beta) expression 
levels, resulting in a significantly lower ESR1/ESR2 ratio (P=0.001) compared with low-TIL and 
high-ISG tumors (Figure 4a). The association between the low ESR1/ESR2 ratio and the high-
TIL subtype was consistently seen in all TCGA populations (Supplementary Figure 5a).  
 
High-TIL patients tended to be younger than patients with low-TIL tumors in HKBC as well as 
in the replication datasets (Supplementary Figure 5b), although the difference was significant 
only among the TCGA Whites (P=0.018). The short follow-up time in HKBC prohibited us from 
assessing the prognostic outcome in relation to the immune subtypes. We therefore conducted 
survival analysis using TCGA data of 905 BC patients. We combined all ethnicity groups 
because few deaths occurred among Asian or African American patients. As shown in 
Supplementary Figure 5c, the high-TIL subtype was associated with the best 10-year overall 
survival among all subtypes (P=0.008), although the difference became non-significant after the 
adjustment for age at diagnosis and stage (hazard ratio [HR]=0.6, 95% confidence interval 
[CI]=0.26-1.4, P=0.22). The attenuation of the significance was likely due to younger ages in the 
high-TIL subtype as stage did not differ significantly across luminal immune subtypes (P=0.72). 
 
To evaluate the possible contribution of germline variation in APOBEC3B to immune profiles 
and mutational events, we genotyped a SNP (rs12628403) that is a proxy for the APOBEC3B 
deletion in germline DNA23. In HKBC, the frequency of the rs12628403-C allele that tags the 
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30kb deletion (44.7% among 76 luminal patients and 40.4% among all 114 patients with 
genotyping data) was similar to what was reported in East Asian populations18. We found the 
expected associations between the APOBEC3B deletion and decreased levels of APOBEC3B 
expression in both tumor and normal tissue, validating SNP rs12628403 as a proxy for 
APOBEC3B deletion (Supplementary Figure 6). Although high-TIL patients had a slightly higher 
frequency of the deletion allele than the other luminal immune subtypes, the difference was not 
significant (P=0.93, Figure 4b). In addition, the expression level of APOBEC3A_B, which is a 
hybrid transcript resulting from the APOBEC3B deletion, did not vary significantly by luminal 
immune subtypes (P=0.36). Further, the ESTIMATE immune scores did not vary across different 
genotypes of SNP rs12628403(P=0.56). Similar results were obtained in the analysis based on all 
tumor subtypes. In TCGA Whites, the homozygous deletion of APOBEC3B was very rare; only 
2 of 329 patients with genotyping data were homozygote and neither of them was in the high-
TIL subtype (Figure 4b).  
 
In an exploratory analysis of a subset of luminal tumors with both RNA-Seq and WES data 
(n=59), we found that, after age adjustment, high-TIL tumors were associated with a higher 
nonsynonymous mutation burden (P=0.014, compared to low-TIL tumors, Figure 4c) and a 
higher frequency of APOBEC-signature mutations (mean 23.6%) compared with low-TIL (7.6%, 
P=0.04) and high-ISG (8.3%, P=0.05) tumors. Notably, all TP53 mutations (n=8, Figure 4d) 
observed among luminal patients occurred in high-ISG tumors. The similar enrichment of TP53 
mutations in high-ISG tumors was also seen in TCGA Whites (P=0.006, Figure 4d). The 
frequency of PIK3CA mutations did not vary significantly by immune subtypes in HKBC but 
showed a slight increase in high-TIL tumors in TCGA Whites (P=0.031 compared to low-TIL 
tumors).  
 
Comparison to matched normal tissue suggested T cell activation in high-TIL tumors only  
In our HKBC data neither abundance nor fractions of the examined immune cell populations in 
paired normal breast tissue varied significantly across the three luminal immune subtypes 
(Supplementary Figure 7), suggesting that the distinguishing TIL levels between high-TIL and 
other tumors were not driven by the differences in their systematic normal TIL levels. We 
compared the MCP abundance of the eight immune cell populations in tumor (T) and matched 
normal (N) tissues for each immune subtype. Low-TIL and high-ISG overall showed similar 
patterns of immune discrepancy between T and N, while patterns of high-TIL were more similar 
to those of non-luminal patients (Figure 5). Specifically, while low-TIL and high-ISG tumors 
showed either no change or lower abundance of immune cell populations (such as cytotoxic 
lymphocytes) compared to their paired normal tissue, high-TIL, like non-luminal tumors, had 
significantly higher abundance scores of CD3+ T cells, CD8+ T cells, and B lineage cells 
compared with the paired normal tissue (T - N difference > 0, Figure 5; P-value of CD8+ T cells 
= 0.0002 and 0.0253 for high-TIL and non-luminal patients;  other P values see Supplementary 
Table 6). These observations indicate a tumor-derived activation of specific immune responses in 
high-TIL and non-luminal tumors but not in other luminal tumors.   
  
 
Discussion:  
 
In this study of immune and genomic characterization of luminal breast cancer patients, we 
identified three immune subtypes of luminal breast tumors displaying distinct patterns of 
immune gene expression with associated genomic features. One luminal subtype (high-TIL) 

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515486doi: bioRxiv preprint 

https://doi.org/10.1101/515486


 6 

exhibited an activated immune phenotype that is comparable to that of non-luminal (HER2-
enriched and basal-like) tumors. These high-TIL tumors were predominantly luminal-A and were 
found in approximately one-sixth of luminal patients in the HKBC study. Like non-luminal 
tumors, high-TIL luminal tumors had higher expression of immune checkpoint genes, higher 
abundance and fractions of CD8+ lymphocytes, and higher ratio of M1/M2 macrophages. They 
also shared genomic features of non-luminal tumors, such as a higher mutation burden, higher 
fractions of APOBEC-signature mutations, and lower ESR1/ESR2 expression ratio. High-TIL 
luminal patients also appear to have a better prognosis and higher BMI compared to other 
luminal patients in our study. In addition to high-TIL, we also identified a luminal subtype (high-
ISG) that was characterized by increased expression of ISGs and enrichment for TP53 mutations. 
These immune subtypes were replicated in independent datasets. Our findings suggest that 
immune gene expression and associated genomic features may reveal additional heterogeneity in 
luminal breast cancer patients beyond the current luminal A/B classification.  
 
Our immune subtyping of TCGA breast cancer patients showed modest correlation with the six 
immune subtypes identified by Thorsson et al. in a TCGA Pan-Cancer analysis13. Specifically, 
our low-TIL, high-ISG, and high-TIL subtypes were enriched with C1 (wound healing), C2 
(IFN-γ dominant), and C3 (inflammatory) subtypes, respectively, in the Pan-Cancer study. The 
modest correlation is not surprising since the clustering analysis is heavily influenced by the 
input genes and subjects. In contrast to the large number of immune genes (~3,000) and a 
heterogeneous mixture of cancer types used in the Pan-Cancer analysis, our clustering analysis 
included a more focused immune gene panel (130 genes) and was restricted to luminal breast 
tumors, which may better capture the variation in tumor immunogenicity within luminal breast 
tumors. Indeed, the concordance index (C-index), which evaluates the concordance of the actual 
and predicted survival outcomes for TCGA luminal breast cancer patients, was slightly higher 
for our luminal immune subtypes (0.60) than the one for the Pan-Cancer immune subtypes 
(0.56).  
 
Previous studies suggested that the high expression of an alternative ER isoform, ESR2 
(encoding ERβ), was associated with favorable BC prognosis and that the association might 
depend on the ratio of ESR1 and ESR2 (ERα and ERβ)24,25. Consistently, we observed that 
patients with increasing ESR1/ESR2 ratio tended to have poorer survival (HR=1.5, 95% CI=0.7-
3.3, P=0.27, adjusting for age and stage) in TCGA luminal patients. Interestingly, in the current 
study, we found that high-TIL tumors had a significantly lower ESR1/ESR2 ratio as compared to 
low-TIL and high-ISG tumors in both HKBC and replication datasets. Our findings suggest that 
ESR expression, particularly ESR2 expression, may relate to immune gene regulations in luminal 
breast tumors and this association may explain the previously reported favorable prognosis 
associated with ERβ expression.  
 
We also identified a unique subtype (high-ISG) of luminal tumors that had lower scores in most 
immune pathways but showed higher expression of STAT1 and other ISGs (such as DDX58) 
even as compared to high-TIL tumors. Unlike low-TIL and high-TIL subtypes that comprised 
predominantly luminal-A tumors, high-ISG patients were enriched with luminal-B tumors. 
Interestingly, all TP53 mutations among luminal patients occurred in the high-ISG subtype in 
HKBC. Previous studies demonstrated that TP53 mutations were associated with an immune 
activated phenotype when all molecular subtypes were analyzed together, which is expected 
since TP53 mutations are more prevalent in non-luminal than in luminal tumors. Our data 
suggest that TP53 mutations may be specifically related to the activation of IFN-signaling. p53 
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has been reported to inhibit STAT1, a key transcription factor in the JAK-STAT pathway that 
drives the expression of ISGs and pro-inflammatory cytokines26. It is therefore possible that the 
deficiency of p53 caused by TP53 mutations may contribute to the overexpression of STAT1 and 
ISGs. Alternatively, TP53 mutations and overexpression of ISGs may be the combined result of 
analogous DNA damaging events since induction of ISGs may occur even without viral infection 
in response to DNA damage27. The association between TP53 mutations and high-ISG was also 
seen in TCGA EA. Our results suggest that the relationship between immune composition and 
genomic determinants might be more complex than we previously appreciated.  
 
In our study, we did not find a significant association between the germline APOBEC3B deletion 
and luminal immune subtypes. Similarly, the immune scores did not vary significantly by the 
deletion genotype, either in luminal or in all patients. The previously observed association 
between the deletion and immune activation was based on data from TCGA and METABRIC, in 
which the frequency of the homozygous deletion was very low19,20 and the results were driven by 
comparing the heterozygotes to the wild type. Although our evaluation was limited by the overall 
small sample size, the higher frequency of the deletion in this Asian population allowed us to 
examine both heterozygous and homozygous genotypes. Results based on our study do not 
support the hypothesis that the germline APOBEC3B deletion polymorphism is the driving force 
for immune activation in breast tumors19,20.  
  
Taking advantage of our rich collection of epidemiologic data in HKBC, we examined several 
established breast cancer risk factors in relation to the immune subtypes and found a significant 
association between higher BMI and the high-TIL luminal subtype. The average BMI was more 
than 3 units higher in high-TIL patients compared with other luminal patients and the differences 
remained significant after the adjustment for potential confounders such as age at diagnosis, 
menopausal status, and tumor purity. The association was not seen in KBC, likely due to the lack 
of BMI variation in such a young cohort. Consistent with our finding in HKBC, a recent study 
reported a significant association between higher expression of CD8+ T-cell signatures and 
increasing BMI in 1,154 breast cancer patients from the Nurses’ Health Study28. The link 
between obesity and breast cancer involves multiple mechanisms that may interplay with each 
other such as chronic inflammation, estrogen production, growth factor stimulation, and altered 
metabolism29. Future large studies are warranted to follow up this observation.  
 
In contrast to tumors, immune gene expression in adjacent normal tissue did not vary 
significantly across the three luminal immune subtypes, suggesting that high-TIL patients did not 
have high immune activation. Using gene expression data based on BC patients in Norway, 
Quigley et al. previously showed that cytotoxic lymphocyte (CTL) pathway scores were higher 
in tumors than in matched adjacent normal tissue, particularly for ER-negative tumors30. We 
found that high-TIL patients also showed significantly higher levels of CD3+ T cells, CD8+ T 
cells, and B lineage cells in their tumors compared with normal tissues. These findings suggest 
that tumor-intrinsic events might drive the immune activation in a similar manner in ER-negative 
and high-TIL luminal tumors. In fact, consistent with what was reported by several previous 
studies31,32, we found that higher burden of nonsynonymous mutations and APOBEC-signature 
mutations might act as potential contributors to the increased immune response.  
 
The strengths of our study include a comprehensive collection of clinical and exposure 
information and a detailed evaluation of immune composition for both tumors and paired normal 
tissue in an Asian population, and the replication of findings in independent datasets. The major 
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limitation is the small sample size, which limited the power to identify genomic determinants of 
distinct immune phenotypes. Additionally, since we collected frozen breast tissue from recently 
diagnosed patients, the follow-up time is insufficient to evaluate the associations between the 
immune subtypes with prognostic outcomes. Large TIL studies of luminal BC with treatment and 
outcome data are warranted to follow up on our findings. In summary, we identified three 
immune subtypes of luminal breast tumors displaying distinct patterns of immune gene 
expression with associated genomic features. If confirmed, these findings may have important 
clinical implications in improving luminal BC stratification for precision oncology treatment1,5,10-

12.  
 
 
Methods: 
 
Participants and Samples 
We analyzed data and biospecimens collected from a hospital-based breast cancer case-control 
study in Hong Kong as previously described33. In brief, fresh frozen breast tumors and paired 
normal tissues were collected from newly diagnosed breast cancer patients in two HK hospitals 
between 2013 and 2016. Patients with pre-surgery treatment were excluded from the study. 
Clinical characteristics and breast cancer risk factors were obtained from medical records and 
questionnaire. Paired tumor and histologically normal breast tissue samples were processed for 
pathology review at the Biospecimen Core Resource (BCR), Nationwide Children's Hospital, 
using modified TCGA criteria34. Tumors with >50% tumor cells and normal tissues with 0% 
tumor cells were included for DNA/RNA extraction. The study protocol was approved by ethics 
committees of the Joint Chinese University of Hong Kong-New Territories East Cluster, the 
Kowloon West Cluster, and the National Cancer Institute. Written informed consent was 
obtained prior to the surgery for all participants. 
 
Transcriptome sequencing, PAM50 classification, and immune composition 
RNA sequencing (RNA-Seq) data was generated in 139 tumors and 92 histologically normal 
breast tissue paired samples that passed standard QC metrics at Macrogen Corporation on 
Illumina HiSeq4000 using TruSeq stranded RNA kit with Ribo-Zero for rRNA depletion and 
100-bp paired-end method. Gene expression was quantified as TPM (transcript per million) 
using RSEM35 and log2TPM was used for statistical analyses. PAM50 subtype was defined by an 
absolute intrinsic subtyping (AIMS) method36. A comprehensive characterization of immune cell 
composition in both tumor and paired normal breast tissue was achieved by using three 
computational algorithms: ESTIMATE37, CIBERSORT38, and MCP-counter39. While 
ESTIMATE (for overall infiltration of immune cells) and MCP-counter (for eight immune cell 
subpopulations) both measure the abundance of immune cells in a given sample, CIBERSORT 
estimates intra-sample proportions of 23 immune cell subpopulations.  
 
Whole-exome sequencing (WES) and mutation analyses 
WES was performed on 104 paired tumor and normal samples (40% from blood or saliva and 
60% from histologically normal breast tissue) at the Cancer Genomics Research Laboratory 
(CGR), NCI, using SeqCAP EZ Human Exome Library v3.0 (Roche NimbleGen, Madison, WI) 
for exome sequence capture. The captured DNA was then subject to paired-end sequencing 
utilizing Illumina HiSeq2000.  59 of them also had RNA-Seq data. The average sequencing 
depth was 106.2x for tumors and 47.6x for the paired normal tissues. Somatic mutations were 
called using four callers  and the analyses were based on mutations called by 3 or more of 4 
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established callers (MuTect40, MuTect2 (GATK tool), Strelka41, and TNScope by Sentieon42). 
Mutation signatures were estimated using the previously published method43. SNP rs12628403, 
which is a proxy for the APOBEC3B deletion (r2=1.00 in Chinese from Beijing (CHB) in 
HapMap samples), was genotyped in germline DNA with a custom TaqMan assay as previously 
described23. 
 
Replication datasets 
We analyzed two available, independent datasets to replicate our findings: 564 luminal patients 
in TCGA3 and 112 luminal patients in a Korean BC genomic study (KBC)44. We analyzed 
TCGA Asians (n=29, mean age: 51 years), African Americans (AA, n=72, mean age: 58 years), 
and European ancestry (EA, n=463, mean age: 60 years) separately. PAM50 was called using the 
same AIMS method for each TCGA sample as it was used in HKBC. KBC patients were much 
younger, with a mean age at diagnosis of 40 years. PAM50 subtype and mutation calling for 
KBC were previously detailed44. Immune classification and composition across all datasets 
(HKBC, TCGA, and KBC) were analyzed using the same methods. 
 
Statistical Analysis 
The consensus clustering was conducted using ConsensusClusterPlus45. The ANOVA test was 
used to compare mean differences across the luminal immune subtypes for immune cell 
populations and their immune scores. Logistic regression was used to assess the associations 
between the immune subtypes (outcome) and transcriptomic features, genomic alterations, 
patient characteristics, and breast cancer risk factors, with the adjustment for age at diagnosis. 
The Kaplan–Meier method was used to assess overall survival among patients, stratified by 
immune subtypes. A multivariable Cox proportional hazards model was also used to test the 
differences in survival across immune subtypes with the adjustment of age at diagnosis and 
tumor stage. Since most of our analyses were exploratory, we did not adjust for multiple testing. 
All statistical tests were two-sided and performed using SAS version 9.3 (SAS Institute, Cary, 
NC, USA) or R version 3.4.4 (R Foundation for Statistical Computing, Vienna, Austria).  
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Figure Legends 
  
Figure 1: Consensus clustering of 92 luminal breast tumors from Hong Kong patients based on 
130 immune-related genes. a) Consensus cluster matrix showing three major clusters; b)  
Gene expression heatmap showing gene expression levels of 13 immune metagenes in the three 
luminal immune subtypes (low-TIL, high-ISG, and high-TIL) and in non-luminal (HER2-
enriched and basal-like) tumors. Each column represents a patient, grouped by immune subtypes; 
each row represents a gene, grouped by 13 immune pathways. Normalized gene expression value 
with mean=0 and standard deviation (SD)=1 is indicated by 5 color categories representing the 
increasing expression level from green to red. LCK: lymphocyte-specific protein tyrosine kinase; 
Tfh: helper follicular T cell; Tregs: regulatory T cell; NK: natural killer cell; MHC: major 
histocompatibility complex; STAT1: signal transducer and activator of transcription 1; IF_I: 
interferon inducible genes; PAM50: green=luminal A, blue=luminal B, grey=basal, 
black=HER2-enriched.  
 
Figure 2: The immune phenotype in the three luminal immune subtypes (low-TIL, high-ISG, 
and high-TIL) and in non-luminal (HER2-enriched and basal-like) tumors. a) Abundance of 
eight immune cell subpopulations (estimated by MCP-counter); b) Relative fractions of immune 
cell populations (inferred by CIBERSORT). Immune cell populations with low fractions 
(average <10% across all samples) are not shown.  
   
Figure 3: Average immune scores (inferred by ESTIMATE) in the three luminal immune 
subtypes and non-luminal (HER2-enriched and basal-like) tumors in HKBC, KBC, and TCGA 
(Asian, African American, and White, separately) datasets.  
 
Figure 4: Genomic features associated with different immune subgroups. a) ESR1 and ESR2 
expression ratio (log scale); b) Number of patients with the germline APOBEC3B deletion 
tagged by rs12628403-C allele in HKBC and TCGA Whites (number of patients in each 
genotype category indicated above each bar); c) Nonsynonymous mutation burden (log scale); d) 
Frequency of nonsynonymous TP53 mutations in HKBC and TCGA White patients (number of 
patients in each mutation group indicated above each bar). 
 
Figure 5: Comparison of the abundance of eight immune cell subpopulations (estimated by 
MCP-counter) between paired tumor and normal tissue (N=80) for the three luminal immune 
subtypes and non-luminal (HER2-enriched and basal-like) patients in HKBC, respectively. Each 
dot represents the mean difference between each tumor and normal pair (T-N); 0: no 
difference, >0: higher in tumor than normal tissue; <0: lower in tumor than in normal tissue.  
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Figure 1.a 
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Figure 1.b 
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Figure 2.b 
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Figure 4.a 
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Figure 4.c 
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Figure 4.d 
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