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Abstract
The brain constructs distributed representations of key low-dimensional variables.

These variables may be external stimuli or internal constructs of quantities relevant

for survival, such as a sense of one’s location in the world. We consider that the high-

dimensional population-level activity vectors are the fundamental representational cur-

rency of a neural circuit, and these vectors trace out a low-dimensional manifold whose

dimension and topology matches those of the represented variable. This manifold

perspective — applied to the mammalian head direction circuit across rich waking be-

haviors and sleep — enables powerful inferences about circuit representation and mech-

anism, including: Direct visualization and blind discovery that the network represents

a one-dimensional circular variable across waking and REM sleep; fully unsupervised

decoding of the coded variable; stability and attractor dynamics in the representation;

the discovery of new dynamical trajectories during sleep; the limiting role of external

rather than internal noise in the fidelity of memory states; and the conclusion that the

circuit is set up to integrate velocity inputs according to classical continuous attractor

models.

It has long been clear that the brain represents sensory, motor, and internal variables in
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distributed codes across large populations of neurons. In turn, theoretical models of com-
putation in the brain have emphasized that neural circuit dynamics must be understood in
terms of the emergence of simple structures from the collective interactions of large num-
bers of neurons1–8, and that robust representation and memory involve the formation of
low-dimensional attractors in the population dynamics.

Until relatively recently, experimental techniques permitted access to only one or a few
neurons at a time, but simultaneous recordings of multiple neurons are making feasible
the theoretically suggested approach of characterizing the structure and dynamics of neural
responses at the population level. This approach is beautifully illustrated in recent demon-
strations of low-dimensional trajectories in sensory and motor circuits9–12.

Our work proceeds from four central premises: 1) In distributed codes, information rep-
resentation, computation, and dynamics unfold at the level of the neural population and
the collective states of a circuit are the natural way to understand them. 2) If a circuit
represents a low-dimensional variable of given dimension and topology, the high-dimensional
states of the circuit will be localized to a low-dimensional subspace or manifold of matching
dimension and topology. 3) Characterizing the structure of this manifold can enable un-
supervised discovery and decoding of the internally coded (latent) variable. 4) Examining
manifold structure and dynamics on and o↵ the manifold across a range of behavioral states
as the inputs to the circuit change can reveal aspects of circuit mechanism.

We illustrate a method to characterize the manifold structure of data, use this character-
ization to discover, in a blind or unsupervised way, low-dimensional internal states, provide
a blind time-resolved decoding of these states, and provide support for the predictions of a
classic mechanistic circuit model, using the mammalian head direction system as our sub-
ject. The head direction (HD) system in mammals and insects13–21 is a high-level cognitive
circuit that uses various external and internal cues to compute an estimate of the direction
of heading of the animal with respect to the external world. It is a proving-ground for the
manifold-based approach to unsupervised discovery of the encoded variables because it rep-
resents internal cognitive states that need not directly reflect externally measured variables
during waking, and this dissociation between internal and external states holds even more
true during sleep (as we will see). At the same time, the HD system also helps us illustrate
how a manifold approach can yield genuinely new insight into the structure, dynamics, and
mechanisms of a long-studied neural circuit.

Two decades ago, theoretical models4;22–25 of the HD circuit predicted the existence of a
stable, one-dimensional (henceforth 1D) ring-shaped stable manifold in the high-dimensional
state space of the population activity, a more abstract and fundamental feature than details
about the shapes of tuning curves, connectivity profiles, or physical placements of neurons
in the circuit. The notion of stability means that perturbations of any kind in the high-
dimensional space away from the ring should quickly and preferentially flow back to the
ring. If the HD circuit is an integrator, then the states along the ring and changes in state
along the ring for equivalent changes in the represented variable should in some sense be
equal. The basic elements of the HD circuit models have since been extended to explain
the dynamics of other neurons, including grid cells7. The same circuit models can further
explain how, through the integration of a di↵erent velocity signal, the brain could form
representations in more abstract metric spaces26;27. Thus, testing the extent to which these
models are really correct descriptors of circuit mechanism is a question of broad importance.
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So far, pairwise correlations between mammalian HD cells15;28–32 and a topographically
ordered physical HD-coding ring structure in flies18–21 are consistent with the hypothesized
models. Here we show directly that the long-hypothesized low-dimensional state-space ring
structure and attractive dynamics can be directly visualized in the population responses of
the mammalian HD system. The dynamics revealed in this circuit during sleep states provide
new evidence about the mechanisms that allow these states to be maintained and updated.

Portions of these results have been presented at conferences33;34.

Results

The instantaneous (temporally binned) response of N neurons is a point in an N -dimensional
state space where each axis represents the activity of one neuron (Fig. 1a). The collection
of such snapshots of the population activity forms a cloud in the state space. If the popula-
tion encodes some variable of dimension Dm ⌧ N and a certain topology, the point cloud
should trace out a manifold of the same dimension and topology, although the shape may
be convoluted. In what follows, we describe how characterizing the manifold’s topology and
structure, then analyzing dynamics on the manifold, can permit us to extract the latent
encoded variables in an unsupervised way and deduce key aspects of circuit mechanism.

Spline parameterization for unsupervised decoding (SPUD)

We characterize the global topology of the manifold using methods of topological data analy-
sis, specifically persistent homology35: The method starts from the point-cloud of data, Fig.
1a, blurring the points at di↵erent resolutions or scales, and at each resolution examining the
emergence of connected groups of data points called simplicial complexes, Fig. 1b. A sim-
plicial complex can contain certain structures within it, such as a ring or a torus and so on.
Betti numbers form a list of binary structural designations that characterize the complexes:
A complex that is (topologically) equivalent to a flat, holeless sheet of some dimension has
only a non-zero Betti-0 number; all higher-order Betti numbers are zero. A (convoluted)
ring or a cylinder, each of which enclose a single hole, have a non-zero Betti-0 number and
Betti-1 number, but none of higher-orders; a figure-8 shaped complex will have a non-zero
Betti-0 number and two Betti-1 numbers, but none of higher order; a (hollow) torus, which
contains two circular holes and one two-dimensional void, has a non-zero Betti-0 number,
two Betti-1 numbers and one Betti-2 number; and so on for more complex objects. In noisy
data, if a Betti number for a structure persists over many scales (Fig. 1b), this feature is
robust against noise and thus deemed significant. Topological data analysis prescribes how
to characterize the Betti numbers of complexes in a dataset35.

To decode the internal state encoded by the manifold, we perform the following steps
(details in Methods): 1) Consider the binned spiking data as points in a high-dimensional
state space, Fig. 1a; 2) Determine the topology of the point cloud using methods of topolog-
ical data analysis (TDA), specifically persistent homology35, Fig. 1b, and the introduction
of a neighborhood-thresholded TDA (nt-TDA) for increased robustness to noisy data (see
SI S2.2); 3) estimate intrinsic local manifold dimension using various methods including cor-
relation dimension36, Fig. 1c; 4) Fit the manifold with a spline of matching topology and
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Figure 1: Population activity as a manifold and a method for manifold characterization.
(a) Each blue point is a vector representing instantaneous activity in the neural population: vector

component (ri) is the activity of the ith neuron. The points form a manifold. (b) Persistent

homology to determine topology for general manifolds: Balls of di↵erent size centered on the

datapoints represent di↵erent simplicial radii (r) or scales. At a given radius, sets of connected

points form simplicial complices (SI S2 for details). Each complex is characterized by a set of

Betti numbers; depicted here are the loop features of the complices (colored rings), at the di↵erent

scales. Loops appear in panel 2 and disappear (are filled in) by panel 3; another appears in panel

3 and persists until the last; it is deemed significant because of its persistence. Inset: Betti-1

barcode, or the range of radii over which each loop persists. (c) Local dimension can be estimated

by several methods. Schematic shows correlation dimension: Count the number of points in a ball

of radius r centered at a point on the manifold, as a function of r. The number of points should

grow as r
Dm if the manifold is Dm dimensional. (d) The data manifold is fit by a spline (cyan

line) of dimension and topology as determined in (a-c). The spline uses a few anchor points (cyan

circles) determined by clustering methods, with connecting polynomial curves. (e) The spline is

parametrized by assigning coordinates along its length. The coordinates represent the values of

an internal (latent) state that the circuit is assumed to encode. (f) Moment-by-moment decoding

of the internal state is done by reading out the parametrization value at the point on the spline

closest to the datapoint.
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dimension, Fig. 1d; 5) Parametrize the spline by a smoothly changing variable of match-
ing dimension and topology, Fig. 1e; the resulting parametrization is interpreted as the
values of the encoded latent variable or internal state. 6) Given a population state at any
moment in time, decode that state by projecting it to the nearest point on the spline; the
parametrization value at that point is the unsupervised estimate of the value of the encoded
latent variable, Fig. 1f. In this entire decoding process, when the manifold is topologi-
cally non-trivial in structure, constructing a low-dimensional embedding is neither necessary
(though nonlinearly embedding the manifold into some intermediate-dimensional space can
be practically useful for e�cient spline fitting, for modestly improving the spline fits because
the embedded manifold has fewer narrow kinks or convolutions (SI Fig. S4 to see the modest
gains from dimensionality reduction when one is data-limited), and for visualization when
the manifold dimension is su�ciently small), nor is it su�cient. Dimensionality reduction
provides a global coordinate system that is not su�cient for obtaining a minimal parameter-
ization for manifolds that are not topologically equivalent to some hole-free K-dimensional
sheet: For instance, the minimum embedding dimension for a 1D ring is 2D, and dimen-
sionality reduction will yield at best a global 2D parametrization of the 1D variable, which
represents a failure to discover the real 1D latent variable. This problem is general for all
topologically non-trivial manifolds, because there is an important di↵erence between global
and local coordinates, and global coordinates provide either a non-unique or too-high di-
mensional parametrization of the manifold. The on-manifold parameterization method we
describe yields a local rather than global coordinate system to describe the manifold, and
extracts the correct one-dimensional structure of the encoded variable.

Ring manifold and unsupervised decoding in the mammalian HD
system

We apply SPUD to neural activity data recorded from the anterodorsal thalamic nucleus
(ADn) of mice that are awake and foraging in an open environment along random, variable
paths with variable velocities, as well as during intervening REM and nREM periods32. Note
that the animal’s waking behavior is not low-dimensional: Unlike in many other applications
of manifold methods10;12, the animal is not constrained to move along specific trajectories
or perform a stereotyped task. Further, during sleep the neural dynamics are not known to
be externally constrained in any way.

We show manifolds and compute Betti barcodes for the best session in each of the 7
recorded animals (Figs. S1, S7 and S11). All remaining results are based on the (3/7)
animals where the RMS di↵erence between measured and decoded angle during waking is
< 0.5 rad. For any session that we use for unsupervised decoding, we include all recorded
thalamic cells, with no sub-selection based on tuning. For each cell, instantaneous firing
rates are obtained by convolution with a Gaussian kernel (100ms standard deviation).

The first problem is to determine whether the data exhibit some simple low-dimensional
manifold structure in state space. The states of the network during waking exploration
appear — through direct visualization of a nonlinear low-dimensional embedding from the
high-dimensional state space37a – to lie on a strikingly low-dimensional albeit highly non-

a
The manifold is su�ciently convoluted that it does not occupy a very low-dimensional linear subspace,
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Figure 2: Unsupervised discovery and time-resolved decoding of encoded variable
through manifold characterization. Throughout, ✓ = direct measurement of the animal’s

head orientation from LED tracking; ✓̂ = supervised decoder’s estimate of the brain’s represen-

tation (using tuning curves); ↵ = unsupervised latent variable estimate. This figure: ADn data

from single animal for full waking episode (31 minute interval). (a) Visualization of manifold (by

Isomap
37
), with every alternate pair of temporally adjacent points connected. Inset shows point

cloud (top) and alternate view of manifold (bottom). Note that PCA often fails to pull out the

ring structure of manifold, Fig. S2. (b) Betti-0, -1 and -2 barcodes: Simplicial complex radii on

abscissa (schematic at top: complexes constructed from data at di↵erent radii): the start and end

of a horizontal bar in the middle plot signals the appearance and disappearance of some ring (a

non-zero Betti-1 feature) in the data at the corresponding radii. Long bar: a ring that appears at

⇠ 16
p

Hz and persists until ⇠ 43
p

Hz (for description of analysis and units see S2). (c) Spline fit to

point cloud. (d) Parametrization of spline by coordinate ↵ (arbitrary origin). (e) Coloring of neural

states by unsupervised latent variable estimate (i.e., ↵). (f) Comparison of ↵ and ✓. (The origin

and direction around the ring for measured head angle and for unsupervised decoding, both arbi-

trary choices, are matched to facilitate comparison, only after unsupervised decoding is complete.)

(g) Histogram of di↵erences between ↵ and ✓ and between ↵ and ✓̂. (h) Fully unsupervised tuning

curve estimate (blue) versus supervised tuning curve estimate (black). (i) Left: Average fraction

of variance explained by ✓ (black) and ↵ (blue) under a Poisson spiking model (solid bars) and an

overdispersed (hatched bars) model. Error bars show standard error; significance is from two-sided

binomial test (see SI S5). Right: Variance explained for individual cells under Poisson model, with

means shown in orange. (j) Manifold from data (blue) and from an overdispersed spiking model

(red), with overdispersion estimated from the data (see SI S5) and applied as uncorrelated across

neurons. Inset shows distribution of distances from manifold fit for data and model. (k) Covariance

of firing rates (left) and covariance conditioned on either ✓ or ↵.
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linear manifold, in the form of a convoluted ring, Fig. 2a (see Fig. S1 for all 7 animals in
the data set, and Supplementary Movie 1 for a 3D view). Because waking behavior is not
low-dimensional, the low-dimensional structure we see is intrinsic, rather than imposed by
the environment or task.

To independently verify that the structure visualized in the embeddings is real rather
than an artefact of the visualization process, and that important, higher-dimensional and
topological structures are not lost, we turn to topological data analysis, in particular the per-
sistent homology of simplicial complexes35. Topological methods are more general because
they permit characterization of manifolds that are topologically non-trivial in structure and
higher-dimensional35, when direct visualization is not possible.

From the persistent homology of simplicial complexes constructed from the waking data
(see Methods), we confirm an open loop or ring structure in the data that persists over
several spatial scales (H1 plot, Fig. 2b), and also find no evidence of a toroidal or more
complex topological structure (H2 plot, Fig. 2b; contrast Figure S3). As shown below, there
is no evidence of additional structure down to the resolution of the data.

With the confirmation of a ring topology, we fit to the manifold a nonlinear spline with
the same topology (Fig. 2c) and then isometrically parameterize the spline along its length
with a circular variable whose values are indicated by the color of the spline (Fig. 2d). Points
on the manifold are colored according to the nearest parameterization value (Fig. 2e).

Strikingly, the decoded latent variable very closely matches (up to an arbitrary choice
of origin and direction) the directly measured head angle (from LED’s on the animal’s
head), Fig. 2f,g (see Fig. S4 for other animals). The match serves as a direct validation
that the extracted ring structure is real, and of the hypothesis that the topology of neural
representations should match the topology of the represented variables.

It was not clear a priori that an isometric parameterization would su�ce for this level of
accuracy in decoding. The fact that isometric parameterization along the neural population
response manifold produces excellent decoding implies that equal amounts of neural code
length or activity variation are given to equal changes in head angle and that therefore
no specific angles are favored for greater representational resources than others, exactly
consistent with the expectations for an head velocity integrator circuit, in which all states
have to be equivalently represented and equivalently changeable so that a unit velocity input
produces a unit change in represented angle regardless of the angle. This isometry property
enables accurate integration of a velocity signal regardless of starting angle.

Next, we regress the time-varying firing rates of individual cells onto the latent variable
estimate. This allows us to recover neural tuning curves in a fully blind way, Fig. 2h.
The unsupervised tuning curves capture 71% ± 2.8% of the variance of tuning curves con-
structed the traditional, supervised way (Fig. S5). Relatively flat tuning curves are also
consistent across the supervised and unsupervised estimates under the assumption of an en-
coded variable that is one-dimensional and circular; cells with flatter curves are slightly but
not significantly more overdispersed in their spiking relative to well-tuned cells (correlation
between variance of tuning curve and overdispersion is 0.25, p of 0.12; data not shown).

The unsupervised latent variable estimate appears to more faithfully track the internal

thus linear embedding methods are of limited use and can create artefactual self-intersections in the manifold

projection. Nonlinear embedding methods
37–39

are less prone to these problems.
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representation of head angle than it does the measured HD, assessed from the even closer
match between the latent variable estimate and internal state estimate constructed from
a supervised (tuning-curve-based) decoder of HD circuit activity (Fig. 2g; Fig. S4, S5
for other animals). Indeed, the measured HD is not guaranteed to accurately report the
animal’s internal representation, which may slip relative to the measured HD for various
reasons, including the possibility that the animal is uncertain about its HD, is representing
past or future HD states, or because of errors in the experimental measurement of HD.
Further, our latent variable estimate explains more of the variance of neural spiking (cross-
validated, Fig. 2i) than does the measured HD, a confirmation that the unsupervised latent
variable estimate is a more accurate reflection of the internal representation of HD (see Fig.
S5 for further controls including leave-one-cell-out analyses where the variance of a neuron
is explained using SPUD and activity in the rest of the population).

A natural question is whether the waking manifold encodes additional variables not yet
discovered, for example in the thickness of the ring. With a finite signal-to-noise ratio (SNR)
in the dataset it is impossible, with any method, to exclude the possibility of structure in
the data that is significantly smaller than the noise. However, we may search for additional
coding structure down to the resolution limit imposed by noise, by asking whether the data
exhibits a spread or structure not explained by the 1D ring structure together with inde-
pendent neural spiking noise. We thus generate synthetic data based only on the 1D latent
variable extracted through SPUD, with spikes generated independently (after conditioning
on the 1D variable) using an independent point process per cell with dispersion matched
empirically to the data. The structure and spread of the resulting point cloud closely match
those in the real data, Fig. 2j, suggesting that the circuit is not encoding additional vari-
ables in the form of shared (correlated) structure in other dimensions of its response. (By
contrast, we do find an additional coding dimension in postsubicular HD cells (coding for
head velocity; data not shown) as well as in ADn during nREM sleep (shown later)).

We search further for small-scale cooperative coding beyond the 1D ring in the popula-
tion response by directly examining patterns of covariation between neurons after removing
the e↵ects of their shared angular coding around the ring manifold, Fig. 2k. Patterns of
correlation are strong before conditioning on the angular variable, but weak after (the ratio
of the Frobenius norm of the residual covariance matrix to the norm of the raw covariance
matrix is only 6% when conditioning on the unsupervised latent variable estimate, suggesting
that it captures ⇠ 94% of the data covariance; by contrast, the ratio after conditioning on
measured HD is 25%, consistent with earlier findings that measured HD is a worse indicator
of internal state than our unsupervised estimate). These results demonstrate that there is
little discernible additional structure in the waking manifold, and the ADn appears to sup-
port the encoding of only a single one-dimensional circular variable during waking, down to
the resolution (SNR) of the present data.

The SNR in these data and results is primarily limited by the number of simultaneously
recorded cells. Larger samples of simultaneously recorded neurons will improve SNR and
reduce the scatter around the ring, allowing discovery of finer additional structure or further
downgrading the possibility that it exists.
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The ring manifold is autonomously generated and attractive

Above, we highlighted how regarding neural population responses as lying on a manifold and
then characterizing the structure of the manifold can permit unsupervised decoding of latent
variables. In what follows, we show how the manifold view reveals the collective dynamics of
the circuit, in a direct, easy, and natural way. First, we will consider coarse-grained net flows
of states on and o↵ the manifold. Second, we will consider the fine time-resolved dynamics
of trajectories on the manifold.

Through these analyses, we test the key predictions1;3;4;7 of continuous attractor network
models (properties 1-4) and models of neural integrators for continuous variables (properties
1-5), Fig. 3a (see Fig. S6 for a network model): 1) The high-dimensional network response
occupies a low-dimensional continuum of states with dimension and topology matching those
of the encoded variable(s). 2) The states are autonomously generated and stabilized, and
capable of self-sustained activation when sensory inputs are removed. 3) The manifold is
an attractor: states initialized away from the manifold flow rapidly back toward it. 4)
The states along the manifold are energetically equal, with no flux or net flow along the
manifold. 5) A velocity input, encoding the time-derivative of the represented variable,
drives the circuit in a special direction, specifically, along the low-dimensional manifold in
the high-dimensional state space. Note that these predictions are fundamentally in terms of
the population manifold, hence most naturally tested at that level, when the data make it
possible.

Results above already directly support property 1). To study autonomous dynamics, we
examine the states of the circuit during sleep, when the circuit no longer receives spatial or
directional input from the world. During REM sleep, the states again lie on a ring, Fig. 3b
(and Supplementary Movie 2), and moreover are essentially identical to those from awake
exploration, laying on the same ring manifold, Fig. 3c (Fig. S7 for other animals). The
result is in direct support of property 2), and consistent with a similar previous conclusion
inferred from preserved pairwise correlations during sleep32.

States on the manifold are energetically flat or equivalent

To test the equivalence of states along the manifold, we examine the coarse occupancy and
dynamics of manifold states during REM sleep, when the circuit is not driven by the external
world (spatial exploration could be biased). First, we construct instantaneous (undirected)
vectors or bars linking states at adjacent time-points, Fig. 3d; the length of a bar is pro-
portional to the mean speed at that time. If the manifold contained a few prominent sinks
or discrete fixed points, there would be fast flow to and high occupancy around those fixed
points, which would correspond visually to long bars converging near those points. As one
can see, the lengths and density of the bars are roughly uniform across both waking and
sleep manifolds in a given session, Fig. 3d.

Separately but related, the change in angle is independent of the value of the angle itself,
Fig. 3e (Fig. S8 for other animals). To obtain a quantifiable measure of occupancy along
the ring and to gain statistical power from pooling across sessions and days from a single
animal, we decode the angular states on the ring with a supervised decoder, and compute
the density of decoded angles, Fig. 3f. The logarithm of the density of states along the ring
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Figure 3: REM sleep states, fluxes, and dynamics suggest that the manifold is internally
generated and attractive. (a) Schematic of attractor model predictions (see main text for list).

(b) Betti-1 barcode reveals 1D ring structure preserved during REM sleep. (c) Joint visualization

of REM (green) and waking data (dark blue) using Isomap
37
. (d) Flows along REM manifold:

each bar represents a velocity vector at a moment in time. Inset shows wake manifold. (e) Single

session mean and standard deviation of change in decoded angle as a function of angle. (f) Mean

and standard deviation of angle occupancy (from tuning curve decoder) across sessions. (g) Flux

on and o↵ manifold. (h) Schematic showing that flux should be small on manifold, because velocity

vectors tend to point in both directions along manifold and thus average out (top panel), while

flux o↵ manifold should be large, because velocity vectors tend to point towards manifold (bottom

panel). (i) Ratio of size of flux vector o↵ manifold to flux vector on manifold. Error bars show

standard deviation; hatched bar shows shu✏ed control (p < 10
�6

; see SI S8).
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– a direct estimate of the relative energy of these states – is flat on the scale of the variability
across sessions. These results directly support property 4).

Finally, we examine the fluxes or net flows of states on versus o↵ the manifold. The
flux through a small region is the vector average over all the instantaneous trajectories that
flow into and out of that region, Fig. 3g. For a continuous attractor not being driven by
a directed input, we expect at most small net flows or fluxes along the manifold because of
the uniform distribution of flows in all directions along the manifold (property 4), as well
as because of the omnidirectional and unbiased nature of random kicks o↵ the manifold;
however, we expect large net fluxes for states that are not on the manifold because of biased
flows of states returning to the manifold (property 3), precisely as seen in the data, where
the fluxes are small on-manifold, but large for points o↵-manifold (Fig. 3g-i).

Di↵usive dynamics along manifold during REM

After obtaining a detailed qualitative picture of states and dynamics on and near the mani-
fold, we combine theoretical predictions about dynamical trajectories on continuous attractor
manifolds40 with our ability to perform time-resolved unsupervised decoding using SPUD
(Fig. 4a-b) to gain a quantitative estimate of the nature and influence of noise on the circuit.
Noise is an important consideration for integrator, memory, and representational circuits,
because it determines the timescale and fidelity of information stored in the circuit.

First, we validate that SPUD can su�ciently capture the fine-time-scale statistics of
trajectories based on the available data by comparing time-lagged correlations of the unsu-
pervised latent variable estimate during waking and against a “ground truth” of measured
HD correlations, Fig.4c (blue and black traces in inset). Since HD updates during waking are
correlated in time (Fig. 4d, blue trace and Supplementary Movie 3), the squared deflection
in angle over time grows quadratically at short times (Fig. 4c, left inset).

During REM sleep, by contrast, angular updates are temporally uncorrelated but never-
theless local (SPUD result in Fig. 4d, green trace, and Supplementary Movie 4; the angle
change histogram is small and unimodal), and the squared angular deflection grows linearly
with time (Fig. 4c green curve). These two features — uncorrelated local updates together
with a linear growth in squared deflection over time — are characteristic of an unbiased
di↵usive random walk, consistent with property 4) if the dynamics during sleep are noise-
dominated and if the noise lacks temporally coherent structure40.

Evidence of input aligned to manifold

To resolve the nature of the noise driving di↵usivity during REM, we make, to our knowledge,
the first quantitative comparison between empirically-observed di↵usion in a neural circuit
and theoretical predictions. The di↵usion constant of REM dynamics in Fig. 4c is 1.1±0.04
rad2/s (0.52 ± 0.03 and 1.3 ± 0.06 for the other two animals; see Fig. S9). This di↵usivity
exceeds, by a factor of 20-50, the predicted value in a matched model (see40, SI S10 and Fig.
S10), Fig. 4c, if the noise in the circuit is independent across neurons.

Independent per-neuron noise could arise from Poisson spike count variations within the
circuit, or from a high-dimensional input that projects in a spatially uncorrelated way to
the neurons. In either case, such high-dimensional noise is impotent in pushing the network
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state along the manifold, because noise of unit variance only has a projection of size 1/N
along the manifold4;40;41, Fig. 4e. Increasing the amplitude of independent noise is not a
solution: even 5x overdispersed noise does not account for the di↵erence in di↵usion constant,
and independent noise of large magnitude destroys the low-dimensional states of the circuit
(other factors that might potentially contribute to the gap between predicted versus observed
di↵usivity fall far short of accounting for the discrepancy, SI S10).

By contrast, a modest amount of noise in the form of fluctuations aligned to the nonlinear
manifold, which is naturally interpreted as arriving in the velocity input to the circuit, has
a much stronger e↵ect40;41. Noise on the same order of magnitude as the velocity strengths
required to produce HD-matched changes in represented angle in a model (standard deviation
of 8.5 rad/s1/2, with temporal correlations of 20 ms or less; compare waking in Fig. S4),
is su�cient to account for the measured di↵usion, Fig. 4c. Noise aligned to the manifold
additionally tends not to distort the activity states, and thus more purely moves the states
along the manifold with at most small o↵-manifold e↵ects, as apparently seen in the REM
data. In sum, with high probability, REM di↵usivity is driven by a low-dimensional noise
injected into the circuit through an input aligned to the manifold, and thus likely arriving
through the velocity pathway, with a magnitude consistent with the size of waking velocity
inputs into the circuit (property 5).

These results demonstrate that even in high-level cognitive circuits for memory and in-
tegration, as previously established for low-level sensory circuits and sensorimotor path-
ways42–45, input noise or sensory precision rather than internal noise is the limiting factor
for information fidelity.

Inputs during nREM sleep disrupt ring manifold

Hippocampal circuits replay patterns of waking activity during nREM sleep46–49, and these
events may play an important role in memory consolidation50. However, the HD circuit seems
to lack replays or even coherent temporal dynamics32;51. On a more abstract level, nREM
sleep is thought to disrupt the brain’s ability to maintain integrated representations52, but
it is unclear what this means at a more granular level, for specific integrated representations
like HD. A manifold-based approach reveals when previous population-level structure is
modified and helps to understand the nature of the modification. In addition, if there is
coherent dynamics in the restructured space, a manifold-based approach can help find it,
even if the structure is not visible when states are projected into the old space.

The manifold in nREM does not preserve the ring structure of waking and REM states: it
is higher-dimensional (persistent homology, contrast Fig. 4f with Fig. 2b, 3b; visualization,
Fig. 4g and Supplementary Movie 5; also see correlation dimension estimates in Fig. S11),
and only partially overlaps the waking/REM manifold (Fig. 4g).

The higher-dimensional nREM manifold encodes at least two latent variables. We decode
an angle along the tangential (circular) dimension of the manifold using SPUD, and compare
it with the outputs of two wake-trained supervised decoders that make di↵erent assumptions:
a tuning-curve decoder and a population vector decoder (Fig. S12). The angles decoded by
all three methods agree well (see Fig. S13 for another animal), except at low-activity states
where the signal-to-noise ratio of the neural response is low.

A second latent variable obtained from the radial dimension of the manifold (based on
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Figure 4: Di↵usive dynamics during REM sleep, and higher-dimensional states and
coherent dynamics during nREM sleep. (a) Manifold with sample waking trajectories at three

di↵erent times. Each plot shows several consecutive points over a second and transitions between

them. (b) As in (a) but for sample REM trajectories. (c) Plot of variance of REM angle update

over time (solid green), with waking shown for comparison in blue. At short timescales, growth

of variance is linear, with slope given by di↵usion constant. Dashed green traces show continuous

attractor model (CAM) with and without noisy velocity input. Left inset shows waking trace

(blue: SPUD; black: measured head angle) on an expanded scale, highlighting supralinear increase

at small times. Dashed lines in inset show pure di↵usion and expected increase for velocity-driven

dynamics. Bar plot shows di↵usion constants for decoded angle (error bar is standard deviation

from resampling with replacement), continuous attractor model without noisy velocity input, and

continuous attractor model with noisy velocity input. (d) Autocorrelation of angular velocity.

(e) Schematic showing that in high dimensions, independent noise is almost entirely directed o↵

manifold and does not move the system much along the manifold. (f) Absence of persistent ring

in Betti-1 barcode during nREM sleep (no long horizontal line; compare Figs. 2,3b). (g) Joint

plot of nREM and waking manifolds using Isomap. nREM in mustard yellow; waking in dark

blue (as before). Inset shows two alternative views. (h) Population firing rate during nREM

decoded from distance to centroid (actual in light blue; decoded in yellow). Inset shows points

colored by population firing rate. (i) nREM manifold with three sample trajectories. (j) Plot of

variance of decoded nREM angle update over time (waking and REM shown for comparison). (k)

Autocorrelation of angular velocity during nREM. (l) Distribution of changes in nREM angle over

500ms, with waking, REM angles in blue, green for comparison. (m) Autocorrelation of velocity

on full manifold. Waking, REM traces from (k) shown for comparison. Inset shows fraction of time

spent in consecutive low velocity and high velocity epochs (300ms duration each). Hatched bars

show shu✏ed control (see SI S12). (n) Distribution of angles between successive high (dark) and

low (light) velocities on full manifold (100ms separation). (o) Plot of squared change in position

on full manifold for low and high velocity epochs. Quadratic and linear fits shown by dashed lines.

(p) Average LFP trace conditioned on small (black) vs. large (grey) change in position, along with

95% confidence interval. (q) Correlation of total change in position against LFP power in 1s bins,

along with 95% confidence interval (see SI S12).
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distance to the manifold centroid) encodes the population firing rate, capturing slow, non-
binary global rate fluctuations that characterize nREM sleep, Fig. 4h. Thus the nREM
manifold is an amplitude-modulated version of the waking manifold53;54, forming a 2D coni-
cal surface (Fig. 4g and Fig. S11, where the cone is clearer for other animals). The circular
boundary of the cone reaches toward the Wake ring, and the tip of the cone extends to
the zero-activity state. These responses are well-modeled by the same circuit as for wak-
ing and REM dynamics – strong recurrent connectivity that supports the formation of an
activity ring with local bump tuning of neurons – but modified so that the external input
projecting globally to all neurons undergoes large amplitude fluctuations (Fig. S14). Unlike
during REM, where external inputs permit the maintenance of the waking ring while driving
states di↵usively around it, during nREM the external inputs pull the states o↵ the ring.
Mechanistically, the di↵erence is likely due to the loss, during nREM, of a discrete attractor
dynamics that holds fixed the amplitude of background inputs across the large physiological
shifts that occur between waking and REM.

The dynamics, like the states, are also higher-dimensional during nREM sleep, Fig. 4i.
Examining the component of dynamics along only the angular dimension of the manifold,
as would be done by a supervised decoder constructed from waking data, yields little tem-
poral structure: nREM manifold trajectories projected onto the 1D waking ring rapidly
decorrelate, Fig. 4j,k. The variance grows linearly with time, Fig. 4j, similar to the di↵u-
sive dynamics of angle during REM but with a much larger di↵usion coe�cient (⇠ 8 times
REM), making it natural to interpret nREM dynamics as simply a faster version of the REM
dynamics32;55;56 or otherwise unstructured dynamics51. However, fat tails in the histogram
of state changes (Fig. 4l) suggest that state changes are not local and thus the dynamics are
not actually di↵usive.

Indeed, a di↵erent picture emerges for dynamics on the higher-dimensional manifold:
there, we observe two distinct types of trajectories (partitioned by thresholds on the mag-
nitude of displacement per unit time): periods of staying in a confined region of the nREM
manifold and periods of large sweeps along large parts of it, Fig. 4i (and Supplementary
Movie 6). The large sweeps are coherent: Large-displacement intervals occur successively
over many intervals, or in long runs, compared to shu✏ed controls (Fig. 4m); motion along a
direction tends to continue along that direction (Fig. 4n, dark histogram, showing the angle
between successive displacement vectors over two 100ms intervals); and successive large dis-
placement epochs show a quadratic growth (Fig. 4o, dark curve; 8x the speed of waking) in
squared displacement over time, consistent with non-di↵usive, directional motion. (In gen-
eral, successive high-displacement epochs could simply look di↵usive with a large di↵usion
coe�cient; the quadratic growth is a clear symptom of coherent motion.)

The run lengths of successive small-displacement intervals are again overrepresented rel-
ative to shu✏e controls (Fig. 4m), but unlike the sweeps, these small displacement epochs
exhibit a linear growth in squared displacement over time (Fig. 4o, light curve), consistent
with di↵usive dynamics. The small-displacement intervals and sweeps during nREM each
persist over longer timescales than are present in waking and REM dynamics; this persis-
tence is responsible for the fat tail in the temporal autocorrelation dynamics of nREM states
on the full manifold (compare 300 ms nREM correlations in Fig. 4m to 96 ms (waking, blue
trace) and 38 ms (REM, green trace)).

Reproducing the dynamics of confined nREM trajectories in a circuit model (Fig. S14)
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requires temporally persistent low-activity states and slow amplitude modulation (0.1 Hz
amplitude fluctuations thresholded to zero for about half the cycle, SI S13). However,
sweeps cannot be explained simply by global fluctuations in population rate: most sweeps
occur during high activity states, and the velocity during sweeps is not preferentially directed
towards or away from the zero activity state (Fig. S15). The dynamics of sweeps require,
in addition, temporally persistent or correlated velocity fluctuations (correlation time of 200
ms, the same as in the waking model and an order of magnitude slower than in the REM
model).

To investigate the possible drivers of smooth sweeps, we correlate their occurance with
the local field potential in ADn. The sweeps occur at times of transient increase in the local
field potential amplitude, Fig. 4p, and specifically with transient upward fluctuations in the
component of the LFP power around ⇠ 12 Hz, within the 7-15 Hz range for sleep spindles57),
Fig. 4q. In turn, the occurrence of sleep spindles is correlated with the occurrence of sharp
waves in the hippocampus58, raising the question of whether coherent sweeps in the HD cir-
cuit during sleep spindles have some relationship to replay and memory consolidation events
occurring elsewhere in the brain50, including in the hippocampus46–49 and the neocortex59;60.

Discussion

We have obtained a direct glimpse of the low-dimensional ring structure in the mammalian
head-direction circuit, and by examining states across waking and sleep, have shown that
the population dynamics are generated autonomously in the brain and are attractive. These
direct observations, based on a manifold approach that reveals the full N -point correla-
tions and dynamics of the circuit population response, complement and augment an elegant
body of work which inferred low-dimensional structure from pairwise correlations in the
vertebrate circuits for head direction13;15;28–32, oculomotor control3;61, prefrontal evidence
accumulation62 and 2D spatial navigation55;56;63. Finally, the direct visualization of a clear
one-dimensional ring in the activity states of the vertebrate HD circuit, where neurons may
or may not be physically laid out in order of their activity profiles, provides a compelling
parallel to the beautiful results on a topographically ordered ring recently discovered in the
HD circuit of invertebrate nervous systems18;21.

We have sought to demonstrate that, as in the theoretical models of low-dimensional con-
tinuous attractor circuits, the natural way to understand neural circuits that represent low-
dimensional variables is to examine the evolution of population states on a low-dimensional
activity manifold. As we have shown, this approach allows for the observation of attractive
dynamics, which would have been di�cult to demonstrate otherwise, and for the quantifi-
cation of dynamics on the manifold. It also allows for the discovery of coherent dynamics
when the states are altered, as we saw in nREM sleep. Finally, it allows for comparison with
theoretical models, whose key predictions are at the level of structured population dynamics.

The unsupervised extraction of the encoded variable and neural tuning curves from man-
ifold characterization provided an estimate that outperformed measured head angle in ac-
counting for neural spikes. The manifold approach to latent variable discovery and decoding
is useful whenever the encoded variable or some subset of the encoded variables is unknown:
this is often the case in cognitive systems, but can also be true for sensory and motor systems
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when they are modulated by top-down and other inputs; and it is usually the case during
sleep50. It will also be useful in examining how structured states and dynamics emerge in
neural circuits during development64, plasticity, or learning.

In the case of HD cells, individual neural tuning curves are sparse, local functions on
the manifold. However, SPUD and related manifold discovery methods33;34;65;66 (D. Tank,
personal communication; Y. Ziv, personal communication) can be used for unsupervised
decoding and tuning curve discovery when tuning curves are highly non-sparse and non-
local. Manifold methods can also be fruitfully applied to topologically non-trivial manifolds
of higher dimensionb, such as a toroidal structure produced by simulated grid cells (SI S3;
⇠ 35 cells are su�cient to visualize 2-dimensional toroidal structure if the tuning curves are
not too narrow, Fig. S3).

In sum, manifold-level analyses can enable fully unsupervised discovery and decoding
of brain states and dynamics, and the quantification of collective dynamics on and o↵ the
manifold can give insight into circuit mechanism. We believe that manifold learning and
related techniques33;34;67;68 will be essential for extracting information from large datasets,
representing the future of neural decoding.

Methods Summary

Information on the data set and preprocessing are in Supplementary Information S1. Infor-
mation on the methods we use to extract and parametrize low-dimensional structure are in
Supplementary Information S2 and S4. Details of the waking decoding are in S5, for REM
decoding in S7-9, and nREM decoding in S11, 12. The model construction is described in
S6, S10 and S13. Data have been previously reported in32 and are available on CRCNS:
http://crcns.org/data-sets/thalamus/th-1. Code is available on request.
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