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Figure 5. Small changes in torque space tuning during high dose tDCS. (a) Three rate map comparisons 
and their associated correlation coefficient (ρ) for illustrative purposes. ρ is minimal (-1) in the 
hypothetical case of inverted peaks/troughs, maximal (1) in the hypothetical case of single rate scaling, 
and high (0.76) for an example during during 3mA c-tDCS. (b)  There were small shifts in tuning shape 
between Pre and Stim/Sham epochs, and this effect was more pronounced during high dose tDCS. (c) 
Histogram of all torque vector spike information content (I) for all neurons. Four example rate maps with 
corresponding I values above demonstrate how “peaky” neurons carry more information than do neurons 
with dispersed spikes. (d) Shifts in tuning were not associated with drops in spike information during 
tDCS. (**p<0.001, Wilcoxon rank-sum test). Box plot center line: median, notch: 95% CI, box: upper and 
lower quartiles, whiskers: 1.5x IQR.  
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Figure 6. Population dynamics during the task and tDCS. (a)  Target-specific, averaged manipulandum 
torques (left) and population firing rates projected in first two PCs (right) for an example session, not 
normalized for illustration (3 mA c-tDCS, Ncells=49). Colors indicate target identity, circle markers: t=0 
seconds (target onset), square markers: t=0.5 seconds. (bi) Mean dimensionality between Pre-Stim epochs 
(solid) and Pre-Post epochs (dashed). Points show mean of bivariate sample and ellipses show one 
standard error. Data points above the line (high dose tDCS during Stim and Post) indicate an increase in 
ensemble trajectory dimensionality, whereas points below the diagonal indicate a drop in dimensionality. 
Low dimensional ensemble trajectories utilize a smaller subspace of possible population patterns as 
compared with high dimensional trajectories. (bii) Box plots showing statistics of Pre-normalized 
dimensionality change for neural trajectories during Pre and Stim. Box edges show first and third 
quartiles, internal bar shows mean, whiskers show extremal values. Data plotted for tDCS low (≤ 1, thin 
bars) and high (>1mA, thick bars) doses. (ci) Illustration of principal angles between two linear PC 
manifolds. (cii) Change in orientation similarity (Sori) of manifolds (PC1 & PC2 as depicted in a) from Pre 
to Stim. Sori remains high during Sham epochs, indicating that ensemble patterns are stable over time. 
High dose a-tDCS evoked new dominant patterns of activity in the ensemble, indicated by a decrease in 
Sori. (*p<0.05, **p<.01, Sham vs. tDCS, independent t-test). Box plot center line: median, box: upper and 
lower quartiles, whiskers: 1.5x IQR. 
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Figure 7. tDCS diminishes the amplitude of RS neuron spike-triggered LFP. (a) Whitened spike triggered 
LFP  (wst-LFP) across the microelectrode array shows significant post-spike features at channels close to 
the neuron. (b) Example wst-LFP at three distances from triggering neuron (Manhattan distance). (c) 
Trough amplitude of wst-LFP (global minimum between 0 and 6ms lag) are stable from Pre to Sham 
epochs. The data is fitted with an exponential A exp(-x/λ)+C, where x is the distance and λ (0.24mm) is 
the space constant. (d-e). Effects of high dose tDCS on RS and FS cells. (N, A and λ reported in 
Supplemental table 1). (d) Amplitude of wst-LFP at channels adjacent to RS cells is diminished by high 
dose a-tDCS (distance 0.4mm: p<0.01; 0.8mm: p<0.001; paired Wilcoxon sign-rank test). Effect is small, 
but significant for 0.4mm distance during c-tDCS (p<0.01). (e) Amplitude of wst-LFP at channels 
adjacent to FS cells is diminished by c-tDCS  (distance 0.4mm and 0.8mm p<0.001) but not a-tDCS. 
**p<0.001, *p<0.01, paired Wilcoxon sign-rank test. 
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