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Abstract1

Understanding how individuals utilize social information while making perceptual decisions2

and how it affects their decision confidence is crucial in a society. Till date, very little3

is known about perceptual decision making in humans under the influence of social cues4

and the associated neural mediators. The present study provides empirical evidence of how5

individuals get manipulated by social cues while performing a face/car identification task.6

Subjects were significantly influenced by what they perceived as decisions of other subjects7

while the cues in reality were completely non-informative. Subjects in general tend to in-8

crease their decision confidence when their individual decision and social cues coincide, while9

their confidence decreases when cues conflict with their individual judgments often leading10

to reversal of decision. Using a novel statistical model, it was possible to rank subjects based11

on their propensity to be influenced by social cues. This was subsequently corroborated by12

analysis of their neural data. Neural time series analysis revealed no significant difference in13

decision making using social cues in the early stages unlike neural expectation studies with14

predictive cues. Multivariate pattern analysis of neural data alludes to a potential role of15

frontal cortex in the later stages of visual processing which appeared to code the effect of16

social cues on perceptual decision making. Specifically medial frontal cortex seems to play17

a role in facilitating perceptual decision preceded by conflicting cues.18

Keywords19

Perceptual decision making; Social influence; Computational modeling; Gamma mixture20

model; Multivariate pattern classification;21

Introduction22

In todays information-satiated society, perceptual decision and subsequent action is greatly23

influenced by social information. Modern human society is increasingly organized around24

collective opinions reflected in peoples increased use of web ratings for daily choices about25

consumer products, lodging, food and entertainment [1]. Opinions and choice can easily26

propagate through social networks [2, 3] in this digitized world and even political opinions27

can be manipulated using social transmission [4]. Human tendency to conform to social28

influence has been explored systematically in classic studies by Solomon Asch [5, 6] and29

others ([7–15] and see [16–18] for reviews). Reliance on others opinion is not unique to30

humans and different species of animal depend on collective opinion to decide life-critical31

perceptual tasks like foraging for food, placement of their nests and navigation [19–21] and32

evolve optimal decision strategies accordingly. Beneficial effect of group decision can be33

traced as early as 1907 when Francis Galton analyzed the opinions of 787 people about the34

weight of an ox and found that combining their numerical assessments resulted in a median35

estimate that was remarkably close to the true weight of the ox [22]. In recent times, this36

idea has been popularly referred to as the wisdom of the crowds [23]. However, effect of37

social cues in the form of collective decision on individual percept and the underlying neural38
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mechanism remains largely unexplored [12, 18].39

Neural expectation studies over the last decade have demonstrated that predictive cues40

typically lead to changes in early sensory processing [24–34] but recent research have con-41

tradicted this claim [35, 36]. We sought to examine whether social information produces42

similar early top down changes in sensory cortex. We propose to manipulate the individual43

choice and decision confidence of humans performing a perceptual task by presenting visual44

cues which the subjects presumed to be collective opinion of other well performing partici-45

pants. The social cues can be concurring, conflicting or neutral to the individual perceptual46

decision of the subjects. Using a novel statistical model, we studied the effect of the three47

types of social cues on their individual choice. We also analyzed the neural signals to explore48

the neural mediators producing the change in their individual choice upon presenting social49

cues. Finally we performed a source reconstruction of the neural signals to elucidate the50

role played by specific spatio-temporal areas under the influence of social cues. Specifically51

we explored the following questions:52

Can we manipulate individual perceptual decision upon presenting non-informative social53

information cues when the social decision differs from the individual choice? Does this54

reversal of opinion depend upon how confident the subject was in his/her choice without55

the social information?56

Can the individual decision confidence be augmented when the social cues concur with57

the individual choice?58

Can we identify the flip-floppers based on computational modeling of their behavioural59

data and corroborate using neural data?60

Can we explore the neural mediators that contribute to the change in individual percept61

post social information?62

Using a face/car discrimination task, we show that it is possible to manipulate individual63

choice post presentation of social cues in the guise of others decision. Although the social64

cues were randomly generated and completely non-informative, it was possible to alter the65

individual percept as subjects presumed the social cues as concurring, conflicting or neutral.66

Irrespective of the order in which they viewed the images with/without social cues, most67

subjects were affected by the social cues in a systematic manner. The distribution of the68

decision confidence under such set up was found to be bi-modal and skewed with one mode69

guided by social cues and the other influenced by their own decision. The tendency to70

adhere to their own decision depends on the confidence level of the subject and is reflected71

in the skewness of the data distribution. Hence using a Gaussian model to explore the data,72

which is the usual practice [37], might not capture the complexities of data completely. We73

propose a novel model using a mixture of shifted gamma and negative gamma distribution74

which successfully captures the effect of social cues on individual choice. To the best of our75

knowledge, this is the first work using a mixture of variants of gamma distributions which76

captures the bi-modal nature as well as the skewness (whether high or low) of this kind77

of data. We compare our proposed model with bi-modal Gaussian and demonstrate the78

superiority of our model convincingly. Based on the behavioural model, it was possible to79

objectively identify subjects most prone to change their decisions upon presenting others’80

opinion. Subsequent multivariate pattern analysis (MVPA) of neural data substantiated the81

above finding. Neural analysis also elucidated existence of a late component that seem to82
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code the effect of this social information on individual perceptual decision. Source analysis83

of neural data revealed a role of frontal cortex in coding perceptual decision using social84

information. Our analysis alludes to the role of medial frontal cortex in coding information85

when conflicting social decisions are provided as cues.86

Materials and Methods87

Ethics Statement88

This study was carried out in accordance with the recommendations of ‘Institute Ethics89

Committee’ at Indian Institute of Science Education and Research Kolkata, India with90

written informed consent from all subjects. All subjects gave written informed consent in91

accordance with the Declaration of Helsinki. The protocol was approved by the ‘Institute92

Ethics Committee’.93

Stimuli and display94

The data set consisted of 290×290 pixel 8-bit gray-scale images of 12 cars and 12 faces with95

equal number of frontal views and side views. Face images were taken from the Max Planck96

Institute for Biological Cybernetics face database [38]. All stimuli were filtered to attain a97

common frequency power spectrum. Noise was generated by filtering white Gaussian noise98

(std of 3.53 cd/m2) by the average power spectrum. Noise was added to the base stimuli99

to generate a set of 250 images (125 face, 125 car). Contrast energy of all 250 images was100

matched at 0.3367 deg2. The observers were at a distance of 125 cm from the display with101

a mean luminance of 25 cd/m2. Images subtended a visual angle of 4.57 degree.102

Observers and Experiment103

Twenty näıve observers (ages: 22-28 mean: 25.85 std: 2.39) participated in the study which104

consisted of 1000 trials split into 40 successive sessions. Three subjects were not considered105

in the analysis due to high degree of noise present in the neural data. All observers had106

normal or corrected-to-normal vision and disclosed no history of neurological problems. The107

observers performed a face/car discrimination task and reported their decision using a 10-108

point confidence rating. Observers perceptually categorized briefly (50 ms) presented images109

of cars (C) and faces (F) embedded in filtered noise. The observers began by fixating on a110

central cross and clicking anywhere on the screen. After a delay of 50 ms, a cue was presented111

for 100 ms followed by a variable delay of 500-800 ms. The stimulus was presented for 50 ms112

followed by delay of 700 ms after which the response screen appeared. The observers reported113

their decision using the confidence rating with a rating of 1 indicating complete confidence114

that the stimuli was a face and a rating of 10 indicating that it was a car with complete115

confidence. The observers reported their confidence rating on a grey-scaled colorwheel in116

the response screen to avoid any motor bias (Fig. 1A). There were four types of cues, FF,117

CC, FC, CF, representing decisions of two independent well performing observers who had118

previously completed the study. Cues were systematically manipulated such that equal119
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number of images (250 per condition) have FF cues, FC/CF cues and CC cues. There were120

also additional 250 images without cues. Thus each observer saw one stimuli four times121

preceded by FF cue, FC/CF cue, CC cue and no cue in the course of the experiment in122

random order and the responses were recorded. Observers were näıve to the purpose of the123

study and in subsequent questionnaire after the study failed to realize that the cues were124

not decision cues and were in fact synthetic cues generated randomly.125

EEG activity was recorded using a 64 channel active shielded electrodes mounted in126

an EEG cap following the international 10/20 system. EEG signals were recorded using127

2 linked Nexus-32 bioamplifliers at a sampling rate of 512 Hz., band-pass filtered (0.01 −128

40 Hz.) and then referenced using average referencing. Trials with ocular artifacts (blinks129

and eye movements) were detected using bipolar electro-occulograms (EOG) with amplitude130

exceeding ±100 mV or visual inspection and not included in the analysis.131

Behavioural model132

We propose a statistical model to explore the effect of social cues on perceptual decision133

making. In the experiment, for every face/car stimuli, subject responses corresponding to134

the three types of social cues (FF, FC/CF and CC) along with a response to the same stimuli135

with no-cues were recorded. The response to the no-cue image was taken as the individual136

decision of the subject, k1 ∈ {1, 2, . . . 10}, for that image. Further, we define a social cue137

variable k2 as138

k2 =


1 if cue shown was ‘FF’,

5 if cue shown was ‘FC/CF’,

10 if cue shown was ‘CC’.

All the images in which the individual decision of the subject was k1, were considered139

and the distribution of the decisions on the same images under the influence of each type140

of social cue was studied. Hence the data comprised of the decisions of a particular subject141

for every (k1,k2) pair. In most cases, the data distributions were bimodal in nature having142

positive and/or negative skew, as seen in Fig. 1B. Hence a two-component mixture model143

based on variants of the gamma distribution was proposed to explain the decisions taken144

by the subject under the influence of a social cue. The data was made continuous by using145

jittering (addition of uniform random noise, [39]) to provide flexibility in modeling.146

Let Xi(k1, k2) contain the decisions taken by the ith subject on all images, where his/her147

individual decision was k1 and cue shown was k2. We consider the elements of Xi(k1, k2)148

as i.i.d. observations from a distribution. To propose the statistical model depending on149

the choices of (k1, k2) we first introduce some terminology and notation. The probability150

densities of shifted gamma and negative gamma distributions are given respectively as151

g(x) =
βα

Γ(α)
(x− 1)α−1e−β(x−1), x ≥ 1, α ≥ 1, β > 0 (1)

152

ng(x) =
βα

Γ(α)
(L− x)α−1e−β(L−x), x ≤ L, α ≥ 1, β > 0, (2)
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where α and β are the shape and scale parameters, respectively and L is a known constant.153

Based on the equations (1) and (2) the following models are proposed depending on the154

choices of (k1, k2). If k1 ∈ {1, 2, . . . , 5} and k2 ∈ {1, 5} we take our model as155

f(x) = p gα1,β1(x) + (1− p) gα2,β2(x), (3)

a mixture of two shifted gamma distributions. When k1 ∈ {6, 7 . . . , 10} and k2 = 10 the156

proposed model is157

f(x) = p ngα1,β1(x) + (1− p) ngα2,β2(x), (4)

a mixture of two negative gamma distributions. Finally if either k1 ∈ {1, 2, . . . , 5} and158

k2 = 10 or k1 ∈ {6, 7 . . . , 10} and k2 ∈ {1, 5} our suggested model is159

f(x) = p gα1,β1(x) + (1− p) ngα2,β2(x), (5)

a mixture of a shifted gamma and a negative gamma distribution, where 0 ≤ p ≤ 1 is the160

mixing parameter.161

Parameter space of the model162

We have taken the restricted parameter space for the shape parameter (α) in both the163

distributions (equations (1) and (2)) so that mode of the distribution is defined and either164

that is more than or equal to 1 (for shifted gamma case) or that is less than or equal to165

L (for negative gamma case). In our case, we consider L to be 11. In particular for both166

shifted-gamma and negative-gamma distributions,167

• the shape parameter α ∈ [1,∞) and168

• the scale parameter β ∈ (0,∞).169

Estimation of the model parameters170

Next, for the purpose of estimation of parameters of our proposed model and further infer-171

ence, only those data are considered which have more than 10 observations. Note that the172

parameter estimates depend on i as well as (k1, k2), that is to say, for every individual i, the173

parameter estimates may vary for different choices of (k1, k2). Similarly for a given (k1, k2),174

parameter estimates of the proposed model may vary from individual to individual. We175

estimate the model parameters by maximum likelihood estimation procedure [40]. Since the176

proposed models are mixture densities, so to calculate the maximum likelihood estimates177

(MLE) we invoke the technique of EM algorithm [40]. However, since closed form solu-178

tion for estimates of shape parameters do not exist, we apply Newton Raphson numerical179

technique [41] within each M-step of the EM-algorithm.180

Calculation of MLE of the parameters of the proposed mixture models181

The calculation of MLE of the parameters based on EM algorithm for the mixture of a182
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shifted gamma and a negative gamma model (equation [5]) is demonstrated here. Suppose183

X1, . . . , Xn be i.i.d. observations from184

f(x) = p gα1,β1(x) + (1− p) ngα2,β2(x).

We define an auxiliary variable Yi such that185

Yi =

{
1 if Xi ∼ gα1,β1(x),

0 if Xi ∼ ngα2,β2(x).

So the complete likelihood and complete log-likelihood are given by186

L =
n∏
i=1

[p gα1,β1(xi)]
yi [(1− p)ngα2,β2(xi)]

(1−yi) and

187

l =
n∑
i=1

[yi ln(p gα1,β1(xi)) + (1− yi) ln((1− p)ngα2,β2(xi))] ,

respectively. The calculations are done using E-step and M-step.188

E-step189

yis’ are replaced with their conditional expected values190

Ŷi := E(Yi|Xi = xi)

=
p gα1,β1(x)

p gα1,β1(xi) + (1− p)ngα2,β2(xi)
.

M-step191

The MLE of p is obtained by differentiating l with respect to p and replacing the unobserved192

yi by ŷi as193

p̂ =

∑n
i=1 ŷi
n

.

Differentiating l with respect to α1 and β1, respectively, and replacing the unobserved yi by194

ŷi, we obtain195

Γ′(α1)

Γ(α1)
− ln(α1) = lnC1 +

∑n
i=1 ŷi ln(xi − 1)∑n

i=1 ŷi
, (6)

and β1 = α1C1, where Γ(·) is the gamma function and Γ′(·) is it’s derivative and196

C1 =

∑n
i=1 ŷi∑n

i=1 ŷi(xi − 1)
.

Notice that the closed form solution for the MLE of shape parameter α1 is not tractable.197

So we use Newton-Raphson technique for getting the numerical solution of the equation (6).198
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Once the MLE of α1 is obtained as α̂1 using numerical technique, MLE of β1, β̂1, is obtained199

by replacing α1 with α̂1 in the equation β1 = α1C1. Similarly we differentiate l with respect200

to α2 and β2, respectively, and replace the the unobserved yi’s by ŷi’s to get201

lnα2 −
Γ′(α2)

Γ(α2)
= ln

1

C2

−
∑n

i=1(1− ŷi) ln(L− xi)∑n
i=1(1− ŷi)

(7)

and β2 = α2C2, where202

C2 =

∑n
i=1(1− ŷi)∑n

i=1(1− ŷi)(L− xi)
.

As above Newton-Raphson technique is employed to get MLE of α2 as α̂2 and once it is203

obtained, the MLE of β2 is found by replacing α2 with α̂2 in the equation β2 = α2C2. We204

start with an initial guess for the parameters (α1, β1, α2, β2) and p and then follow the E-step205

and M-step, iteratively, until convergence.206

For the other models given by equations (3) and (4), similar steps as described above207

have been followed with little modifications. Hence detailed calculations for the other models208

are omitted here.209

Goodness of fit210

To understand how well our model fits the observed data, Kolmogorov-Smirnov (KS) test211

statistic [42], based on the maximum absolute differences between the hypothesized cumu-212

lative distribution function (cdf) and empirical cumulative distribution function (ecdf) was213

used. For each subject i, there were Ni models to be tested simultaneously and therefore214

arose the case of multiple testing. To control the family wise error rate, arising due to215

multiple hypotheses testing per subject, we used the Holm-Bonferroni method [43] with a216

family-wise error rate (FWER) of 0.05.217

Model prediction218

We use 10-fold cross validation procedure to study the predictive performance of the pro-219

posed model. Since our data was bimodal in nature, it would not have been meaningful to220

judge this performance on the basis of a single predictive interval. To address this issue, we221

apply the following concept of highest probability density region (HPDR) [44] which broadly222

computes the smallest region that contains most of the probability.223

Definition : Let f(x) be the probability density function of a random variable X. Then224

the 100(1− α)% HPDR is defined as the subset R(fα) of real numbers, R, such that225

R(fα) = {x : f(x) ≥ fα},

where fα is the largest constant with P (X ∈ R(fα)) ≥ 1− α.226

In each fold, model was trained on the training set and the 85% HPDR was computed.227

It was checked whether the validation set falls in the estimated HPDR and the process was228

repeated for each cross-validation fold.229
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Model comparison230

We compared the performance of our proposed model with the 2-component Gaussian mix-231

ture model using likelihood ratio test [40]. Data was divided into 10 test sets using 10-fold232

cross validation and for each set the likelihood was estimated from each of the two models.233

Finally, the medians of the likelihood ratios across the folds were computed for each of the234

models for the purpose of comparison.235

Behavioral data processing236

Guided by the proposed model the behaviour of the individuals was analyzed based on the237

following measures.238

Distance metric computation using the model239

To quantify the overall shift in decisions from the subjects’ individual choice, the following240

distance was used241

Di(k1, k2) =

{√
x′ixi if k1 = k2,√
x′iΣ

−1xi otherwise,
(8)

where xi = (k1 − m1(i), k1 − m2(i))′, m1 and m2 being the vectors containing the two242

modes of the N(k1,k2) subjects and i = 1, 2, . . . , N(k1,k2). Here N(k1,k2) denotes the number of243

subjects available corresponding to (k1, k2)244

and Σ is the estimated variance covariance matrix of estimates of the modes for a par-245

ticular choice of (k1, k2), given by246

Σ =

[
Var(m1) Cov(m1,m2)

Cov(m1,m2) Var(m2)

]
.

Social Bias247

Using the cumulative distribution functions of shifted-gamma and negative gamma distri-248

butions (as calculated in SI) and equations (3)–(5) the proportion of decisions between k1249

and k2 in presence of social cues was estimated. The average proportion of decisions (pi)250

per subject across the (k1, k2) pairs that have been reported in tables S5–S8 is considered.251

We rank the subjects based on social bias score, defined as252

Wi =
pi − 0.5

σ/
√
n
,

for i ∈ {1, 2, . . . , 17}\{2, 3} with σ denoting the sample standard deviation of the proportions253

pi. Only those subjects were considered for further analysis whoseWi exceeds 1.96, indicating254

that the corresponding proportions are significantly more than chance.255
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Neural data processing256

The preprocessed EEG signals were time-locked to stimulus onset and included a 200 ms257

pre-stimulus baseline and 500 ms post-stimulus interval.258

Multivariate pattern analysis of EEG259

Multivariate pattern analysis was used to extract meaningful information from the multi260

dimensional EEG data. Since the neural data is high dimensional and suffers from small261

sample size problem [45], a recently proposed principal component analysis (PCA) based262

non-linear feature extraction technique –‘Classwise Principal Component Analysis’ (CPCA)263

[45] has been used to reduce the dimensionality of the EEG signals and extract informative264

features. The main goal of CPCA is to identify and discard non-informative subspace in265

data by applying principal component based analysis to each class. The classification is266

then carried out in the residual space, in which small sample size conditions and the curse267

of dimensionality no longer hold. Linear Bayesian Classier was then used for computing268

the choice probability for single trial EEG data for each subject. Pattern analysis was269

performed using 10-fold cross validation. The original data was partitioned into 10 equal270

size subsamples. Of the 10 subsamples, a single subsample was retained as the test data,271

and the remaining 9 subsamples were used in training the classifier. The performance of272

the classifier is captured by the receiver operating characteristics (ROC) curve which plots273

the true positive rate vs. false positive rate at different classification thresholds. The area274

beneath this ROC curve (AUC) is often used as a measure to determine the overall accuracy275

of the classifier [46]. We utilize the well-known approach of calculating the area under the276

ROC by finding the MannWhitney U-statistic for the two-sample problem [47].277

Source Reconstruction278

To identify underlying neuronal sources responsible for generating differences in the ERPs279

corresponding to the face and car trials under the influence of cues, source reconstruction was280

performed using sLORETA software (http://www.uzh.ch/keyinst/loreta). sLORETA281

(standardized low resolution brain electromagnetic tomography) is based on standardization282

of the minimum norm inverse solution which considers the variation of actual sources and283

the variation due to noisy measurement (if any) as well [48]. As a result, it does not have284

any localization bias even in the presence of measurement and biological noise. The head285

model for the inverse solution uses the electric potential lead field calculated using the286

boundary element method [49] on the MNI152 template [50]. The cortical grey matter is287

partitioned into 6239 voxels at 5 mm spatial resolution. sLORETA images represent the288

standardized electric activity at each voxel in Montreal Neurological Institute (MNI) space289

as the exact magnitude of the estimated current density. Anatomical labels are reported290

using an appropriate correction from MNI to Talairach space [51] using Talairach Daemon291

[52]. For further details on sLORETA refer to http://www.uzh.ch/keyinst/NewLORETA/292

Methods/MethodsSloreta. The source activity was estimated from the face-car difference293

wave post stimulus onset.294
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Results295

Behavioural Results296

The decisions taken by the subjects under the influence of a social cue was modeled as a297

2-component mixture model based on the shifted gamma and negative gamma distribution298

(see equations (3)–(5)). To verify that the proposed model fits the observed behaviour data299

well, the Kolmogorov-Smirnov (KS) test [42] was used. The proposed model captures the300

data correctly in most cases (see Table S1). Fig. 1B depicts the histogram of all (k1, k2)301

pairing and the fitted density of our model for one subject. Table S1 contains the p-values302

corresponding to the cases where the model is rejected. In over 96% of the cases, the303

hypothesized model was accepted, thus proving the efficacy of the model.304

To estimate the predictive performance of the proposed model and prevent possible over-305

fitting, the highest probability density region (HPDR) of the fitted model was computed306

based on the training data and checked whether the test data falls in the calculated HPDR.307

Table S2 showing mean prediction error rates across subjects, demonstrate that the cross-308

validation error rate never exceeds 5% for any fold thus validating the excellent performance309

of the model in terms of prediction and nullifying the chance of over-fitting. Fig. 2A shows310

a fitted density function and the corresponding HPDR calculated from the training data311

of a particular validation fold of one subject. The test data as seen from the figure falls312

convincingly inside the indicated HPDR.313

Gaussian distribution has been previously used to model behavioural data successfully314

[37]. Hence the proposed model was compared with the mixture of two component Gaussian315

distributions. The median of the likelihood ratios across subjects for a given (k1, k2) in all316

but 2 cases (out of 30) clearly indicates that the proposed model outperforms the Gaussian317

mixture model in terms of explaining the data (refer to Table S3).318

Effect of Social Cues on Individual Choice319

Effect of social cues on individual decision was studied using a distance metric between k1320

and the estimated modes of the fitted model (see equation (8)). Using bootstrap resampling321

technique on mean distance per (k1, k2) pair, it can be observed that post social cue, there322

is a significant shift in ratings when decisions from all subjects were pooled together (Table323

S4). Furthermore, to check whether this is also true for individual decisions, an additional324

analysis was carried out. If the proposed model predicted a mode in the direction of the325

social cue, the proportion of decisions in between k1 and k2 was calculated by integrating326

the estimated density within the said interval. It can be seen that a significant proportion of327

decisions, as assessed by our model, falls in between k1 and k2 (refer to Tables S5–S8), clearly328

suggesting that, in general, subjects tend to get influenced by the social choice, irrespective329

of whether it conforms to his/her individual bias or not.330

Effect of Concurring Cues331

In order to check whether the decision confidence increases when the subject was given a332

social cue which concurs with his/her own judgment, the area under the fitted density given333
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the social cue (‘FF’,‘CC’) is compared with that of a neutral cue (‘FC’/‘CF’) (see Tables334

S9 and S10). These areas are assumed to be indicative of the proportion of decisions of the335

subjects around the individual decision. As compared to the neutral cue, for most of the336

subjects the average proportion of decisions in the region [1, 6] is greater when individual337

choice is face and social cue is also face. Similarly, this proportion in the region [7, 11] is338

greater when individual and social choice both are car. Thus it can be concluded (refer to339

Fig. 2B) that decision confidence of most subjects increased when provided with a concurring340

social cue (FF/CC).341

Effect of Conflicting Cues342

Further analysis was carried out to check whether there is a significant reversal in the343

decisions when the subject faces a social cue contradictory to his/her individual decision.344

We say that there is a cross-over if there exists a mode in the opposite side of the decision345

boundary. Cross-over under the influence of concurring cues was found to be insignificant346

(in terms of area) compared to conflicting cues (see Table S14) and hence ignored. For347

every k1, it is examined whether cross-over exists given a mismatch between social cue348

and individual choice. Using bootstrapping, it can be shown that the proportion of cross-349

over is significant among the individuals. This is evident from the approximate achieved350

significance level (ASL) [53] contained in Table S11. Fig. 2C distinctly reveals that the351

mean cross-over proportion increases with decrease in individual confidence, implying that352

in general subjects tend to be influenced more by contradictory social cues on images where353

their individual confidence was low. Refer to Tables S12 and S13 for the detailed list of354

cross-over proportions per subject.355

Ranking Subjects Based on Social Cues356

Individuals differ in the manner in which social information influences their perceptual357

decision. Using the proposed behavioural model, it is possible to rank the subjects based358

on the level of influence social cues had on their percept. Fig. 2D shows the ranking of359

subjects based on a measure, called as social bias score, that captures their tendency to be360

influenced by the social information. Based on the analysis, 81 subjects were chosen to be361

most affected by social cues and are referred as chosen subjects in the EEG analysis.362

Neural Results363

ERP Analysis364

ERP analysis was performed on average referenced and baseline subtracted EEG signals365

for each condition. Epochs of a particular channel were marked noisy if their respective366

absolute differences from the median exceeded 5 times the interquartile range. Such noisy367

epochs were not considered for further ERP analysis. It is well-known that parieto-occipital368

electrodes show differential activity when perceiving faces and cars [54]. Several studies369

1Out of the 17 subjects, 2 had only high confidence trials and hence not considered. Out of the 15
remaining, 8 were found to be significantly more affected by the social cues than the rest.
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have hypothesized the role of the frontal cortex in choice manipulation under the influ-370

ence of social information ([8, 13, 15, 47]). To explore the effect of social cues on face/car371

percepts, ERP analysis was carried out with parieto-occipital and fronto-central electrodes372

separately. To elucidate whether different types of comments induce different neural process-373

ing mechanisms, the grand average difference waves were plotted (refer to Figs. S1 and S2)374

for correctly guessed face and car trials. Clearly a difference in face and car ERPs 200-350375

ms after stimulus onset is visible across both fronto-central and parieto-occipital electrodes.376

The trend is similar across all conditions.377

Single Trial Multivariate Analysis378

Pattern classifiers were used to analyze single trial EEG signals corresponding to the different379

types of social cues. To quantify the predictive accuracy of the classifier, the posterior380

probabilities obtained from 10 fold cross validation were used to calculate the area under381

the ROC curve (AUC). The AUCs were averaged across the subjects. The multivariate382

analysis was performed using the entire post-stimulus data and the AUCs were plotted383

corresponding to the different conditions. The classification accuracy appears to increase384

when the subject was provided with a cue that concurred with his/her individual guess385

and decrease when he/she was provided with a conflicting social cue. An overall increase386

in difference was noted between the conditions when an average over chosen subjects was387

considered (Fig. 3A). The pattern analysis was repeated across different time windows each388

having a length of 50 ms and AUCs corresponding to the late sensory period (200-450 ms389

after stimulus onset) are found to be significantly more than chance (p-value<0.05, false390

discovery rate (FDR) corrected). Further analysis shows that the difference between AUCs391

of concurring and conflicting cues is statistically significant only in the time window 200−250392

ms (p value<0.05 FDR corrected). Fig. 3B clearly depicts that around 200− 250 ms after393

stimulus onset, there is a sharp increase in the AUC value and the peak is more pronounced394

for concurring social cues.395

Notably, prominent activity in fronto-central and occipito-temporal electrodes in similar396

time window was also observed during ERP analysis.397

The plot of scalp topography on the basis of the classifier performances (see Fig. 3C) for398

individual electrodes seems to be consistent with the temporal findings (Fig. 3B). Around399

200-300 ms post stimulus onset we observe significant activity at the parieto-occipital regions400

and fronto-central regions, while other stages of processing shows no difference between401

the conditions. The classifier results demonstrate that social decisions have an effect on402

individual perceptual decision and it is most prominent around 200-300 ms post stimulus403

onset.404

Source Reconstruction Results405

Single trial multivariate data analysis and ERP analysis revealed prominent discriminatory406

activity post 170 ms stimulus onset. Source estimates identified more frontal activity under407

the influence of conflicting cues than concurring cues (refer to figure 4 ). Frontal sources408

seem to to be primarily responsible for generating differences in the ERP waveforms of409
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face and car trials across the whole neural timeline for conflicting trials while a prominent410

fronto-parietal interplay was noticed in case of concurring and neutral trials. Particularly,411

the medial frontal gyrus seems to have contributed significantly in presence of conflicting412

cues, in line with previous studies which also highlight the role of medial frontal cortex413

during social conformity and cognitive dissonance.414

Neural Analysis of Cue Data415

We did an additional analysis where we extracted the EEG signals locked to the cue onset.416

The 500 ms post-cue onset data were used to perform multivariate pattern analysis for417

exploring the effects of expectation on early sensory processing. If the cues had an effect on418

the sensory signals then we would expect a higher classification rate for images selected as419

faces post cue-onset when preceded by an ‘FF’ cue and vice versa for ‘CC’ cues. However,420

pattern analysis of cue-data revealed no such trends (refer to Fig. 5). Similar chance421

performance was also observed in pre-stimulus and early post-stimulus (< 200 ms) neural422

classification.423

Discussion424

How social decision affects individual decision making have been explored in social psychol-425

ogy since 1940’s starting with research on social conformity by Solomon Asch [5, 6, 16] and426

with the advent of social media, there has been a renewed interest in social cues influencing427

our decision [1–4]. In the current study, how people respond to social cues when performing428

a perceptual decision making task was explored systematically. The neural mechanism of429

the decision making process was studied while the subjects used the social cues in form430

of two other well performing subjects’ decision, to perceive noisy images of faces and cars.431

Although the social cues shown to the subject were non-informative with equal number of432

FF, neutral and CC cues per stimuli displayed in random order, they were found to be433

successful in manipulating the percept. Most of the studies on social influence require deci-434

sion with and without social cues sequentially but we demonstrate that irrespective of the435

order in which the stimulus/cue was presented, social cues always have similar effect on our436

individual decision making. We conclude that the perceptual decision of the subject under437

the influence of the social cue depends on two factors - his/her individual perception of the438

image as is reflected in his/her confidence ratings on the same images without any social439

cue and the social information presented to him/her. It is observed that the distribution of440

confidence ratings under the influence of a social cue is bi-modal in nature with one mode441

corresponding to individual decision while other due to social cue (Fig. 2A), with a sig-442

nificant proportion in the direction of the social cue. So we can safely infer that although443

there was a general tendency to adhere to one’s individual decision, but subjects’ decision444

confidence could be altered with social influence. This shift in decision confidence varied445

between the subjects as reported in previous studies [1]. Using the proposed computational446

model, the heterogeneity of the influence of social cues on the subjects’ decision was quan-447

tified successfully. The subjects were ranked based on the influence the social cues elicited448

and the findings used in subsequent neural analysis produced encouraging results.449
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Although social influence on perceptual decisions remains a highly researched topic, but450

the neural mediators of manipulation of perceptual decisions with social influence remains451

largely unexplored [8, 13, 15, 47]. We identified a sharp peak in the mean AUC value 200-300452

ms post stimulus onset which is most prominent in concurring cues. This seems to imply453

that the classifier could identify the class-specific discriminatory activity and predict the454

observers decision more accurately when the cue received matched with his/her individual455

perception, in line with our claim that the subjects were more sure about their decisions when456

the stimulus was preceded by a concurring cue. The effect is more well-defined in case of car457

trials (refer to Fig. S1 and S2), probably arising out of heavier mental load for car images458

than faces, since humans are adept at face perception [55]. Almost all the neuroimaging459

studies using social cues suggest the role of posterior medial frontal cortex (pMFC) and460

ventral striatum [8, 12, 15] especially upon presenting conflicting opinions but the neural461

time line remains poorly understood. Source analysis of ERP signals using conflicting cues462

in our experiment also shows activity in the medial frontal cortex (MFC) as early as 170463

ms post stimulus onset. Neural signals following conflicting cues displayed comparatively464

greater frontal activity than concurring and neutral cues possibly suggesting greater top465

down processing of information when cues mismatch perceptual choice. It is particularly466

interesting to note that MFC is active around the same time interval that coincides with467

the well established N170 component which is known to account for difference between468

face and car [56]. Possibly the mismatch between social decisions produced by the cue469

and the percept triggered activity in the MFC which has been reported to play a role in470

social conformity [12, 18]. Medial frontal cortex perhaps generates a signal that encodes471

the difference between individual percept based on the stimulus and the group decision472

given by the social cues. Absence of frontal activity in concurrent cues in the same time473

interval further supports our claim. The strength of MFC activity most likely results in the474

subsequent adjustment of individual choice. Hence the source localization effects were more475

pronounced for chosen subjects. Our results seem to suggest that irrespective of individual476

decision making, similar neural circuitry seems to play a role in making perceptual decision477

under the influence of social cues.478

There has been extensive research on face and object perception in the last few decades479

revealing significant involvement of various occipito-parietal regions in the early stages of480

visual processing (< 200 ms) [54]. However in our study, probing into the neural time481

series unveiled no significant differences in perception under the influence of different social482

cues during early stages. There have been a significant body of work citing that stimulus483

expectation leads to changes in early sensory processing [24–34]. However recent studies484

have questioned the role of neural expectation in sensory cortex [35, 36]. We systematically485

analyzed the effect of social decision and found no significant effect of the social cues before486

stimulus onset, post cue onset and immediately following stimulus onset. We extracted the487

neural data locked to cue presentation and used multivariate pattern classifier on the cue488

data alone to show that the cue data were not indicative of any expectation based effect on489

the stimuli (see Fig. 5). Early expectation-related effect was not seen when the stimulus490

was displayed as shown in studies using predictive cues [57] and our results clearly suggest491

that expectation by virtue of social influence does not affect early sensory processing. It is492

worthwhile to note here that our cues were essentially social decisions of others instead of493
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cues predictive about the stimulus itself [57, 58] and could possibly explain the lack of top-494

down expectation signals seen in early sensory cortex in previous studies [24, 34, 57]. Our495

results seem to suggest that role of downstream processing in using the social information496

from the cue provided, similar to the concept of Bayesian Decision Theory [59] and Signal497

Detection Theory [60, 61].498

Overall we conclude that perceptual decision and confidence is influenced by social cues499

and it is possible to compute the extent of influence using statistical modeling. Neural data500

analysis alludes to a role of a medial frontal cortex affecting perceptual decision under social501

influence. We found no expectation-related bias in early sensory processing using social502

information cues. Future studies can possibly focus on experiments using actual social503

groups to validate the neural results found in the current research.504
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Figure 1: Experimental protocol and behavioral response. (A) Experimental Paradigm. (B)
Histogram of the observed data and fitted density of the proposed model (red) and Gaussian
mixture model (black) for a subject for different combinations of k1, k2(denoted on top of
each case, e.g. (1,10) implies subject data and fitted model for the images when individual
choice was 1 denoting face with highest confidence and social cue was CC ).
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Figure 2: Behavioral Data Analysis. (A) Estimated probability density function based on
the training data set shown for one subject when k1 = 3 and k2 = 10. Bold lines in x-axis
represent the 85% HPDR and red stars represent the test observations for a subject. The
test observations fall within the HPDR. (B) Figure depicts increase in average proportions
of decisions when viewing concurring cues than when viewing neutral cues. The left part
of the figure considers cases when the individual decision was face while the right part
considers cases when it was car. The bold dots depict the average across the individuals.
(C) Mean proportion of decisions towards conflicting cues across individuals who had cross-
overs given the individual decision. Figure shows that crossover happens for all cases and is
most prominent when individual decision confidence is low (5,6). Error bars denote ± SD.
(D) Social bias ranking of subjects indicating their tendency to be influenced by social cue
shown. Larger and darker dots indicate subjects having greater social influence. The dotted
line parallel to the x-axis depicts the significance level.
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Figure 3: Neural Data Analysis. (A) Figure shows average AUC predicting choice prob-
ability using single trial EEG analysis using multivariate pattern analysis. Average AUC
increases under the influence of concurring comment and decreases under the influence of
conflicting comment as compared to that for neutral comments in all our subjects. The
effect is more prominent in case of the chosen subjects. Error Bars indicate ± SEM. (B)
Plot of average AUC across all subjects at different time points. The increase in AUC is
most pronounced in the 200-300 ms post stimulus interval. (C) Topoplot of one subject
showing spatio-temporal discriminability under different cue conditions. Average AUC of
the all channels for successive time windows are shown. There appears to be a significant
involvement of the frontal and occipital electrodes 200-350 ms post stimuli onset, specially
in images with concurring cues.
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Figure 4: Source Reconstruction. (A), (B) and (C)) Figures show sources estimated at 170,
230 ms and 350 ms using sLORETA software for trials with conflicting cues.
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Figure 5: Figure shows percentage of correctly classified face and car decisions for the 4
kinds of comments shown on screen on the basis of their neural signals after cue exposure.
This clearly shows that subject choice did not arise from cue-related expectation bias.
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Supplementary Information

Calculation of Cumulative Distribution Function
The cdf G(·) of the shifted gamma distribution (equation (1)) is given by G(y) = 0, if y 6 1, otherwise,

G(y) =

∫ y

−∞

βα

Γ(α)
(x− 1)(α−1)e−β(x−1)I[1,∞)(x) dx

=

∫ y

1

βα

Γ(α)
(x− 1)(α−1)e−β(x−1) dx

=

∫ y−1

0

βα

Γ(α)
(z)(α−1)e−β(z) dz

= Γ

(
y − 1, α,

1

β

)
.

The cdf Ng(·) of the negative gamma distribution (equation (2)) for y 6 L is given by

Ng(y) =

∫ y

−∞

βα

Γ(α)
(L− x)(α−1)e−β(L−x)I(−∞,L](x) dx

=

∫ ∞
L−y

βα

Γ(α)
z(α−1)e−β(z) dz

= 1− Γ

(
L− y, α, 1

β

)
,

and Ng(y) = 1, otherwise. Here

IA(x) =

{
1 if x ∈ A,
0 otherwise,

and Γ(x, α, 1
β

) is the cdf of the standard gamma distribution with shape parameter α and scale parameter 1/β.

Calculation of Mode
It can be easily shown that the mode of the shifted gamma distribution is given by

Mg = 1 +
α− 1

β
.

For finding the mode of the negative gamma distribution we start by taking the logarithm of its density (equation
(2)),

ln(ng(x)) = α ln(β)− ln(Γ(α)) + (α− 1) ln(L− y)− β(L− y).

Differentiating with respect to x and equating to zero, we get the mode to be

L− α− 1

β
.

One Sample Hypothesis Testing using Bootstrap
Suppose we want to test the null hypothesis (H0) about a parameter θ of the distribution F based on a random sample
x1, . . . , xn. Further assume that the statistical test is done based on a test statistic T , measuring the discrepancy
between the data and the null hypothesis, such that large values of T indicating evidence against H0. Let the
observed value of statistic be given by t. Then the achieved significance level is defined as

ASL = P (T > t|H0).

We estimate the ASL using bootstrap resampling technique. Small value of ASL show the evidence against the null
hypothesis.
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Table S1: Cases per subject where the proposed model was rejected using KS test (using
Holm-Bonferroni correction) with FWER 0.05

Subject p-value k1 k2
1 0.0011 10 10
2 — — —

3
0.0000 10 10
0.0000 1 1
0.0384 10 5

4
0.0000 10 10
0.0000 1 1
0.0143 1 10

5 — — —
6 — — —
7 0.0011 1 1
8 — — —
9 — — —

10
0.0000 10 10
0.0004 5 5

11
0.0000 1 1
0.0000 10 10

12 — — —
13 — — —
14 — — —
15 — — —

16
0.0000 1 1
0.0000 10 10

17 — — —

The subjects are marked as ‘—’ when the KS test failed to reject any of its cases. Clearly in more than

96% of the cases our proposed models are accepted.
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Table S2: Mean prediction error rate across subjects using 10-fold cross validation

k1

k2 1 5 10

1 0.0115 0.0108 0.0028
2 0.0143 0.0036 0.0048
3 0 0.0074 0.0056
4 0.0262 0.0167 0.0071
5 0.0132 0.0153 0.0083
6 0.0038 0.0038 0.0083
7 0.0094 0.0021 0
8 0 0.0056 0.0167
9 0 0.0071 0.0119
10 0.0064 0.0105 0.0244

As evident from the table, the mean prediction error rate never exceeds 5%.

Table S3: Median of likelihood ratio between the proposed model and the Gaussian mixture
model across subjects

k1

k2 1 5 10

1 173728.1573 3.3977 6.6146
2 2.7082 2.8670 4.6755
3 2.5848 1.6723 1.5284
4 1.0451 1.9498 1.4990
5 1.4201 0.9932 2.0759
6 1.2763 1.3454 1.3324
7 1.0303 0.9708 1.7591
8 1.0961 1.4150 1.1443
9 2.7505 1.8096 1.5784
10 28.7567 8.0835 288.6886

In all but 2 (marked in bold) cases our model surpasses the Gaussian mixture model by a clear margin.
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Table S4: Approximate achieved significance level (ASL) for testing the shift from individual
decision across the subjects

k1

k2 1 5 10

1 0.091 0 0
2 0 0 0
3 0 0 0
4 0 0 0.003
5 0 0.005 0
6 0 0.003 0
7 0.001 0.001 0
8 0 0 0.002
9 0 0 0.003
10 0 0 0

Lower the ASL more the evidence against the null hypothesis that there is no shift from the individual

decision under the influence of a social cue. It is clear that in all but one case (marked in bold) the ASL is

less than 0.05.

Table S5: Proportion of decisions between k1 and k2 under the fitted model, for k1 ∈ {3, 4, 5}
and k2 = 1

sub
k1 3 4 5

1 0.6016 — —
2 — — —
3 — — —
4 — — 0.7984
5 0.4462 0.1880 0.3729
6 0.1731 0.4863 0.5574
7 — 0.6340 0.3930
8 — — 0.4038
9 0.3790 0.5146 0.6252
10 — — 0.5781
11 — — 0.2888
12 0.5393 0.4024 —
13 0.7808 — 0.9219
14 0.3700 0.5984 0.6185
15 0.3991 0.4726 0.3306
16 — — 0.4002
17 0.6201 — —

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. In all other

cases, there was the existence of a mode in the direction of k2.
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Table S6: Proportion of decisions between k1 and k2 under the fitted model, for k1 ∈ {6, 7, 8}
and k2 = 10

sub
k1 6 7 8

1 — — 0.6635
2 — — —
3 — — —
4 0.8245 — —
5 0.6108 0.5679 0.3386
6 0.7428 0.5922 0.3721
7 0.7776 0.7090 —
8 0.4759 — 0.6070
9 0.6512 0.4618 0.2916
10 0.6248 — —
11 0.5959 — —
12 0.5634 0.6094 0.6686
13 0.9534 0.8441 0.8166
14 0.1802 — —
15 0.7409 0.7214 0.6222
16 — — —
17 0.7682 0.7024 0.6154

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. In all other

cases, there was the existence of a mode in the direction of k2.
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Table S7: Proportion of decisions between k1 and k2 under the fitted model, for k1 ∈ {3, 4, 5}
and k2 = 10

sub
k1 6 7 8

1 0.7293 — —
2 — — —
3 — — —
4 — — 0.6540
5 0.6978 0.7478 0.6376
6 0.8773 0.6774 0.4338
7 — 0.0973 0.6147
8 — — 0.6258
9 0.5831 0.7430 0.5733
10 — — 0.7455
11 — — 0.5767
12 0.5526 0.5739 —
13 0.7632 — 0.9073
14 0.7670 0.5751 0.2323
15 0.7586 0.6120 0.7291
16 — — 0.4662
17 0.4062 — —

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. In all other

cases, there was the existence of a mode in the direction of k2.
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Table S8: Proportion of decisions between k1 and k2 under the fitted model, for k1 ∈ {6, 7, 8}
and k2 = 1

sub
k1 6 7 8

1 — — 0.5862
2 — — —
3 — — —
4 0.4117 — —
5 0.5217 0.4926 0.3471
6 0.3266 0.5007 0.5406
7 0.4153 0.4884 —
8 0.4310 — 0.2739
9 0.5610 0.6997 0.6866
10 0.5157 — —
11 0.3344 — —
12 0.6305 0.6511 0.7581
13 0.8309 0.6973 0.5820
14 0.7860 — —
15 0.3965 0.4116 0.4890
16 — — —
17 0.4541 0.4347 0.4451

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. In all other

cases, there was the existence of a mode in the direction of k2.
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Table S9: Average proportions of decisions within the region [1,6] when the individual choice
was face, given k2 = 1 vs k2 = 5

sub
k2 1 5

1 0.7511 0.6839
2 0.9983 0.7982
3 0.9270 0.8535
4 0.8141 0.6150
5 0.7853 0.7983
6 0.8001 0.7915
7 0.7163 0.7931
8 0.8189 0.7981
9 0.7934 0.6938
10 0.7791 0.6644
11 0.6761 0.6955
12 0.8485 0.7794
13 0.9784 0.8064
14 0.9071 0.9145
15 0.7771 0.8108
16 0.6699 0.6773
17 0.9376 0.9216

The subjects whose proportion of decisions increased in case of ‘FF’ cue relative to ‘FC/CF’ are marked in

bold
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Table S10: Average proportions of decisions within the region [7,11] when the individual
choice was car, given k2 = 10 vs k2 = 5

sub
k2 10 5

1 0.7802 0.6995
2 0.9909 0.7918
3 0.9483 0.8235
4 0.8390 0.6934
5 0.6971 0.6330
6 0.8142 0.8359
7 0.8587 0.8200
8 0.7937 0.8131
9 0.6047 0.4368
10 0.7343 0.5576
11 0.7627 0.7436
12 0.8135 0.7581
13 0.9291 0.8744
14 0.1802 0.1543
15 0.8683 0.7740
16 0.8444 0.8461
17 0.8828 0.7817

The subjects whose proportion of decisions increased in case of ‘CC’ cue relative to ‘FC/CF’ are marked in

bold

Table S11: Approximate achieved significance level (ASL) for testing the cross-over from
individual decision towards contradictory social cue

k1

k2 1 5 10

1
2
3
4
5

0
0
0
0
0

6
7
8
9
10

0
0
0.1220
0
0

Lower the ASL more the evidence against the null hypothesis that the proportion of subjects having a

crossover is not more than 0.5. It is clear that in all but one case (marked in bold) the ASL is less than

0.05.
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Table S12: Cross-over area under the influence of conflicting cue ’FF’

sub
(k1, k2)

(1,10) (2,10) (3,10) (4,10) (5,10)

1 0.3251 0.6484 0.6529 — —
2 0.1526 0.2324 — — —
3 0.2711 0.4388 — — —
4 0.5984 — — — 0.6361
5 nco 0.1659 0.1983 0.3208 0.4485
6 — 0.1442 0.2044 0.2887 0.3838
7 0.0850 0.1460 — 0.0911 0.5606
8 0.0348 0.0800 — — 0.5501
9 0.2207 0.3162 0.2630 0.4167 0.5075
10 0.4110 0.6277 — — 0.7041
11 0.1604 — — — 0.5345
12 0.0277 0.1215 0.3206 0.4937 —
13 0.2497 0.2171 0.6439 — 0.8438
14 nco nco 0.1953 nco 0.1381
15 0.0719 0.1199 0.2166 0.4089 0.6591
16 0.1540 — — — 0.4651
17 0.0357 0.0633 0.1971 — —

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. If there is a

cross-over we estimate the proportion of decisions in the direction of the social cue ‘FF’, i.e. k2 = 1 by the

area under the fitted density between 1 and 6. No cross over cases are marked as ‘noc’.
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Table S13: Cross-over area under the influence of conflicting cue ’CC’

sub
(k1, k2)

(6,1) (7,1) (8,1) (9,1) (10,1)

1 — — 0.4928 0.4982 0.3434
2 — — — 0.5388 0.3926
3 — — — — 0.5247
4 0.4117 — — — 0.5073
5 0.5217 0.3410 0.1830 — —
6 0.3266 0.2361 nco — —
7 0.4153 0.4058 — — 0.1602
8 0.4310 — nco 0.2538 0.1938
9 0.5610 0.5466 0.5863 — —
10 0.5157 — — 0.7328 0.5577
11 0.3344 — — — 0.1281
12 0.6305 0.5799 0.5918 0.3035 0.0596
13 0.8309 0.6385 0.2783 — 0.5520
14 0.7860 — — — —
15 0.3965 0.2553 0.1781 0.3729 nco
16 — — — — 0.2214
17 0.4541 nco nco 0.0825 nco

The cases marked ‘—’ were not considered due to very few observations for that (k1, k2) pair. If there is a

cross-over we estimate the proportion of decisions in the direction of the social cue ‘CC’, i.e. k2 = 10 by

the area under the fitted density between 6 and 11. No cross over cases are marked as ‘noc’.

Table S14: Comparison of cross over areas under conflicting and concurring cues

Conf−Conc p-value

(1, 10)− (1, 1) 0.0000
(2, 10)− (2, 1) 0.0004
(3, 10)− (3, 1) 0.0039
(4, 10)− (4, 1) 0.2344
(5, 10)− (5, 1) 0.0005
(6, 1)− (6, 10) 0.0017
(7, 1)− (7, 10) 0.0078
(8, 1)− (8, 10) 0.0156
(9, 1)− (9, 10) 0.0078
(10, 1)− (10, 10) 0.0005

p-values of the right-tailed paired Wilcoxon signed rank test for the null hypothesis that A-B has zero

median, where A contains the cross-over areas across the subjects under conflicting cue and B contains the

cross-over areas across the subjects under concurring cue for the same value of k1 at 5% significance level.

It is evident that the cross-over is significantly more for conflicting cues.
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Figure S1: Grand average of difference waveforms over fronto central electrodes.
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Figure S2: Grand average of difference waveforms over parieto occipital electrodes.
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