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Figure 2 

 

Figure 2.  Mappability of the human genome with CCS reads.  (a) Percentage of the non-gap GRCh37 human 
genome covered by at least 10 reads from 28-fold coverage NGS (2×250 bp) and CCS (13.5 kb) datasets at different 
mapping quality thresholds.  (b) Coverage of the congenital deafness gene !"#$  in HG002 with 2×151 bp NGS 
(NovaSeq) reads and 13.5 kb CCS reads at a mapping quality threshold of 10.  (c) Improvement in mappability with 
13.5 kb CCS reads for 193 human genes previously reported as medically-relevant and problematic to map with NGS 
reads25.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/519025doi: bioRxiv preprint first posted online Jan. 13, 2019; 



   
 

 

 

19 

Figure 3 

 

Figure 3.  Variant calling and phasing with CCS reads.  (a) Agreement of DeepVariant SNV and indel calls with 
Genome in a Bottle v3.3.2 benchmark measured with hap.py.  (b) Phasing of heterozygous DeepVariant variant calls with 
WhatsHap, compared to theoretical phasing of HG002 with 13.5 kb reads.  (c) Agreement of integrated CCS structural 
variant (SV) calls with the Genome in a Bottle v0.6 structural variant benchmark measured with Truvari, (d) by variant 
size.  Negative length indicates a deletion; positive length indicates an insertion.  The histogram bin size is 50 bp for 
variants shorter than 1 kb, and 500 bp for variants >1 kb. 
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Figure 4 

 

Figure 4.  Impact of read accuracy on de novo assembly.  (a) The concordance of seven assemblies to the reference 
genome at non-variant positions in Genome in a Bottle high-confidence regions (Supplementary Table 7).  Contigs 
longer than 100 kb were segmented into 100 kb chunks and aligned to GRCh37.  Concordance was measured per chunk, 
and chunks with no discordances were assigned concordance of Q51.  PB=PacBio, ONT=Oxford Nanopore, 
CLR=continuous (“noisy”) long reads.  (b) Predicted contiguity of a human assembly based on ability to resolve repeats of 
different lengths (x-axis) and percent identities (colored lines)19.  The solid line indicates the contiguity of GRCh38.  The 
97.0% identity line is representative of CLR assemblies using standard read-to-read error correction.  The points show 
example CCS and CLR43 assemblies using Canu.  Repeat identity and length are proxies for read accuracy and length.  
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Tables 

Table 1 
 

  

Variant Caller (training model) 

SNVs Indels 

Platform Coverage Precision Recall F1 ^ Precision Recall F1 
Illumina (NovaSeq) 30-fold DeepVariant (Illumina model) 99.960% 99.940% 99.950% 99.633% 99.413% 99.523% 
PacBio (CCS) 28-fold DeepVariant (CCS model) 99.914% 99.959% 99.936% 96.901% 95.980% 96.438% 
PacBio (CCS) 28-fold DeepVariant (haplotype-sorted CCS model) 99.904% 99.963% 99.934% 97.835% 97.141% 97.486% 
Illumina (NovaSeq) 30-fold GATK HaplotypeCaller (no filter) 99.852% 99.910% 99.881% 99.371% 99.156% 99.264% 
PacBio (CCS) 28-fold GATK HaplotypeCaller (hard filter) 99.468% 99.559% 99.513% 78.977% 81.248% 80.097% 

 

Table 1.  Performance of small variant calling with CCS reads.  Precision, recall, and F1 of small variant calling 
measured against the Genome in a Bottle v3.3.2 benchmark using hap.py.  Bold indicates the highest value in each 
column.  Underline indicates a value higher than the GATK HaplotypeCaller run on 30-fold Illumina NovaSeq reads.  
Rows are sorted (“^”) based on F1 for SNVs.
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Table 2 
 

Haplotype Assembler 
Total Size 

(Gb) Contigs 
N50 
(Mb) 

NG50 
(Mb) 

Max 
(Mb) 

E-size52 
(Mb) 

HG002 
Concordance 

(Phred) 
BUSCO 
Genes 

RefSeq 
Genes 

Mixed Canu 3.42 18,006 22.78 25.02 108.46 30.16 31.1 92.3% 93.2% 
Mixed FALCON 2.91 2,541 28.95 24.51 110.21 38.04 25.8 87.6% 97.6% 
Mixed wtdbg2 2.79 1,554 15.43 12.62 84.67 22.61 44.6 94.2% 96.1% 
Maternal Canu* 3.04 5,854 18.02 17.04 48.81 19.78 47.2 94.1% 98.1% 
Maternal FALCON* 2.80 924 19.99 15.54 74.33 24.07 43.5 95.1% 97.8% 
Maternal wtdbg2 2.75 2,637 12.10 9.29 66.34 16.55 43.5 93.8% 95.6% 
Paternal Canu* 2.96 6,868 16.14 14.90 64.83 20.19 47.7 93.4% 98.2% 
Paternal FALCON* 2.70 1,489 16.40 14.06 95.34 25.61 43.5 93.6% 97.7% 
Paternal wtdbg2 2.67 1,444 13.96 10.86 50.51 15.36 42.1 92.6% 95.3% 

 

Table 2.  Statistics for de novo assembly of CCS reads. The “mixed” haplotype assemblies use all reads.  The 
“maternal” and “paternal” assemblies use parent-specific reads from trio binning plus unassigned reads.  HG002 
concordance is measured at non-variant positions in Genome in a Bottle high-confidence regions.  BUSCO gene 
completeness uses the Mammalia ODB9 gene set.  RefSeq genes is the percentage of genes from Ensembl R94 that are 
full-length, single-copy in the assembly relative to the full-length, single-copy count for GRCh38.  Contigs shorter than 13 
kb were excluded from genome size and contiguity measurements; contigs shorter than 100 kb were excluded from the 
concordance measurement.  “*” indicates polishing with Arrow.
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