10

11

12

13

bioRxiv preprint doi: https://doi.org/10.1101/519603; this version posted January 13, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Transcriptional landscape of DNA repair genes underpins a pan-cancer prognostic

signature associated with cell cycle dysregulation and tumor hypoxia

Wai Hoong Chang and Alvina G. Lai

Nuffield Department of Medicine, University of Oxford,

Old Road Campus, Oxford, OX3 7FZ, United Kingdom

For correspondence: alvina.lai@ndm.ox.ac.uk



https://doi.org/10.1101/519603
http://creativecommons.org/licenses/by-nc-nd/4.0/

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

bioRxiv preprint doi: https://doi.org/10.1101/519603; this version posted January 13, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Abstract

Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer
comparative studies investigating the contribution of all DNA repair genes in cancer
progression employing an integrated approach have remained limited. We performed a multi-
cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes
in 16 cancer types (n=16,225). Cox proportional hazards analyses revealed a significant
variation in the number of prognostic genes between cancers; 81 genes were prognostic in
clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We
reasoned that genes that were commonly prognostic in highly correlated cancers revealed by
Spearman’s correlation analysis could be harnessed as a molecular signature for risk
assessment. A 10-gene signature, uniting prognostic genes that were common in highly
correlated cancers, was significantly associated with overall survival in patients with clear cell
renal cell (P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas
(P=0.00013) or endometrial (P=0.00063) cancers. Receiver operating characteristic analyses
revealed that a combined model of the 10-gene signature and tumor staging outperformed
either classifiers when considered alone. Multivariate Cox regression models incorporating
additional clinicopathological features revealed that the signature was an independent
predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent
across all six cancers, patients with high 10-gene and high hypoxia scores had significantly
higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional
enrichment analyses revealed that high mortality rates in patients with high 10-gene scores
were attributable to an overproliferation phenotype. Death risk in these patients was further

exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene
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signature identified tumors with heightened DNA repair ability. This information has the

potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with

chemotherapeutic drugs.
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Introduction

Genetic material must be transmitted in its original, unaltered form during cell division.
However, DNA faces continuous assaults from both endogenous and environmental agents
contributing to the formation of permanent lesions and cell death. To overcome DNA damage
threats, living systems have evolved highly coordinated cellular machineries to detect and
repair damages as they occur. However, DNA repair mechanisms and consequently DNA
damage responses (DDR) are often deregulated in cancer cells and such aberrations may
contribute to cancer progression and influence prognosis. Overexpression of DNA repair genes
allow tumor cells to overcome the cytotoxic effects of radiotherapy and chemotherapy. As
such, inhibitors of DNA repair can increase the vulnerability of tumor cells to chemotherapeutic

drugs by preventing the repair of deleterious lesions?.

There are six main DNA repair pathways in mammalian cells. Single-strand DNA damage are
repaired by the base excision repair (BER), nucleotide excision repair (NER) and mismatch
repair (MR) pathways. The poly(ADP-ribose) polymerase (PARP) gene family encodes key
players of the BER pathway involved in repairing damages induced by ionizing radiation and
alkylating agents®®. Replication errors are corrected by the MR pathway while the NER
pathway is responsible for removing bulky intercalating agents*>. Tumor cells with deficiencies
in the NER pathway have increased sensitivity to platinum-based chemotherapeutic drugs
(cisplatin, oxaliplatin etc.)®’. Double-strand breaks induced by ionizing radiation are more
difficult to repair and thus are highly cytotoxic. Dysregulation of genes involved in the
homology-directed repair (HDR), non-homologous end joining (NHEJ) and Fanconi anemia (FA)

pathways are associated with altered repair of double-strand breaks.
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Aberrations in DNA repair genes are widespread in most cancers; hence they represent
attractive candidates for pharmacological targeting to improve radiosensitivity and
chemosensitivity®. In a process known as ‘synthetic lethality’, faults in two or more DNA repair
genes or pathways together would promote cell death, while defects in a single pathway may
be tolerated?®. Functional redundancies in repair pathways allow tumor cells to rely on a second
pathway for repair in the event that the first pathway is defective. Based on the principles of
synthetic lethality, inhibition of the second pathway will confer hypersensitivity to cytotoxic
drugs in cells with another malfunctioning pathway. This promotes cell death because DNA
lesions can no longer be repaired by either pathway. For instance, PARP inhibitors (targeting
the BER pathway) could selectively kill tumor cells that have BRCA1 or BRCA2 mutations

(defective HDR pathway) while not having any toxic effects on normal cells®°.

Since one DDR pathway could compensate for another, there is a need for a pan-cancer, large-
scale, systematic study on all DNA repair genes to reveal similarities and differences in DDR
signaling between cancer types, which is limited at present. In this study, we explored pan-
genomic expression patterns of 138 DNA repair genes in 16 cancer types. We developed and
validated the prognostic significance of a 10-gene signature that can be used for rapid risk
assessment and patient stratification. There are considerable variations in the success of
chemotherapy and radiotherapy regimes between cancer types. Such differences may be
explained by the complex cancer-specific nature of DDR defects. Prognostic biomarkers of DNA
repair genes are needed to allow the use of repair inhibitors in a stratified, non-universal

approach to expose the selective vulnerabilities of tumors to therapeutic agents.
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94 Materials and methods

95  Alist of 138 DNA repair genes is available in Table S1.

96  Study cohorts

97  We obtained RNA-sequencing datasets for the 16 cancers from The Cancer Genome Atlas
98  (TCGA) (n=16,225) (Table S2). TCGA Illumina HiSeq rnaseqv2 Level 3 RSEM normalized data
99  were retrieved from the Broad Institute GDAC Firehose website. Gene expression profiles for
100  each cancer types were separated into tumor and non-tumor categories based on TCGA
101  barcodes and converted to logx(x + 1) scale. To compare the gene-by-gene expression
102  distribution in tumor and non-tumor samples, violin plots were generated using R. The
103  nonparametric Mann-Whitney-Wilcoxon test was used for statistical analysis.

104

105  Calculation of 10-gene scores and hypoxia scores

106  The 10-gene scores for each patient were determined from the mean log, expression values
107  of 10 genes: PRKDC, NEIL3, FANCD2, BRCA2, EXO1, XRCC2, RFC4, USP1, UBE2T and FAAP24).
108  Hypoxia scores were calculated from the mean log, expression values of 52 hypoxia signature
109  genes?. For analyses in Figure 5, patients were delineated into four categories using median
110  10-gene scores and hypoxia scores as thresholds. The nonparametric Spearman’s rank-order
111  correlation test was used to determine the relationship between 10-gene scores and hypoxia
112 scores.

113

114  Differential expression analyses comparing expression profiles of high-score and low-score

115 patients
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116  Patients were median dichotomized into low- and high-score groups based on their 10-gene
117  scores in each cancer type. Differential expression analyses were performed using the linear
118 model and Bayes method executed by the limma package in R. P values were adjusted using
119  the Benjamini-Hochberg false discovery rate procedure. We considered genes with log, fold
120 change of > 1 or < -1 and adjusted P-values < 0.05 as significantly differentially expressed
121  between the two patient groups.

122

123

124  Functional enrichment and pathway analyses

125  To determine which biological pathways were significantly enriched, differentially expressed
126  genes were mapped against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
127  Genomes (KEGG) databases using GeneCodis'®. The Enrichr tool was used to investigate
128  transcription factor protein-protein interactions that were associated with the differentially
129  expressed genes'#*°,

130

131

132 Survival analysis

133 Univariate Cox proportional hazards regression analyses were performed using the R survival
134 and survminer packages to determine if expression levels of individual DNA repair genes as
135  well as those of the 10-gene scores were significantly associated with overall survival.
136 Multivariate Cox regression was employed to determine the influence of additional clinical
137  variables on the 10-gene signature. Hazard ratios (HR) and confidence intervals were
138  determined from the Cox models. HR greater than one indicated that a covariate was positively

139  associated with even probability or increased hazard and negatively associated with survival
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140  duration. Non-significant relationship between scaled Schoenfeld residuals supported the
141  proportional hazards assumption in the Cox model. Both survival and survminer packages were
142 also used for Kaplan-Meier analyses and log-rank tests. For Kaplan-Meier analyses, patients
143 were median dichotomized into high- and low-score groups using the 10-gene signature. To
144  determine the predictive performance (specificity and sensitivity) of the signature in relation
145  totumor staging parameters, we employed the receiver operating characteristic (ROC) analysis
146  implemented by the R survcomp package, which also calculates area under the curve (AUC)
147  values. AUC values can fall between 1 (perfect marker) and 0.5 (uninformative marker).

148

149  TP53 mutation analysis

150  TCGA mutation datasets (Level 3) were retrieved from GDAC Firehose to annotate patients
151  with mutant TP53. To ascertain the association of TP53 mutation with the 10-gene signature
152  on overall survival, we employed the Kaplan-Meier analysis and log-rank tests implemented in
153 R

154

155  All plots were generated using R pheatmap and ggplot2 packages®®. Venn diagram was

156  generated using the InteractiVenn tool'’.
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157 Results
158

159  Prognosis of DNA repair genes in 16 cancer types and the development of a 10-gene signature

160  Atotal of 187 genes associated with six DDR pathways found in mammalian cells were curated:
161  BER (33 genes), MR (23 genes), NER (39 genes), HDR (26 genes), NHEJ (13 genes) and FA (53
162 genes)'® (Fig. 1, Table S1). Of the 187 genes, 49 were represented in two or more pathways,
163  yielding 138 non-redundant candidates. To determine which of the 138 DNA repair genes
164  conferred prognostic information, we employed Cox proportional hazards regression on all
165  genes individually on 16 cancer types to collectively include 16,225 patients'! (Table S2). In
166  clear cell renal cell carcinoma, 81 genes were found to be significantly associated with overall
167  survival; this cancer had the highest number of prognostic DNA repair genes (Table S3). This is
168  followed by 54, 53, 46, 44 and 33 prognostic genes in cancers of the pancreas, papillary renal
169  cell, liver, lung and endometrium respectively (Table S3). In contrast, cancers of the brain
170  (glioblastoma: 2 genes), breast (5 genes), cervix (6 genes) and esophagus (7 genes) had some
171  of the lowest number of prognostic DNA repair genes (Table S3), suggesting that there is a
172 significant degree of variation in the contribution of DNA repair genes in predicting survival
173  outcomes. Spearman’s rank-order correlation analysis revealed a hub of five highly correlated
174  cancers (lung, papillary renal cell, pancreas, liver and endometrium), indicating that a good
175  number of prognostic DNA repair genes were shared between these cancers (Spearman’s
176  rho=0.21 to 0.44) (Fig. S1). We rationalized that prognostic genes that are common in these
177  highly correlated cancers could form a new multigenic risk assessment classifier. Ten genes
178  were prognostic in the five highly correlated cancers: PRKDC (NHEJ), NEIL3 (BER), FANCDZ2 (FA),
179  BRCA2 (HDR and FA), EXO1 (MR), XRCC2 (HDR), RFC4 (MR and NER), USP1 (FA), UBE2T (FA) and

180  FAAP24 (FA), which, interestingly, represent members from all six DDR pathways.
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181

182 A 10-gene signature predictive of DDR signaling is an independent prognostic classifier in 6

183  cancer types

184  The aforementioned ten genes were employed as a new prognostic model to evaluate whether
185  they were significantly associated with overall survival in all 16 cancer types. A 10-gene score
186  for each patient was calculated by taking the mean expression of all ten genes. Patients were
187  median dichotomized based on their 10-gene scores into a low- and high-score groups. The
188  10-gene signature could predict patients at significantly higher risk of death in the five cancers
189  that were originally highly correlated (Fig. S1), and in one additional cancer (clear cell renal cell
190  carcinoma) (Fig. 2). Kaplan-Meier analyses demonstrated that patients categorized within
191  high-score groups had significantly poorer survival rates: clear cell renal cell (log-rank
192 P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas
193  (P=0.00013) and endometrium (P=0.00063) (Fig. 2). Expression profiles of the 10 genes in
194  tumor and non-tumor samples showed a general distribution that were comparable among
195  thesix cancer types. Mann-Whitney-Wilcoxon tests revealed that a vast majority of genes were
196  significantly upregulated in tumor samples with a few minor exceptions (Fig. S2). USP1 was
197  significantly downregulated in tumors of papillary renal cell and endometrium (Fig. S2). Only
198  four non-tumor samples were available in the pancreatic cancer cohort, precluding robust
199  statistical analyses. Due to limitations in sample size, only UBE2T was observed to be
200  significantly upregulated in pancreatic tumors (Fig. S2).

201

202  To evaluate the independent predictive value of the signature over the current tumor, node
203  and metastasis (TNM) staging system, we applied the signature on patients separated by TNM

204  stage: early (stages 1 and/or 2), intermediate (stages 2 and/or 3) and late (stages 3 and/or 4)
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205 disease stages. Remarkably, the signature successfully identified high risk patients in early
206  (liver, lung, pancreas, endometrium), intermediate (papillary renal cell, liver, pancreas,
207  endometrium) and late (clear cell renal cell, papillary renal cell, liver, endometrium) TNM
208  stages (Fig. 3). Collectively, this implied that the signature offered an additional resolution of
209  prognosis within similarly staged tumors and that the signature retained excellent prognostic
210  ability in individual tumor groups when considered separately.

211

212 Toevaluate the predictive performance of the 10-gene signature on 5-year overall survival, we
213  employed receiver operating characteristic (ROC) analyses on all six cancers. Comparing the
214  sensitivity and specificity of the signature in relation to TNM staging revealed that the signature
215  outperformed TNM staging in cancers of the papillary renal cell (AUC=0.832 vs. AUC=0.640),
216  pancreas (AUC=0.697 vs. AUC=0.593) and endometrium (AUC=0.700 vs. AUC=0.674) (Fig. 4).
217  Importantly, when the signature was used in conjunction with TNM staging as a combined
218  model, its performance was superior to either classifiers when they were considered
219  individually: clear cell renal cell (AUC=0.792), papillary renal cell (AUC=0.868), liver
220  (AUC=0.751), lung (AUC=0.693), pancreas (AUC=0.698) and endometrium (AUC=0.764) (Fig.
221  4).

222

223 We next employed multivariate Cox regression models to examine whether the association
224 between high 10-gene scores and increased mortality was not due to underlying clinical
225  characteristics of the tumors. Univariate analysis revealed that TNM staging is not prognostic
226  in pancreatic cancer (hazard ratio [HR]=1.339, P=0.153), hence this cancer was excluded from
227  the multivariate model involving TNM (Table 1). For the five remaining cancer types, even

228  when TNM staging was considered, the signature significantly distinguished survival outcomes
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229  in high- versus low-score patients, confirming that it is an independent prognostic classifier:
230  clear cell renal cell (HR=1.555, P=0.0058), papillary renal cell (HR=1.677, P=0.032), liver
231  (HR=1.650, P=0.029), lung (HR=1.301, P=0.032) and endometrium (HR=2.113, P=0.013) (Table
232 1).

233

234

235  Crosstalk between DDR signaling and tumor hypoxia

236  Tumor hypoxia is a well-known barrier to curative treatment. It is often associated with poor
237  prognosist®?°, which may be a result of tumor resistance to chemotherapy and
238  radiotherapy?Y?2. Since both the upregulation of DNA repair genes and hypoxia are linked to
239  therapeutic resistance, we rationalized that incorporating hypoxia information in the 10-gene
240  signature would allow further delineation of patient risk groups. Patients with high 10-gene
241  scores had significantly poorer survival outcomes and we predict that these patients have
242 tumors that are more hypoxic, and that oxygen deprivation could influence DDR signaling to
243  enhance tumor resistance to apoptotic stimuli leading to more aggressive disease states. We
244 calculated hypoxia scores for each patient using a mathematically derived hypoxia gene
245  signature consisting of 52 genes!?. Hypoxia scores were defined as the mean expression of the
246 52 genes. Patients for each of the six cancer types were divided into four categories using the
247  median 10-gene and hypoxia scores: 1) high scores for both 10-gene and hypoxia, 2) high 10-
248  gene and low hypoxia scores, 3) low 10-gene and high hypoxia scores and 4) low scores for
249  both 10-gene and hypoxia (Fig. 5A). Remarkably, significant positive correlations were
250  observed between 10-gene scores and hypoxia scores consistent across all six cancer types:
251  clear cell renal cell (rho=0.363, P<0.0001), papillary renal cell (rho=0.518, P<0.0001), liver

252 (rho=0.615, P<0.0001), lung (rho=0.753, P<0.0001), pancreas (rho=0.582, P<0.0001) and
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253  endometrium (rho=0.527, P<0.0001) (Fig. 5A). This suggests that tumor hypoxia may influence
254  DDR signaling and potentially, patient outcomes.

255

256  We generated Kaplan-Meier curves and employed the log-rank test to determine whether
257  there were differences in overall survival outcomes among the four patient groups. Combined
258  relation of hypoxia and 10-gene scores revealed significant associations with overall survival in
259  allsix cancers (Fig. 5B). Patients classified within the ‘high 10-gene and high hypoxia’ category
260  had significantly poorer survival rates compared to those with low 10-gene and low hypoxia
261  scores: clear cell renal cell (HR=2.316, P<0.0001), papillary renal cell (HR=7.635, P=0.0011),
262  liver (HR=2.615, P=0.00013), lung (HR=1.832, P=0.0021), pancreas (HR=2.680, P=0.00079) and
263  endometrium (HR=2.707, P=0.0075) (Table 2; Fig. 5B). Our results suggest that the combined
264  effects of hypoxia and heightened expression of DNA damage repair genes may be linked to
265  tumor progression and increased mortality risks. It remains unknown in this context whether
266  the basis for differential sensitivity to chemotherapy would be explained, in part, by DNA repair
267  ability of tumor cells exposed to chronic hypoxia environments.

268

269

270  Patients with high 10-gene scores had an overproliferation phenotype due to cell cycle

271 dysregulation

272 The cell cycle represents a cellular gatekeeper that controls how cells grow and proliferate.
273 Cyclins and cyclin-dependent kinases (CDKs) allow cells to progress from one cell cycle stage
274  to the next; a process that is antagonized by CDK inhibitors. Many tumors overexpress cyclins
275  orinactivate CDK inhibitors, hence resulting in uncontrolled cell cycle entry, loss of checkpoint

276  and uninhibited proliferation?*=2°. Targeting proteins responsible for cell cycle progression
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277  would thus be an attractive measure to limit tumor cell proliferation. This has led to the
278  development of numerous CDK inhibitors as anticancer agents’®?’. DNA repair is tightly
279  coordinated with cell cycle progression. Certain DNA repair mechanisms are dampened in non-
280  proliferating cells, while repair pathways are often perturbed during tumor development.
281  Perturbation can take the form of defective DNA repair or over-compensation of a pathway
282  arising from defects in another pathway?®. As a result, DNA repair inhibitors could prevent the
283  repair of lesions induced by chemotherapeutic drugs to trigger apoptosis and to enhance the
284  elimination of tumor cells.

285

286  We rationalize that patients with high 10-gene scores would have heightened ability for DNA
287  repair thus allowing tumor cells to progress through the cell cycle and continue to proliferate.
288  Using Spearman’s rank-order correlation, we observed that the expression of each of the 10
289  signature genes were positively correlated with the expression of genes involved in cell cycle
290  progression (cyclins and CDKs) and negatively correlated with genes involved in cell cycle arrest
291  (CDK inhibitors) (Fig. 6A). Interestingly, the patterns of correlation were remarkably similar
292 across all six cancer types, implying that elevated expression of DNA repair genes is associated
293 with a hyper-proliferative phenotype. We next asked whether patients within the high 10-gene
294 score category had an overrepresentation of processes associated with cell cycle dysregulation
295  asthis could provide an explanation on the elevated mortality risks in these patients. To answer
296  this, we divided patients from each of the six cancer types into two groups (high score and low
297  score) based on the mean expression of the 10 signature genes using the 50" percentile cut-
298  off. Differential expression analyses between the high- and low-score groups revealed that

299 394, 425,1259, 1279, 714 and 977 genes were differentially expressed (-1 > log, fold-change
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300 > 1, P<0.05) in clear cell renal cell, papillary renal cell, liver, lung, pancreas and endometrial
301  cancers respectively (Table S4).

302

303  Analyses of biological functions of these genes revealed functional enrichment of ontologies
304  associated with cell division, mitosis, cell cycle, cell proliferation, DNA replication and
305 homologous recombination consistent in all six cancer types (Fig. 6B). This suggests that the
306  significantly higher mortality rates in patients with high 10-gene scores were due to enhanced
307  tumor cell proliferation exacerbated by the ability of these cells to repair DNA lesions as they
308 arise. Additional ontologies related to tumorigenesis such as PPAR and TP53 signaling were
309 alsoassociated with poor prognosis (Fig. 6B). A total of 87 differentially expressed genes (DEGS)
310  werefoundtobeincommonin all six cancer types (Fig. S3) (Table S5). To dissect the underlying
311  biological roles of the 87 DEGs at the protein level, we evaluated the enrichment of
312  transcription factor protein-protein interactions using the Enrichr platform!*.TP53 represents
313  the most enriched transcription factor involved in the regulation of the DEGs as evidenced by
314  the highest combined score, which takes into account both Z score and P value (Table S6). This
315 indirectly corroborated our results on enriched TP53 signaling obtained from the KEGG
316 pathway analysis (Fig. 6B). Taken together, these results highlight the interplay between DDR
317  signaling, cell cycle regulation and TP53 function in determining prognosis.

318

319

320  Prognostic relevance of a combined model involving the 10-gene signature and TP53 mutation

321  status
322 Animportant role of TP53 is its tumor suppressive function through TP53-mediated cell cycle

323  arrest and apoptosis?®. Hence, somatic mutations in TP53 can confer tumor cells with growth
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324  advantage and indeed, this is a well-known phenomenon in many cancers3®=32, We rationalized
325  that TP53 deficiency resulting in defective checkpoint may synergize with the overexpression
326  of DNA repair genes to prevent growth arrest and promote tumor proliferation. To test this
327  hypothesis, we examined TP53 mutation status in all six cancer types and observed that TP53
328  mutation frequency was the highest in pancreatic cancer patients (58%) followed by lung
329  cancer (57%), endometrial cancer (21%), liver cancer (16%), papillary renal cell (1.8%) and clear
330 cell renal cell (1.2%) (Table S7). Cancers with TP53 mutation frequency of at least 10% were
331  selected for survival analyses. Univariate Cox regression analyses revealed that TP53 mutation
332  status only conferred prognostic information in pancreatic (HR=1.657, P=0.044), endometrial
333  (HR=1.780, P=0.041) and liver (HR=2.603, P<0.0001) cancers but not in lung cancer (HR=1.428,
334  P=0.056) (Table 1). Cancers where TP53 mutation offered predictive value were taken forward
335 for analyses in relation to the 10-gene signature. Cox regression analyses revealed that a
336  combination of TP53 mutation and high 10-gene score resulted in significantly higher risk of
337  death (Table 3; Fig. 6C). Survival rates were significantly diminished in patients harboring high
338  10-gene scores and the mutant variant of TP53 compared to those with low 10-gene scores
339 and wild-type TP53: liver (HR=3.876, P<0.0001), pancreas (HR=4.881, P=0.0002) and
340  endometrium (HR=3.719, P=0.00028) (Table 3; Fig. 6C). Moreover, in multivariate Cox models
341  involving TNM staging and TP53 mutation status, the 10-gene signature remained a significant
342 prognostic factor (Table 1). This suggests that although the 10-gene signature provided
343  additional resolution in risk assessment when used in combination with TP53 mutation status,
344  its function is independent. However, in the multivariate model TP53 was significant only in
345  liver cancer (HR=2.085, P=0.0044), suggesting that TP53 mutation was not independent of the
346  signature or TNM staging in pancreatic and endometrial cancers (Table 1). Overall, the results

347  suggest that defects in cell cycle checkpoint combined with augmented DNA repair ability were
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adverse risk factors contributing to poor prognosis. Both TP53 mutation status and 10-gene
scores could offer additional predictive value in risk assessment by further delineation of

patients into additional risk groups.
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352 Discussion and Conclusion

353

354  We systematically examined the associations between the expression patterns of 138 DNA
355  repair genes in 16 cancer types and prognosis. Our pan-cancer multigenic approach revealed
356 genes that work synergistically across cancers to inform patient prognosis that would
357  otherwise remain undetected in analysis involving a single gene or a single cancer type. We
358 developeda 10-gene signature that incorporates the expression profiles of 10 highly correlated
359  DNA repair genes for use as risk predictors in six cancer types (n=2,257). This signature offers
360 amore precise discrimination of patient risk groups in these six cancers where high expression
361  of signature genes is associated with poor survival outcomes. Importantly, we demonstrated
362 thatthesignature canimprove the prognostic discrimination of TNM when used as a combined
363  model, which is particularly useful to allow further stratification of patients within similar TNM
364  stage groups (Fig. 4).

365

366 Intrinsic differences in DNA repair machineries in cancer cells may pose a significant challenge
367  to successful therapy. Mutations in DNA repair genes allow the generation of persistent DNA
368 lesions that would otherwise be repaired. Germline mutations of DNA repair genes are linked
369  toincreased genome instability and cancer risks®® and abrogation of genes in one DNA repair
370  pathway can be compensated by another pathway!. BRCA1 and BRCA2 mutations sensitize
371  cells to PARP1 inhibition, a protein involved in the BER pathway'°. Since BRCAI and BRCAZ2 are
372  important for homology-directed repair, PARP1 inhibition in BRCA1/2-defective cells would
373  result in dysfunctional HDR and BER pathways preventing lesion repair and thus leading to
374  apoptosisi®.

375
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376 In addition to genetic polymorphism, upregulation of DNA repair genes in tumors could
377  promote resistance to radiotherapy and chemotherapy as the cells would have enhanced
378  ability to repair cytotoxic lesions induced by these therapies. Overexpression of ERCC1 involved
379  inthe NER pathway in non-small-cell lung cancer is linked to poor survival in cisplatin-treated
380 patients’. The 1,2-d(GpG) cross-link lesion generated by cisplatin treatment is readily repaired
381 by the NER pathway, hence ERCCI overexpression would promote cisplatin resistance. Low
382  MGMT expression in astrocytoma is associated with longer survival outcomes in patients
383  treated with temozolomide®*; an observation that is consistent with the role of MGMT in
384  repairing lesions caused by temozolomide thus allowing MGMT deficient tumor cells to
385 accumulate enough unrepairable damage. TP53 plays essential roles in cell-cycle arrest and
386  apoptosis through the activation of checkpoint genes?®. We show that patients with high 10-
387  gene scores that concurrently have mutant TP53 exhibited significantly higher mortality rates
388  (Fig. 6C), suggesting that defects in cell cycle checkpoint coupled with an increase propensity
389  for DNA repair may lead to dramatically poorer outcomes.

390

391  Multiple studies have reported the associations between dysfunctional DNA repair pathways
392 and cancer, but most of these studies are restricted to investigations on a limited number of
393  genes and on one cancer at a time. One of the key advantages of our study is that it is an
394  unbiased exploration transcending the candidate-gene approach that takes into account the
395  multifaceted interplay of DNA repair genes in diverse cancer types. We rationalize that since
396 ionizing radiation and chemotherapy are the main treatment options currently available for
397  cancer patients, a molecular signature capable of discriminating patients with increased
398  expression of DNA repair genes that would benefit from adjuvant therapy through

399  pharmacological inhibition of DNA repair to overall improve therapeutic outcomes.
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400

401  Tumor hypoxia is also a well-known cause of therapy resistance. A notable finding of our study
402 s that patients having both high 10-gene and hypoxia scores had significantly poorer survival
403  rates compared to those with low 10-gene and hypoxia scores (Fig. 5). Previous reports suggest
404  thatlow oxygen conditions may interfere with DNA damage repair. For example, hypoxia could
405  compromise HR function through decreased RAD51 expression>. However, results concerning
406 the effects of hypoxia on DDR signaling have remained inconclusive. Genes associated with
407  NHEJ were reported to be downregulated under hypoxia in prostate cancer cell lines3®, while
408  hypoxia drove the upregulation of NHEJ-associated genes, PRKDC and XRCC6, in hepatoma cell
409 lines®. The authors proposed an interaction between PRKDC and the hypoxia-responsive
410  transcriptional activator, HIF-1a, hence suggesting that tumor hypoxia may lead to increase in
411  NHEJ. Tumor cells within their 3D space are subjected to differential levels of oxygen over time
412  and chronic exposures to these fluctuating conditions could result in very different biological
413  outcomes. In vitro studies retain a significant caveat as many hypoxia assays are carried out
414  short term using constant, predefined oxygen tensions. Although further work is needed to
415  ascertain the clinical relevance of these findings, our results clearly demonstrate that the
416  integration of hypoxia assessment in molecular stratification using the 10-gene signature
417  revealed a subset of high-risk individuals accounting for approximately 31% to 38% in each
418  cohort (Fig. 5B). Whether hypoxia could directly promote DNA damage repair in vivo remains
419  an open question.

420

421  We reasoned that the expression patterns of DNA repair genes would positively correlate with
422  genes involved in cell cycle progression since lesions could be repaired more effectively to

423  prevent cell cycle arrest (Fig. 6A). Enhanced DNA repair ability may also confer tumor cells with
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424  growth advantage. Consistent with this hypothesis, differential expression analyses between
425  patients with high versus low 10-gene scores revealed an enrichment of ontologies involved in
426  growth stimulation as a consequence of increased DNA repair gene expression (Fig. 6B).
427  Enrichment of biological pathways involved in cell cycle, mitosis, cell division and DNA
428  replication implied that the shorter life expectancy in patients with high 10-gene scores could
429  in part be explained by an overproliferation phenotype commonly present in more aggressive
430  tumors.

431

432  In summary, we developed a prognostic signature involving DNA repair genes and confirmed
433 its utility as a powerful predictive marker for six cancer types. Although not currently afforded
434 by this work due to its retrospective nature, it will be useful to determine if the signature can
435  predict response to radiotherapy and chemotherapy in future research. While prospective
436  validation is warranted, we would expect, based on our encouraging retrospective data, that
437  the signature can guide decision making and treatment pathways. The confirmation of this
438  hypothesis by a clinical trial using the 10-gene signature to select patients that would benefit
439  from treatment with adjuvant DNA repair inhibitors could have a substantial impact on

440  treatment outcomes.
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544 Figure legends

545

546  Figure 1. Schematic representation of the study design and development of the 10-gene
547  signature. DNA repair genes from six major pathways were manually curated to generate a
548  non-redundant list containing 138 genes. Cox proportional hazards regression was employed
549  todetermine the significance of each individual genes in predicting overall survival in 16 cancer
550  types. Spearman’s correlation analyses revealed that five cancer types exhibited a high degree
551  of correlation in terms of their prognostic genes. Ten genes were found to be prognostic in all
552 five cancers; these genes subsequently formed the 10-gene signature. The ability of the
553  signature in predicting survival outcomes was tested using Kaplan-Meier, Cox regression and
554  receiver operating characteristic methods. The signature could predict high-risk patients in six
555  cancer types (n=2,257). Associations of the signature with tumor hypoxia, cell cycle
556  deregulation and TP53 mutation were investigated. Potential clinical applications of the
557  signature were proposed.

558

559  Figure 2. Patient stratification using the 10-gene signature in six cancer types. Kaplan-Meier
560 analyses of overall survival on patients stratified into high- and low-score groups using the 10-
561  gene signature. P values were determined from the log-rank test.

562

563  Figure 3. Independence of the 10-gene signature over TNM staging. Kaplan-Meier analyses
564  were performed on patients categorized according to tumor TNM stages that were further
565  stratified using the 10-gene signature. The signature successfully identified patients at higher
566  risk of death in all TNM stages. P values were determined from the log-rank test. TNM: tumor,

567 node, metastasis.
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568

569  Figure 4. Predictive performance of the 10-gene signature. Receiver operating characteristic
570  (ROC) was employed to determine the specificity and sensitivity of the signature in predicting
571  5-year overall survival in all six cancer types. ROC curves generated based on the 10-gene
572  signature, TNM staging and a combination of 10-gene signature and TNM staging were
573  depicted. AUC: area under the curve. TNM: tumor, node, metastasis. AUCs for TNM staging
574  were in accordance with previous publications employing TCGA datasets'®2°.

575

576  Figure 5. Association between the 10-gene signature and tumor hypoxia. (A) Scatter plots
577  depict significant positive correlation between 10-gene scores and hypoxia scores in all six
578  cancers. Patients were color-coded and separated into four categories based on their 10-gene
579  and hypoxia scores. (B) Kaplan-Meier analyses were performed on the four patient categories
580  to assess the effects of combined relationship of hypoxia and the signature on overall survival.
581

582  Figure 6. Elevated DNA repair gene expression is associated with an overproliferation
583  phenotype. (A) Significant positive correlations between individual signature gene expression
584  and genes involved in cell cycle progression, while negative correlations were observed with
585  genesinvolved in cell cycle arrest. Heatmaps were generated using the R pheatmap package.
586  Cell cycle genes were depicted on the y-axis and the 10 signature genes on the x-axis. (B)
587  Patients were median-stratified into low- and high-score groups using the 10-gene signature
588  for differential expression analyses. Enrichment of GO and KEGG pathways associated with
589  differentially expressed genes were depicted for all six cancers. (C) Investigation of the

590 relationship between a gene involved in cell cycle checkpoint regulation, TP53, and the
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signature. Patients were categorized into four groups based on their TP53 mutation status and

10-gene scores for Kaplan-Meier analyses. P values were determined from the log-rank test.

Table 1. Univariate and multivariate Cox proportional hazards analyses of the 10-gene

signature and additional clinical risk factors associated with overall survival in six cancers.

Table 2. Univariate Cox proportional hazards analysis of the relation between the 10-gene

signature and hypoxia score.

Table 3. Univariate Cox proportional hazards analysis of the relation between the 10-gene

signature and TP53 mutation status.
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602  Supplementary information

603

604  Figure S1. Correlation analyses of 138 prognostic DNA repair genes. Spearman’s correlation
605  coefficients were determined from pairwise comparisons prognostic genes from 16 cancer
606  types. Five cancers were highly correlated as shown in the blue area of the heatmap. Numbers
607  represent correlation coefficient values. Refer to Table S2 for cancer abbreviations.

608

609  Figure S2. Expression distribution of the ten signature genes in tumor and non-tumor samples.
610  Boxplots overlaying violin plots were used to illustrate tumor and non-tumor distribution in six
611  cancers: (A) clear cell renal cell, (B) papillary renal cell, (C) liver, (D) lung, (E) pancreas and (F)
612  endometrium. Nonparametric Mann-Whitney-Wilcoxon tests were employed to determine
613  whether there were significant differences in expression distributions. Asterisks represent
614  significant P values: * < 0.05, *** < 0.0001.

615

616  Figure S3. Venn diagram depicts a six-way comparison of the differentially expressed genes (-
617 1> logy fold-change > 1, P<0.05) identified from high-score versus low-score patients in all six
618  cancers. Numbers in parentheses represent the number of differentially expressed genes in
619  each cancer. The Venn intersection of all cancers indicated that 87 genes were common.

620

621  Table S1. List of 138 DNA repair genes and associated pathways.

622

623  Table S2. Description of TCGA cancer cohorts.

624

625  Table S3. Univariate Cox proportional hazards analysis of the 138 genes in 16 cancers.
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Figure 5
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Figure S1
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Figure S3
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