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Abstract 14 

 15 

Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer 16 

comparative studies investigating the contribution of all DNA repair genes in cancer 17 

progression employing an integrated approach have remained limited. We performed a multi-18 

cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes 19 

in 16 cancer types (n=16,225). Cox proportional hazards analyses revealed a significant 20 

variation in the number of prognostic genes between cancers; 81 genes were prognostic in 21 

clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We 22 

reasoned that genes that were commonly prognostic in highly correlated cancers revealed by 23 

Spearman’s correlation analysis could be harnessed as a molecular signature for risk 24 

assessment. A 10-gene signature, uniting prognostic genes that were common in highly 25 

correlated cancers, was significantly associated with overall survival in patients with clear cell 26 

renal cell (P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas 27 

(P=0.00013) or endometrial (P=0.00063) cancers. Receiver operating characteristic analyses 28 

revealed that a combined model of the 10-gene signature and tumor staging outperformed 29 

either classifiers when considered alone. Multivariate Cox regression models incorporating 30 

additional clinicopathological features revealed that the signature was an independent 31 

predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent 32 

across all six cancers, patients with high 10-gene and high hypoxia scores had significantly 33 

higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional 34 

enrichment analyses revealed that high mortality rates in patients with high 10-gene scores 35 

were attributable to an overproliferation phenotype. Death risk in these patients was further 36 

exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene 37 
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signature identified tumors with heightened DNA repair ability. This information has the 38 

potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with 39 

chemotherapeutic drugs.  40 
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DDR DNA damage response 
BER Base excision repair 
NER Nucleotide excision repair 
MR Mismatch repair 
HDR Homology-directed repair 
NHEJ Non-homologous end joining 
FA Fanconi anemia 
TCGA The Cancer Genome Atlas 
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KEGG Kyoto Encyclopedia of Genes and Genomes 
HR Hazard ratio 
ROC Receiver operating characteristic 
AUC Area under the curve 
TNM Tumor, node and metastasis 
CDK Cyclin-dependent kinase 
DEG Differentially expressed genes 
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Introduction 47 

 48 

Genetic material must be transmitted in its original, unaltered form during cell division. 49 

However, DNA faces continuous assaults from both endogenous and environmental agents 50 

contributing to the formation of permanent lesions and cell death. To overcome DNA damage 51 

threats, living systems have evolved highly coordinated cellular machineries to detect and 52 

repair damages as they occur. However, DNA repair mechanisms and consequently DNA 53 

damage responses (DDR) are often deregulated in cancer cells and such aberrations may 54 

contribute to cancer progression and influence prognosis. Overexpression of DNA repair genes 55 

allow tumor cells to overcome the cytotoxic effects of radiotherapy and chemotherapy. As 56 

such, inhibitors of DNA repair can increase the vulnerability of tumor cells to chemotherapeutic 57 

drugs by preventing the repair of deleterious lesions1.   58 

 59 

There are six main DNA repair pathways in mammalian cells. Single-strand DNA damage are 60 

repaired by the base excision repair (BER), nucleotide excision repair (NER) and mismatch 61 

repair (MR) pathways. The poly(ADP-ribose) polymerase (PARP) gene family encodes key 62 

players of the BER pathway involved in repairing damages induced by ionizing radiation and 63 

alkylating agents2,3. Replication errors are corrected by the MR pathway while the NER 64 

pathway is responsible for removing bulky intercalating agents4,5. Tumor cells with deficiencies 65 

in the NER pathway have increased sensitivity to platinum-based chemotherapeutic drugs 66 

(cisplatin, oxaliplatin etc.)6,7. Double-strand breaks induced by ionizing radiation are more 67 

difficult to repair and thus are highly cytotoxic. Dysregulation of genes involved in the 68 

homology-directed repair (HDR), non-homologous end joining (NHEJ) and Fanconi anemia (FA) 69 

pathways are associated with altered repair of double-strand breaks.  70 
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 71 

Aberrations in DNA repair genes are widespread in most cancers; hence they represent 72 

attractive candidates for pharmacological targeting to improve radiosensitivity and 73 

chemosensitivity8. In a process known as ‘synthetic lethality’, faults in two or more DNA repair 74 

genes or pathways together would promote cell death, while defects in a single pathway may 75 

be tolerated1. Functional redundancies in repair pathways allow tumor cells to rely on a second 76 

pathway for repair in the event that the first pathway is defective. Based on the principles of 77 

synthetic lethality, inhibition of the second pathway will confer hypersensitivity to cytotoxic 78 

drugs in cells with another malfunctioning pathway. This promotes cell death because DNA 79 

lesions can no longer be repaired by either pathway. For instance, PARP inhibitors (targeting 80 

the BER pathway) could selectively kill tumor cells that have BRCA1 or BRCA2 mutations 81 

(defective HDR pathway) while not having any toxic effects on normal cells9,10.  82 

 83 

Since one DDR pathway could compensate for another, there is a need for a pan-cancer, large-84 

scale, systematic study on all DNA repair genes to reveal similarities and differences in DDR 85 

signaling between cancer types, which is limited at present. In this study, we explored pan-86 

genomic expression patterns of 138 DNA repair genes in 16 cancer types. We developed and 87 

validated the prognostic significance of a 10-gene signature that can be used for rapid risk 88 

assessment and patient stratification. There are considerable variations in the success of 89 

chemotherapy and radiotherapy regimes between cancer types. Such differences may be 90 

explained by the complex cancer-specific nature of DDR defects. Prognostic biomarkers of DNA 91 

repair genes are needed to allow the use of repair inhibitors in a stratified, non-universal 92 

approach to expose the selective vulnerabilities of tumors to therapeutic agents.  93 
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Materials and methods 94 

A list of 138 DNA repair genes is available in Table S1.  95 

Study cohorts 96 

We obtained RNA-sequencing datasets for the 16 cancers from The Cancer Genome Atlas 97 

(TCGA)11 (n=16,225) (Table S2). TCGA Illumina HiSeq rnaseqv2 Level 3 RSEM normalized data 98 

were retrieved from the Broad Institute GDAC Firehose website. Gene expression profiles for 99 

each cancer types were separated into tumor and non-tumor categories based on TCGA 100 

barcodes and converted to log2(x + 1) scale. To compare the gene-by-gene expression 101 

distribution in tumor and non-tumor samples, violin plots were generated using R. The 102 

nonparametric Mann-Whitney-Wilcoxon test was used for statistical analysis.  103 

 104 

Calculation of 10-gene scores and hypoxia scores 105 

The 10-gene scores for each patient were determined from the mean log2 expression values 106 

of 10 genes: PRKDC, NEIL3, FANCD2, BRCA2, EXO1, XRCC2, RFC4, USP1, UBE2T and FAAP24). 107 

Hypoxia scores were calculated from the mean log2 expression values of 52 hypoxia signature 108 

genes12. For analyses in Figure 5, patients were delineated into four categories using median 109 

10-gene scores and hypoxia scores as thresholds. The nonparametric Spearman’s rank-order 110 

correlation test was used to determine the relationship between 10-gene scores and hypoxia 111 

scores.  112 

 113 

Differential expression analyses comparing expression profiles of high-score and low-score 114 

patients 115 
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Patients were median dichotomized into low- and high-score groups based on their 10-gene 116 

scores in each cancer type. Differential expression analyses were performed using the linear 117 

model and Bayes method executed by the limma package in R. P values were adjusted using 118 

the Benjamini-Hochberg false discovery rate procedure. We considered genes with log2 fold 119 

change of > 1 or < -1 and adjusted P-values < 0.05 as significantly differentially expressed 120 

between the two patient groups.  121 

 122 

 123 

Functional enrichment and pathway analyses 124 

To determine which biological pathways were significantly enriched, differentially expressed 125 

genes were mapped against the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 126 

Genomes (KEGG) databases using GeneCodis13. The Enrichr tool was used to investigate 127 

transcription factor protein-protein interactions that were associated with the differentially 128 

expressed genes14,15.  129 

 130 

 131 

Survival analysis 132 

Univariate Cox proportional hazards regression analyses were performed using the R survival 133 

and survminer packages to determine if expression levels of individual DNA repair genes as 134 

well as those of the 10-gene scores were significantly associated with overall survival. 135 

Multivariate Cox regression was employed to determine the influence of additional clinical 136 

variables on the 10-gene signature. Hazard ratios (HR) and confidence intervals were 137 

determined from the Cox models. HR greater than one indicated that a covariate was positively 138 

associated with even probability or increased hazard and negatively associated with survival 139 
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duration. Non-significant relationship between scaled Schoenfeld residuals supported the 140 

proportional hazards assumption in the Cox model. Both survival and survminer packages were 141 

also used for Kaplan-Meier analyses and log-rank tests. For Kaplan-Meier analyses, patients 142 

were median dichotomized into high- and low-score groups using the 10-gene signature. To 143 

determine the predictive performance (specificity and sensitivity) of the signature in relation 144 

to tumor staging parameters, we employed the receiver operating characteristic (ROC) analysis 145 

implemented by the R survcomp package, which also calculates area under the curve (AUC) 146 

values. AUC values can fall between 1 (perfect marker) and 0.5 (uninformative marker).  147 

 148 

TP53 mutation analysis 149 

TCGA mutation datasets (Level 3) were retrieved from GDAC Firehose to annotate patients 150 

with mutant TP53. To ascertain the association of TP53 mutation with the 10-gene signature 151 

on overall survival, we employed the Kaplan-Meier analysis and log-rank tests implemented in 152 

R.  153 

 154 

All plots were generated using R pheatmap and ggplot2 packages16. Venn diagram was 155 

generated using the InteractiVenn tool17.  156 
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Results 157 

 158 

Prognosis of DNA repair genes in 16 cancer types and the development of a 10-gene signature 159 

A total of 187 genes associated with six DDR pathways found in mammalian cells were curated: 160 

BER (33 genes), MR (23 genes), NER (39 genes), HDR (26 genes), NHEJ (13 genes) and FA (53 161 

genes)18 (Fig. 1, Table S1). Of the 187 genes, 49 were represented in two or more pathways, 162 

yielding 138 non-redundant candidates. To determine which of the 138 DNA repair genes 163 

conferred prognostic information, we employed Cox proportional hazards regression on all 164 

genes individually on 16 cancer types to collectively include 16,225 patients11 (Table S2). In 165 

clear cell renal cell carcinoma, 81 genes were found to be significantly associated with overall 166 

survival; this cancer had the highest number of prognostic DNA repair genes (Table S3). This is 167 

followed by 54, 53, 46, 44 and 33 prognostic genes in cancers of the pancreas, papillary renal 168 

cell, liver, lung and endometrium respectively (Table S3). In contrast, cancers of the brain 169 

(glioblastoma: 2 genes), breast (5 genes), cervix (6 genes) and esophagus (7 genes) had some 170 

of the lowest number of prognostic DNA repair genes (Table S3), suggesting that there is a 171 

significant degree of variation in the contribution of DNA repair genes in predicting survival 172 

outcomes. Spearman’s rank-order correlation analysis revealed a hub of five highly correlated 173 

cancers (lung, papillary renal cell, pancreas, liver and endometrium), indicating that a good 174 

number of prognostic DNA repair genes were shared between these cancers (Spearman’s 175 

rho=0.21 to 0.44) (Fig. S1). We rationalized that prognostic genes that are common in these 176 

highly correlated cancers could form a new multigenic risk assessment classifier. Ten genes 177 

were prognostic in the five highly correlated cancers: PRKDC (NHEJ), NEIL3 (BER), FANCD2 (FA), 178 

BRCA2 (HDR and FA), EXO1 (MR), XRCC2 (HDR), RFC4 (MR and NER), USP1 (FA), UBE2T (FA) and 179 

FAAP24 (FA), which, interestingly, represent members from all six DDR pathways.  180 
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 181 

A 10-gene signature predictive of DDR signaling is an independent prognostic classifier in 6 182 

cancer types 183 

The aforementioned ten genes were employed as a new prognostic model to evaluate whether 184 

they were significantly associated with overall survival in all 16 cancer types. A 10-gene score 185 

for each patient was calculated by taking the mean expression of all ten genes. Patients were 186 

median dichotomized based on their 10-gene scores into a low- and high-score groups. The 187 

10-gene signature could predict patients at significantly higher risk of death in the five cancers 188 

that were originally highly correlated (Fig. S1), and in one additional cancer (clear cell renal cell 189 

carcinoma) (Fig. 2). Kaplan-Meier analyses demonstrated that patients categorized within 190 

high-score groups had significantly poorer survival rates: clear cell renal cell (log-rank 191 

P<0.0001), papillary renal cell (P=0.0007), liver (P=0.002), lung (P=0.028), pancreas 192 

(P=0.00013) and endometrium (P=0.00063) (Fig. 2). Expression profiles of the 10 genes in 193 

tumor and non-tumor samples showed a general distribution that were comparable among 194 

the six cancer types. Mann-Whitney-Wilcoxon tests revealed that a vast majority of genes were 195 

significantly upregulated in tumor samples with a few minor exceptions (Fig. S2). USP1 was 196 

significantly downregulated in tumors of papillary renal cell and endometrium (Fig. S2). Only 197 

four non-tumor samples were available in the pancreatic cancer cohort, precluding robust 198 

statistical analyses. Due to limitations in sample size, only UBE2T was observed to be 199 

significantly upregulated in pancreatic tumors (Fig. S2). 200 

 201 

To evaluate the independent predictive value of the signature over the current tumor, node 202 

and metastasis (TNM) staging system, we applied the signature on patients separated by TNM 203 

stage: early (stages 1 and/or 2), intermediate (stages 2 and/or 3) and late (stages 3 and/or 4) 204 
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disease stages. Remarkably, the signature successfully identified high risk patients in early 205 

(liver, lung, pancreas, endometrium), intermediate (papillary renal cell, liver, pancreas, 206 

endometrium) and late (clear cell renal cell, papillary renal cell, liver, endometrium) TNM 207 

stages (Fig. 3). Collectively, this implied that the signature offered an additional resolution of 208 

prognosis within similarly staged tumors and that the signature retained excellent prognostic 209 

ability in individual tumor groups when considered separately.  210 

 211 

To evaluate the predictive performance of the 10-gene signature on 5-year overall survival, we 212 

employed receiver operating characteristic (ROC) analyses on all six cancers. Comparing the 213 

sensitivity and specificity of the signature in relation to TNM staging revealed that the signature 214 

outperformed TNM staging in cancers of the papillary renal cell (AUC=0.832 vs. AUC=0.640), 215 

pancreas (AUC=0.697 vs. AUC=0.593) and endometrium (AUC=0.700 vs. AUC=0.674) (Fig. 4). 216 

Importantly, when the signature was used in conjunction with TNM staging as a combined 217 

model, its performance was superior to either classifiers when they were considered 218 

individually: clear cell renal cell (AUC=0.792), papillary renal cell (AUC=0.868), liver 219 

(AUC=0.751), lung (AUC=0.693), pancreas (AUC=0.698) and endometrium (AUC=0.764) (Fig. 220 

4).  221 

 222 

We next employed multivariate Cox regression models to examine whether the association 223 

between high 10-gene scores and increased mortality was not due to underlying clinical 224 

characteristics of the tumors. Univariate analysis revealed that TNM staging is not prognostic 225 

in pancreatic cancer (hazard ratio [HR]=1.339, P=0.153), hence this cancer was excluded from 226 

the multivariate model involving TNM (Table 1). For the five remaining cancer types, even 227 

when TNM staging was considered, the signature significantly distinguished survival outcomes 228 
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in high- versus low-score patients, confirming that it is an independent prognostic classifier: 229 

clear cell renal cell (HR=1.555, P=0.0058), papillary renal cell (HR=1.677, P=0.032), liver 230 

(HR=1.650, P=0.029), lung (HR=1.301, P=0.032) and endometrium (HR=2.113, P=0.013) (Table 231 

1).  232 

 233 

 234 

Crosstalk between DDR signaling and tumor hypoxia 235 

Tumor hypoxia is a well-known barrier to curative treatment. It is often associated with poor 236 

prognosis19,20, which may be a result of tumor resistance to chemotherapy and 237 

radiotherapy21,22. Since both the upregulation of DNA repair genes and hypoxia are linked to 238 

therapeutic resistance, we rationalized that incorporating hypoxia information in the 10-gene 239 

signature would allow further delineation of patient risk groups. Patients with high 10-gene 240 

scores had significantly poorer survival outcomes and we predict that these patients have 241 

tumors that are more hypoxic, and that oxygen deprivation could influence DDR signaling to 242 

enhance tumor resistance to apoptotic stimuli leading to more aggressive disease states. We 243 

calculated hypoxia scores for each patient using a mathematically derived hypoxia gene 244 

signature consisting of 52 genes12. Hypoxia scores were defined as the mean expression of the 245 

52 genes. Patients for each of the six cancer types were divided into four categories using the 246 

median 10-gene and hypoxia scores: 1) high scores for both 10-gene and hypoxia, 2) high 10-247 

gene and low hypoxia scores, 3) low 10-gene and high hypoxia scores and 4) low scores for 248 

both 10-gene and hypoxia (Fig. 5A). Remarkably, significant positive correlations were 249 

observed between 10-gene scores and hypoxia scores consistent across all six cancer types: 250 

clear cell renal cell (rho=0.363, P<0.0001), papillary renal cell (rho=0.518, P<0.0001), liver 251 

(rho=0.615, P<0.0001), lung (rho=0.753, P<0.0001), pancreas (rho=0.582, P<0.0001) and 252 
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endometrium (rho=0.527, P<0.0001) (Fig. 5A). This suggests that tumor hypoxia may influence 253 

DDR signaling and potentially, patient outcomes.  254 

 255 

We generated Kaplan-Meier curves and employed the log-rank test to determine whether 256 

there were differences in overall survival outcomes among the four patient groups. Combined 257 

relation of hypoxia and 10-gene scores revealed significant associations with overall survival in 258 

all six cancers (Fig. 5B). Patients classified within the ‘high 10-gene and high hypoxia’ category 259 

had significantly poorer survival rates compared to those with low 10-gene and low hypoxia 260 

scores: clear cell renal cell (HR=2.316, P<0.0001), papillary renal cell (HR=7.635, P=0.0011), 261 

liver (HR=2.615, P=0.00013),  lung (HR=1.832, P=0.0021), pancreas (HR=2.680, P=0.00079) and 262 

endometrium (HR=2.707, P=0.0075) (Table 2; Fig. 5B). Our results suggest that the combined 263 

effects of hypoxia and heightened expression of DNA damage repair genes may be linked to 264 

tumor progression and increased mortality risks. It remains unknown in this context whether 265 

the basis for differential sensitivity to chemotherapy would be explained, in part, by DNA repair 266 

ability of tumor cells exposed to chronic hypoxia environments.  267 

 268 

 269 

Patients with high 10-gene scores had an overproliferation phenotype due to cell cycle 270 

dysregulation 271 

The cell cycle represents a cellular gatekeeper that controls how cells grow and proliferate. 272 

Cyclins and cyclin-dependent kinases (CDKs) allow cells to progress from one cell cycle stage 273 

to the next; a process that is antagonized by CDK inhibitors. Many tumors overexpress cyclins 274 

or inactivate CDK inhibitors, hence resulting in uncontrolled cell cycle entry, loss of checkpoint 275 

and uninhibited proliferation23–25. Targeting proteins responsible for cell cycle progression 276 
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would thus be an attractive measure to limit tumor cell proliferation. This has led to the 277 

development of numerous CDK inhibitors as anticancer agents26,27. DNA repair is tightly 278 

coordinated with cell cycle progression. Certain DNA repair mechanisms are dampened in non-279 

proliferating cells, while repair pathways are often perturbed during tumor development. 280 

Perturbation can take the form of defective DNA repair or over-compensation of a pathway 281 

arising from defects in another pathway28. As a result, DNA repair inhibitors could prevent the 282 

repair of lesions induced by chemotherapeutic drugs to trigger apoptosis and to enhance the 283 

elimination of tumor cells.  284 

 285 

We rationalize that patients with high 10-gene scores would have heightened ability for DNA 286 

repair thus allowing tumor cells to progress through the cell cycle and continue to proliferate. 287 

Using Spearman’s rank-order correlation, we observed that the expression of each of the 10 288 

signature genes were positively correlated with the expression of genes involved in cell cycle 289 

progression (cyclins and CDKs) and negatively correlated with genes involved in cell cycle arrest 290 

(CDK inhibitors) (Fig. 6A). Interestingly, the patterns of correlation were remarkably similar 291 

across all six cancer types, implying that elevated expression of DNA repair genes is associated 292 

with a hyper-proliferative phenotype. We next asked whether patients within the high 10-gene 293 

score category had an overrepresentation of processes associated with cell cycle dysregulation 294 

as this could provide an explanation on the elevated mortality risks in these patients. To answer 295 

this, we divided patients from each of the six cancer types into two groups (high score and low 296 

score) based on the mean expression of the 10 signature genes using the 50th percentile cut-297 

off. Differential expression analyses between the high- and low-score groups revealed that 298 

394, 425, 1259, 1279, 714 and 977 genes were differentially expressed (-1 > log2 fold-change 299 
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> 1, P<0.05) in clear cell renal cell, papillary renal cell, liver, lung, pancreas and endometrial 300 

cancers respectively (Table S4).  301 

 302 

Analyses of biological functions of these genes revealed functional enrichment of ontologies 303 

associated with cell division, mitosis, cell cycle, cell proliferation, DNA replication and 304 

homologous recombination consistent in all six cancer types (Fig. 6B). This suggests that the 305 

significantly higher mortality rates in patients with high 10-gene scores were due to enhanced 306 

tumor cell proliferation exacerbated by the ability of these cells to repair DNA lesions as they 307 

arise. Additional ontologies related to tumorigenesis such as PPAR and TP53 signaling were 308 

also associated with poor prognosis (Fig. 6B). A total of 87 differentially expressed genes (DEGs) 309 

were found to be in common in all six cancer types (Fig. S3) (Table S5). To dissect the underlying 310 

biological roles of the 87 DEGs at the protein level, we evaluated the enrichment of 311 

transcription factor protein-protein interactions using the Enrichr platform14.TP53 represents 312 

the most enriched transcription factor involved in the regulation of the DEGs as evidenced by 313 

the highest combined score, which takes into account both Z score and P value (Table S6). This 314 

indirectly corroborated our results on enriched TP53 signaling obtained from the KEGG 315 

pathway analysis (Fig. 6B). Taken together, these results highlight the interplay between DDR 316 

signaling, cell cycle regulation and TP53 function in determining prognosis.  317 

 318 

 319 

Prognostic relevance of a combined model involving the 10-gene signature and TP53 mutation 320 

status 321 

An important role of TP53 is its tumor suppressive function through TP53-mediated cell cycle 322 

arrest and apoptosis29. Hence, somatic mutations in TP53 can confer tumor cells with growth 323 
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advantage and indeed, this is a well-known phenomenon in many cancers30–32. We rationalized 324 

that TP53 deficiency resulting in defective checkpoint may synergize with the overexpression 325 

of DNA repair genes to prevent growth arrest and promote tumor proliferation. To test this 326 

hypothesis, we examined TP53 mutation status in all six cancer types and observed that TP53 327 

mutation frequency was the highest in pancreatic cancer patients (58%) followed by lung 328 

cancer (57%), endometrial cancer (21%), liver cancer (16%), papillary renal cell (1.8%) and clear 329 

cell renal cell (1.2%) (Table S7). Cancers with TP53 mutation frequency of at least 10% were 330 

selected for survival analyses. Univariate Cox regression analyses revealed that TP53 mutation 331 

status only conferred prognostic information in pancreatic (HR=1.657, P=0.044), endometrial 332 

(HR=1.780, P=0.041) and liver (HR=2.603, P<0.0001) cancers but not in lung cancer (HR=1.428, 333 

P=0.056) (Table 1). Cancers where TP53 mutation offered predictive value were taken forward 334 

for analyses in relation to the 10-gene signature. Cox regression analyses revealed that a 335 

combination of TP53 mutation and high 10-gene score resulted in significantly higher risk of 336 

death (Table 3; Fig. 6C). Survival rates were significantly diminished in patients harboring high 337 

10-gene scores and the mutant variant of TP53 compared to those with low 10-gene scores 338 

and wild-type TP53: liver (HR=3.876, P<0.0001), pancreas (HR=4.881, P=0.0002) and 339 

endometrium (HR=3.719, P=0.00028) (Table 3; Fig. 6C). Moreover, in multivariate Cox models 340 

involving TNM staging and TP53 mutation status, the 10-gene signature remained a significant 341 

prognostic factor (Table 1). This suggests that although the 10-gene signature provided 342 

additional resolution in risk assessment when used in combination with TP53 mutation status, 343 

its function is independent. However, in the multivariate model TP53 was significant only in 344 

liver cancer (HR=2.085, P=0.0044), suggesting that TP53 mutation was not independent of the 345 

signature or TNM staging in pancreatic and endometrial cancers (Table 1). Overall, the results 346 

suggest that defects in cell cycle checkpoint combined with augmented DNA repair ability were 347 
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adverse risk factors contributing to poor prognosis. Both TP53 mutation status and 10-gene 348 

scores could offer additional predictive value in risk assessment by further delineation of 349 

patients into additional risk groups.  350 

  351 
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Discussion and Conclusion 352 

 353 

We systematically examined the associations between the expression patterns of 138 DNA 354 

repair genes in 16 cancer types and prognosis. Our pan-cancer multigenic approach revealed 355 

genes that work synergistically across cancers to inform patient prognosis that would 356 

otherwise remain undetected in analysis involving a single gene or a single cancer type. We 357 

developed a 10-gene signature that incorporates the expression profiles of 10 highly correlated 358 

DNA repair genes for use as risk predictors in six cancer types (n=2,257). This signature offers 359 

a more precise discrimination of patient risk groups in these six cancers where high expression 360 

of signature genes is associated with poor survival outcomes. Importantly, we demonstrated 361 

that the signature can improve the prognostic discrimination of TNM when used as a combined 362 

model, which is particularly useful to allow further stratification of patients within similar TNM 363 

stage groups (Fig. 4).  364 

 365 

Intrinsic differences in DNA repair machineries in cancer cells may pose a significant challenge 366 

to successful therapy. Mutations in DNA repair genes allow the generation of persistent DNA 367 

lesions that would otherwise be repaired. Germline mutations of DNA repair genes are linked 368 

to increased genome instability and cancer risks33 and abrogation of genes in one DNA repair 369 

pathway can be compensated by another pathway1. BRCA1 and BRCA2 mutations sensitize 370 

cells to PARP1 inhibition, a protein involved in the BER pathway10. Since BRCA1 and BRCA2 are 371 

important for homology-directed repair, PARP1 inhibition in BRCA1/2-defective cells would 372 

result in dysfunctional HDR and BER pathways preventing lesion repair and thus leading to 373 

apoptosis10.  374 

 375 
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In addition to genetic polymorphism, upregulation of DNA repair genes in tumors could 376 

promote resistance to radiotherapy and chemotherapy as the cells would have enhanced 377 

ability to repair cytotoxic lesions induced by these therapies. Overexpression of ERCC1 involved 378 

in the NER pathway in non-small-cell lung cancer is linked to poor survival in cisplatin-treated 379 

patients7. The 1,2-d(GpG) cross-link lesion generated by cisplatin treatment is readily repaired 380 

by the NER pathway, hence ERCC1 overexpression would promote cisplatin resistance. Low 381 

MGMT expression in astrocytoma is associated with longer survival outcomes in patients 382 

treated with temozolomide34; an observation that is consistent with the role of MGMT in 383 

repairing lesions caused by temozolomide thus allowing MGMT deficient tumor cells to 384 

accumulate enough unrepairable damage. TP53 plays essential roles in cell-cycle arrest and 385 

apoptosis through the activation of checkpoint genes29. We show that patients with high 10-386 

gene scores that concurrently have mutant TP53 exhibited significantly higher mortality rates 387 

(Fig. 6C), suggesting that defects in cell cycle checkpoint coupled with an increase propensity 388 

for DNA repair may lead to dramatically poorer outcomes.    389 

 390 

Multiple studies have reported the associations between dysfunctional DNA repair pathways 391 

and cancer, but most of these studies are restricted to investigations on a limited number of 392 

genes and on one cancer at a time. One of the key advantages of our study is that it is an 393 

unbiased exploration transcending the candidate-gene approach that takes into account the 394 

multifaceted interplay of DNA repair genes in diverse cancer types. We rationalize that since 395 

ionizing radiation and chemotherapy are the main treatment options currently available for 396 

cancer patients, a molecular signature capable of discriminating patients with increased 397 

expression of DNA repair genes that would benefit from adjuvant therapy through 398 

pharmacological inhibition of DNA repair to overall improve therapeutic outcomes.  399 
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 400 

Tumor hypoxia is also a well-known cause of therapy resistance. A notable finding of our study 401 

is that patients having both high 10-gene and hypoxia scores had significantly poorer survival 402 

rates compared to those with low 10-gene and hypoxia scores (Fig. 5). Previous reports suggest 403 

that low oxygen conditions may interfere with DNA damage repair. For example, hypoxia could 404 

compromise HR function through decreased RAD51 expression35. However, results concerning 405 

the effects of hypoxia on DDR signaling have remained inconclusive. Genes associated with 406 

NHEJ were reported to be downregulated under hypoxia in prostate cancer cell lines36, while 407 

hypoxia drove the upregulation of NHEJ-associated genes, PRKDC and XRCC6, in hepatoma cell 408 

lines37. The authors proposed an interaction between PRKDC and the hypoxia-responsive 409 

transcriptional activator, HIF-1α, hence suggesting that tumor hypoxia may lead to increase in 410 

NHEJ. Tumor cells within their 3D space are subjected to differential levels of oxygen over time 411 

and chronic exposures to these fluctuating conditions could result in very different biological 412 

outcomes. In vitro studies retain a significant caveat as many hypoxia assays are carried out 413 

short term using constant, predefined oxygen tensions. Although further work is needed to 414 

ascertain the clinical relevance of these findings, our results clearly demonstrate that the 415 

integration of hypoxia assessment in molecular stratification using the 10-gene signature 416 

revealed a subset of high-risk individuals accounting for approximately 31% to 38% in each 417 

cohort (Fig. 5B). Whether hypoxia could directly promote DNA damage repair in vivo remains 418 

an open question.  419 

 420 

We reasoned that the expression patterns of DNA repair genes would positively correlate with 421 

genes involved in cell cycle progression since lesions could be repaired more effectively to 422 

prevent cell cycle arrest (Fig. 6A). Enhanced DNA repair ability may also confer tumor cells with 423 
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growth advantage. Consistent with this hypothesis, differential expression analyses between 424 

patients with high versus low 10-gene scores revealed an enrichment of ontologies involved in 425 

growth stimulation as a consequence of increased DNA repair gene expression (Fig. 6B). 426 

Enrichment of biological pathways involved in cell cycle, mitosis, cell division and DNA 427 

replication implied that the shorter life expectancy in patients with high 10-gene scores could 428 

in part be explained by an overproliferation phenotype commonly present in more aggressive 429 

tumors.  430 

 431 

In summary, we developed a prognostic signature involving DNA repair genes and confirmed 432 

its utility as a powerful predictive marker for six cancer types. Although not currently afforded 433 

by this work due to its retrospective nature, it will be useful to determine if the signature can 434 

predict response to radiotherapy and chemotherapy in future research. While prospective 435 

validation is warranted, we would expect, based on our encouraging retrospective data, that 436 

the signature can guide decision making and treatment pathways. The confirmation of this 437 

hypothesis by a clinical trial using the 10-gene signature to select patients that would benefit 438 

from treatment with adjuvant DNA repair inhibitors could have a substantial impact on 439 

treatment outcomes.   440 
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Figure legends 544 

 545 

Figure 1. Schematic representation of the study design and development of the 10-gene 546 

signature. DNA repair genes from six major pathways were manually curated to generate a 547 

non-redundant list containing 138 genes. Cox proportional hazards regression was employed 548 

to determine the significance of each individual genes in predicting overall survival in 16 cancer 549 

types. Spearman’s correlation analyses revealed that five cancer types exhibited a high degree 550 

of correlation in terms of their prognostic genes. Ten genes were found to be prognostic in all 551 

five cancers; these genes subsequently formed the 10-gene signature. The ability of the 552 

signature in predicting survival outcomes was tested using Kaplan-Meier, Cox regression and 553 

receiver operating characteristic methods. The signature could predict high-risk patients in six 554 

cancer types (n=2,257). Associations of the signature with tumor hypoxia, cell cycle 555 

deregulation and TP53 mutation were investigated. Potential clinical applications of the 556 

signature were proposed. 557 

 558 

Figure 2. Patient stratification using the 10-gene signature in six cancer types. Kaplan-Meier 559 

analyses of overall survival on patients stratified into high- and low-score groups using the 10-560 

gene signature. P values were determined from the log-rank test.  561 

 562 

Figure 3. Independence of the 10-gene signature over TNM staging. Kaplan-Meier analyses 563 

were performed on patients categorized according to tumor TNM stages that were further 564 

stratified using the 10-gene signature. The signature successfully identified patients at higher 565 

risk of death in all TNM stages. P values were determined from the log-rank test. TNM: tumor, 566 

node, metastasis. 567 
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 568 

Figure 4. Predictive performance of the 10-gene signature. Receiver operating characteristic 569 

(ROC) was employed to determine the specificity and sensitivity of the signature in predicting 570 

5-year overall survival in all six cancer types. ROC curves generated based on the 10-gene 571 

signature, TNM staging and a combination of 10-gene signature and TNM staging were 572 

depicted. AUC: area under the curve.  TNM: tumor, node, metastasis. AUCs for TNM staging 573 

were in accordance with previous publications employing TCGA datasets19,20. 574 

 575 

Figure 5. Association between the 10-gene signature and tumor hypoxia. (A) Scatter plots 576 

depict significant positive correlation between 10-gene scores and hypoxia scores in all six 577 

cancers. Patients were color-coded and separated into four categories based on their 10-gene 578 

and hypoxia scores. (B) Kaplan-Meier analyses were performed on the four patient categories 579 

to assess the effects of combined relationship of hypoxia and the signature on overall survival.  580 

 581 

Figure 6. Elevated DNA repair gene expression is associated with an overproliferation 582 

phenotype. (A) Significant positive correlations between individual signature gene expression 583 

and genes involved in cell cycle progression, while negative correlations were observed with 584 

genes involved in cell cycle arrest. Heatmaps were generated using the R pheatmap package. 585 

Cell cycle genes were depicted on the y-axis and the 10 signature genes on the x-axis. (B) 586 

Patients were median-stratified into low- and high-score groups using the 10-gene signature 587 

for differential expression analyses. Enrichment of GO and KEGG pathways associated with 588 

differentially expressed genes were depicted for all six cancers. (C) Investigation of the 589 

relationship between a gene involved in cell cycle checkpoint regulation, TP53, and the 590 
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signature.  Patients were categorized into four groups based on their TP53 mutation status and 591 

10-gene scores for Kaplan-Meier analyses. P values were determined from the log-rank test. 592 

 593 

Table 1. Univariate and multivariate Cox proportional hazards analyses of the 10-gene 594 

signature and additional clinical risk factors associated with overall survival in six cancers.   595 

 596 

Table 2. Univariate Cox proportional hazards analysis of the relation between the 10-gene 597 

signature and hypoxia score.   598 

 599 

Table 3. Univariate Cox proportional hazards analysis of the relation between the 10-gene 600 

signature and TP53 mutation status.    601 
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Supplementary information 602 

 603 

Figure S1. Correlation analyses of 138 prognostic DNA repair genes. Spearman’s correlation 604 

coefficients were determined from pairwise comparisons prognostic genes from 16 cancer 605 

types. Five cancers were highly correlated as shown in the blue area of the heatmap. Numbers 606 

represent correlation coefficient values. Refer to Table S2 for cancer abbreviations.  607 

 608 

Figure S2. Expression distribution of the ten signature genes in tumor and non-tumor samples. 609 

Boxplots overlaying violin plots were used to illustrate tumor and non-tumor distribution in six 610 

cancers: (A) clear cell renal cell, (B) papillary renal cell, (C) liver, (D) lung, (E) pancreas and (F) 611 

endometrium. Nonparametric Mann-Whitney-Wilcoxon tests were employed to determine 612 

whether there were significant differences in expression distributions. Asterisks represent 613 

significant P values: * < 0.05, *** < 0.0001.  614 

 615 

Figure S3. Venn diagram depicts a six-way comparison of the differentially expressed genes (-616 

1 > log2 fold-change > 1, P<0.05) identified from high-score versus low-score patients in all six 617 

cancers. Numbers in parentheses represent the number of differentially expressed genes in 618 

each cancer. The Venn intersection of all cancers indicated that 87 genes were common.  619 

 620 

Table S1. List of 138 DNA repair genes and associated pathways.  621 

 622 

Table S2. Description of TCGA cancer cohorts. 623 

 624 

Table S3. Univariate Cox proportional hazards analysis of the 138 genes in 16 cancers.  625 
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 626 

Table S4. Differentially expressed genes between high- and low-score patient groups in six 627 

cancers. 628 

 629 

Table S5. List of 87 differentially expressed genes that are common in all six cancers.  630 

 631 

Table S6. Enrichr transcription factor protein-protein interaction analysis of the 87 632 

differentially expressed genes.  633 

 634 

Table S7. TP53 mutation analysis in liver, pancreatic, endometrial and lung cancers.  635 
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