Termination of non-coding transcription in yeast relies on both a CTDinteraction domain and a CTD-mimic in Sen1

Han, Z; Jasnovidova, O; Tudek, A.; Kubicek, K; Libri, D; Stefl, R and O. Porrua.

List of supplementary material:

-Supplementary figure 1. -Tables S1, S2, S8, S9, S10 and S11. -Supplementary references.

Material provided as separate files:

-Table S3: quantification of termination defects at snoRNAs in *sen1* Δ *Nter* and *sen1* Δ *Nter* Δ *NIM* mutants.

-Table S4: protein-coding genes upregulated in *senΔNter* relative to the wt.

-Table S5: protein-coding genes upregulated in *sen1*Δ*Nter*Δ*NIM* relative to the wt.

-Table S6: protein-coding genes downregulated in *sen ANter* relative to the wt.

-Table S7: protein-coding genes downregulated in *sen1*Δ*Nter*Δ*NIM* relative to the wt.

Supplementary figure 1: Overexpression of Sen1 does not bypass the requirement of Nrd1 and Nab3 for cell viability. Cells expressing *SEN1* from pGAL in a wt context or combined with deletions of *NRD1* or *NAB3* covered by *URA3*-centromeric plasmids harbouring the respective *NRD1* or *NAB3* alleles were grown in CSM in the presence of galactose to induce overexpression of *SEN1*. Then, cells were plated on CSM containing galactose in the absence or in the presence of 5-FOA to monitor the capacity of cells to lose the *URA3* plasmids. The absence of growth of $\Delta nrd1$ and $\Delta nab3$ cells on 5-FOA plates implies that these genes are still essential even when *SEN1* is overexpressed.

Table S1: Equilibrium binding of Nrd1 CID to Sen1 and Trf4 NIMs monitored by fluorescence anisotropy.

	Sen1 NIM			Trf4 NIM
	Kd (µM)		M)	Kd (μM)
wt	1.2	±	0.02	0.9 ± 0.02
L20D	16.9	±	1.5	13.4 ± 1.2
K21D	8.0	±	0.8	6.1 ± 0.4
S25D	76.1	±	14.2	53.9 ± 8.2
R28D	78.2	±	11.5	63.4 ± 4.0
I130A	7.6	±	0.3	4.5 ± 0.2
I130K	36.7	±	4.6	14.1 ± 1.2
1130N	8.9	±	0.5	6.1 ± 0.3
M126A	1.4	±	0.07	1.1 ± 0.02
R133A	1.8	±	0.08	1.4 ± 0.02
R133D	2.0	±	0.1	1.2 ± 0.05
R133G	1.6	±	0.04	1.3 ± 0.04

	Nrd1 CID-Sen1 NIM complex
NMR distance & dihedral constraints	
Distance restraints	
Total NOEs	2499
Intra-residue	654
Inter-residue	1845
Short	1273
Medium	645
Long	581
Hydrogen bonds	100
Intermolecular distance restraints	65
Total dihedral angle restraints ^a	222
Structure statistics ^b	
Violations (mean and s.d.)	
Number of distance restraint violations > 0.5 Å	0.05 ± 0.22
Number of dihedral angle restraint violations > 15°	1.1 ± 1.2
Max. dihedral angle restraint violation (°)	29.03 ± 27.63
Max. distance constraint violation (Å)	0.027 ± 0.12
Deviations from idealized geometry ^b	
Bond lengths (Å)	0.0037 ± 0.00008
Bond angles (°)	1.673 ± 0.013
Average pairwise r.m.s.d (Å) ^b	
Nrd1 CID (6-82,91-135,143-147,149-153)	
Heavy atoms	1.1
Backbone atoms	0.7
Sen1 NIM (2052-2063)	
Heavy atoms	1.9
Backbone atoms	1.3
Complex	
All complex heavy atoms	2.5
All complex backbone atoms	2.0
Ramachandran plot statistics ^c	
Residues in most favoured regions (%)	96.7
Residues in allowed regions (%)	3.2
Residues in generously allowed regions (%)	0.1
Residues in disallowed regions (%)	0.0

Table S2: NMR and refinement statistics for the Nrd1 CID–Sen1 NIM complex

^a α-helical dihedral angle restraints imposed for the backbone based on the CSI. ^b Calculated for an ensemble of the 20 lowest energy structures. ^c Based on Procheck analysis ².

Table S8: Antibodies used in this work.

Name	Reference/provider	Working dilution	Use
Anti-HA F7	Sc-7392/ Santa Cruz	1:1000	Sen1-HA detection in figures 1A, 1C-D, 6A
Anti-HA 12CA5	11 666 606 001/ Sigma	2.5 ug/reaction	Sen1 coIP in figure 1D
Anti-CBP, calmodulin binding protein	07-482/ Millipore	1:1000	Nrd-CBP detection in figure 1A, Sen1-CBP detection in figure 6B
Anti-Air2	S. Vanacova	1:1000	Air2 detection in figure 1A
Anti-Rpb1 y80	Santa Cruz (not available any more)	1:1000	Rpb1 detection in figure 6A, 6B
Anti-phospho- CTD Ser-5 clone 3E8	04-1572/ Millipore	1:1000	Detection of S5P-CTD of RNAP II in figure 6B
Anti-phospho- CTD Ser-2 clone 3E10	04-1571/ Millipore	1:1000	Detection of S2P-CTD of RNAP II in figure 6B
PAP, peroxidase anti- peroxidase	P1291-1ML/ Sigma	1:3000	Used for Protein A detection on TAP tag.
Anti-Nrd1	Covalab	1:3000	Nrd1 detection in figures 1 and 6
Anti-Nab3	Covalab	1:3000	Nab3 detection in figures 1 and 6
Anti-His	H1029,Sigma	1:2000	His ₆ -GST-Sen1 Cter and His ₆ - GST in figure 6E.

Number	Name	Genotype	Source
DLY17	W303	ura3-1, ade2-1, his3-11,5, trp1-1, leu2-3,112, can1-100	(Thomas and Rothstein, 1989)
DLY671	ВМА	as W303, ∆trp1	F. Lacroute
DLY814	Δrrp6	as W303, rrp6::KAN	(Porrua et al., 2012)
DLY1657	sen1-HA	as BMA, Sen1::HA::KAN	Tudek et al, 2014
DLY2014	nrd1 ∆CID-TAP, sen1-HA	as BMA, nrd1ΔCID (Δ6- 150)::TAP::HIS3	Tudek et al, 2014
DLY2769	sen1∆NIM	as BMA, sen1ΔNIM (Δ2052-2063)	This work
DLY2982	sen1∆NIM-HA	as BMA, sen1ΔNIM (Δ2052- 2063)::HA::KAN	This work
DLY1737	nrd1-TAP, sen1-HA	as BMA, NRD1::TAP::HIS5 Sen1::HA::KAN	Tudek et al, 2014
DLY2622	nrd1-TAP, sen1∆NIM-HA	as BMA, NRD1::TAP::HIS5, sen1∆NIM (∆2052-2063)::HA::KAN	This work
DLY2657	sen1∆Cter-HA	as BMA, sen1∆Cter (∆1930- 2231)::HA::KAN	This work
DLY2658	nrd1-TAP, sen1∆Cter-HA	as BMA, NRD1::TAP::HIS5, sen1∆Cter (∆1930-2231)::HA::KAN	This work
DLY2695	sen1ΔCter-HA, Δrrp6	as BMA, sen1∆Cter (∆1930- 2231)::HA::KAN, rrp6::URA	This work
DLY2694	sen1-HA, Δrrp6	as BMA, sen1::HA::KAN, rrp6::URA	This work
DLY2770	sen1ΔNIM, Δrrp6	as BMA, sen1∆NIM, rrp6::KAN	This work
DLY2767	Δsen1/pFL38-SEN1	as BMA, sen1::KAN, harbouring plasmid pFL38-SEN1	This work
DLY1656	P _{GAL1-} TAP-SEN1	as BMA, TRP1::Pgal::TAP::SEN1	(Porrua et al., 2012)
DLY2778	P _{GAL1-} TAP-sen1∆NIM	as BMA, TRP1::Pgal::TAP::sen1ΔNIM (Δ2052-2063)	This work
DLY2692	P _{GAL1} - TAP-sen1∆Nter	as BMA, TRP1::Pgal::TAP::sen1∆Nter (∆1- 975)	This work
DLY2779	P _{GAL1-} TAP-sen1ΔNter ΔNIM	as BMA, TRP1::Pgal::TAP::sen1ΔNter (Δ1- 975) ΔΝΙΜ (Δ2052-2063)	This work
DLY2060	P _{GAL1-} TAP-SEN1, Δrrp6	as BMA, TRP1::Pgal::TAP::SEN1, rrp6::KAN	(Porrua et al., 2012)
DLY2780	P _{GAL1-} TAP-sen1ΔNIM, Δrrp6	as BMA, TRP1::Pgal::TAP::sen1ΔNIM (Δ2052-2063), rrp6::KAN	This work
DLY2698	P _{GAL1} - TAP-sen1ΔNter,Δrrp6	as BMA, TRP1::Pgal::TAP::sen1∆Nter (∆1- 975), rrp6::KAN	This work
DLY2781	P _{GAL1-} TAP-sen1ΔNterΔNIM, Δrrp6	as BMA, TRP1::Pgal::TAP::sen1ΔNter (Δ1- 975) ΔΝΙΜ (Δ2052-2063), rrp6::KAN	This work
DLY2782	sen1-AID	as BMA,SEN1-AID::KAN::OsTIR1	This work

Table S9: Yeast strains used in this work.

DLY2788	sen1-AID, Δrrp6	as BMA,SEN1-AID::KAN::OsTIR1, rrp6::URA	This work
DLY2724	TAP-sen1/pFL38-SEN1	as BMA, TAP::SEN1, harbouring plasmid pFL38-SEN1	This work
DLY2725	<i>TAP- sen1ΔNter /</i> pFL38- <i>SEN1</i>	TAP::sen1∆Nter (∆1-975), harbouring plasmid pFL38-SEN1	This work
DLY2726	<i>TAP- sen1ΔNterΔNIM</i> /pFL38-SEN1	as BMA, TAP::sen1∆Nter (∆1-975) ΔNIM (Δ2052-2063), harbouring plasmid pFL38-SEN1	This work
DLY3152	P _{GAL1-} TAP-SEN1, Δnrd1/ pRS316-NRD1	as BMA, TRP1::Pgal::TAP::SEN1, nrd1::KAN; harbouring plasmid pRS316-NRD1	This work
DLY3187	P _{GAL1-} TAP-SEN1, Δnab3/ pFL38-Nab3	as BMA, TRP1::Pgal::TAP::SEN1, nab3::KAN; harbouring plasmid pFL38-NAB3	This work
DLY3081	rpb3-FLAG	as BMA, RPB3::3xFLAG::natMX6	This work
DLY3151	rpb3-FLAG, sen1-AID	as BMA, SEN1-AID:KAN::OsTIR1, RPB3::3xFLAG::natMX6	This work

Table S10: plasmids used in this work.

Name	Description	Source
pBS1761	Apr, <i>ori</i> ColE1; plasmid bearing cassette for N-terminal tagging with	(Finoux and
	PGALI-TAP	Séraphin, 2006)
pDL708	Ap ^r , <i>ori</i> ColE1; plasmid bearing cassette for C-terminal tagging with HA	(Finoux and
(pU6H3HA)		Séraphin,
		2006)
pDL772	Ap'; <i>ori</i> ColE1; derivative of pFL38 (URA) bearing yeast <i>SEN1</i>	F. Lacroute
pDL693	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing yeast SEN1	F. Lacroute
pDL703	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆NIM</i>	This work
pETM30	Kan ^r ; oriCoIE1; vector for overexpression of proteins from the T7 promoter	R. Stefl
pDL834	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing sen1∆Nter	This work
pDL835	Apr; oriCoIE1; derivative of pFL39 bearing sen1 Anter ANIM	This work
pDL846	Kan ^r ; oriColE1; derivative of pETM30 carrying the C-terminal domain of Sen1 (aa 1931-2231) under the control of the T7 promoter	This work
pDL848	Kan ^r ; oriColE1; derivative of pETM30 carrying the ∆NIM version of the C-terminal domain of Sen1 (aa 1931-2231) under the control of the T7 promoter	This work
pDL856	Apr; oriColE1; derivative of pFL39 bearing yeast sen1-HA	This work
pDL858	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆NIM-HA</i>	This work
pDL857	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1∆Nter-HA</i>	This work
pDL859	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing <i>sen1</i> Δ <i>Nter</i> Δ <i>NIM-HA</i>	This work
pDL876	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>nrd1CID</i> (aa 1- 153) - <i>sen1</i> ∆ <i>Nter</i>	This work
pDL877	Ap ^r ; <i>ori</i> ColE1; derivative of pFL39 bearing the chimeric <i>nrd1CID</i> (aa 1- 153) - <i>sen1</i> Δ <i>Nter</i> Δ <i>NIM</i>	This work
pRS_NC	Ap ^r ; oriColE1; plasmid bearing CID-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_L20D	Kan ^r ; oriColE1; plasmid bearing CID(L20D)-His6 under the control of	(Vasiljeva et
	the T7 promoter	al., 2008)
pRS_NC_K21D	Kan ^r ; oriColE1; plasmid bearing CID(K21D)-His6 under the control of the T7 promoter	(Vasiljeva et al., 2008)
pRS_NC_S25R	Ap ^r ; oriColE1; plasmid bearing CID(S25R)-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_R28D	Ap ^r ; oriColE1; plasmid bearing CID(R28D)-His6 under the control of the T7 promoter	(Kubicek et al., 2012)
pRS_NC_I130A	Ap ^r ; oriColE1; plasmid bearing CID(I130A)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_I130K	Ap ^r ; oriColE1; plasmid bearing CID(I130K)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_I130N	Ap'; oriColE1; plasmid bearing CID(I130N)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_R133A	Ap ^r ; oriColE1; plasmid bearing CID(R133A)-His6 under the control of the T7 promoter	(Tudek et al., 2014)
pRS_NC_R133G	Ap'; oriColE1; plasmid bearing CID(R133G)-His6 under the control of the T7 promoter	This work
pRS_NC_R133D	Ap ^r ; oriColE1; plasmid bearing CID(R133D)-His6 under the control of the T7 promoter	This work

Table S11: List of oligonucleotides used in this work.

Name	Sequence (5'-3')	Information/use
DL1119	AAGTGACGAAGTTCATGCTA	Forward oligo to generate by PCR a probe to
		detect snR13 read-through region.
DL1367	GGCCCAACAGTATATTCATATCC	Reverse oligo to generate by PCR a probe to
		detect snR13 read-through region.
DL474	GCAAAGATCTGTATGAAAGG	Forward oligo to generate by PCR a probe to detect NEL025C.
DL480	ATCTGACCAGGTCAAGCTAC	Reverse oligo to generate by PCR a probe to detect NEL025C.
DL2505	GTGTGTGGACAATCGATTTGC	Forward oligo to generate by PCR a probe to detect snR33 3'precursor and read-through region
DL2506	GCATTGGCTCGATTGTCAAC	Reverse oligo to generate by PCR a probe to detect snR33 3'precursor and read-through region
DL4178	GCGTGATACTGACCGATACC	Forward oligo to generate by PCR a probe to detect snR82 3'precursor and read-through region
DL4179	TTGCCTTGCTATTATGTGTCC	Reverse oligo to generate by PCR a probe to detect snR82 3'precursor and read-through region
DL4278	GCTTCCATACGAACGGCTCA	Forward oligo to generate by PCR a probe to detect YDR379C-A and CUT526 read-through.
DL4279	AGGGTGTGAAAAGGTGGCAA	Reverse oligo to generate by PCR a probe to detect YDR379C-A and CUT526 read-through.
DL1154	CCTATAACAACAACAACATG	Forward oligo to generate by PCR a probe to detect snR47 RNA.
DL1157	ATAGCCATTAGTAAGTACGC	Reverse oligo to generate by PCR a probe to detect snR47 RNA.
DL2627	ATTCAAAAGCGAACACCGAATTGAC	Reverse oligo used as oligo probe to detect
	CATGAGGAGACGGTCTGGTTTAT	U4 snRNA

Supplementary references:

- Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25, 1189–1191 (2009).
- Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. & Thornton, J. M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. *J. Biomol. NMR* 8, 477–486 (1996).
- Thomas, B. J. & Rothstein, R. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. *Genetics* **123**, 725–738 (1989).
- Finoux, A.-L. & Séraphin, B. In vivo targeting of the yeast Pop2 deadenylase subunit to reporter transcripts induces their rapid degradation and generates new decay intermediates. *J. Biol. Chem.* 281, 25940–25947 (2006).