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ABSTRACT

The SSU rRNA gene is the key marker in molecular ecology for all domains of life, but is largely 

absent from metagenome-assembled genomes that often are the only resource available for 

environmental microbes. Here we present phyloFlash, a pipeline to overcome this gap with rapid, 

SSU rRNA-centered taxonomic classification, targeted assembly, and graph-based binning of full 

metagenomic assemblies. We show that a cleanup of artifacts is pivotal even with a curated reference

database. With such a filtered database, the general-purpose mapper BBmap extracts SSU rRNA 

reads five times faster than the rRNA-specialized tool SortMeRNA with similar sensitivity and higher 

selectivity on simulated metagenomes. Reference-based targeted assemblers yielded either highly 

fragmented assemblies or high levels of chimerism, so we employ the general-purpose genomic 

assembler SPAdes. Our optimized implementation is independent of reference database composition 

and has satisfactory levels of chimera formation. Using the phyloFlash workflow we could recover the 

first complete genomes of several enigmatic taxa, including Marinamargulisbacteria from surface 

ocean seawater. phyloFlash quickly processes Illumina (meta)genomic data, is straightforward to use,

even as part of high-throughput quality control, and has user-friendly output reports. The software is 

available at https://github.com/HRGV/phyloFlash (GPL3 license) and is documented with an online 

manual.

INTRODUCTION

Shotgun metagenomics is a powerful tool to explore the functions of microbial communities, and to 

determine their phylogenetic or taxonomic composition (1, 2). It can avoid biases and artifacts 

associated with PCR-based amplicon methods, such as primer bias (3) and sequence chimerism (4, 

5). Shotgun sequencing also yields more information because it samples from whole genomes rather 

than a single marker. Various approaches have been applied to profile the composition of shotgun 

metagenomic libraries. A common choice is local alignment against reference sequences, which may 

target a specific region in a single gene, (6, 7), curated sets of conserved single-copy genes (8, 9), or 

whole-genome data (10, 11). Others use alignment-free methods such as k-mer matching to classify 

reads (12–14), and some tools also go beyond classification to perform targeted assembly of specific 

genes (15, 16). Regardless of the method that is used for taxonomic or functional profiling, the results 

will be limited by the reference data available. For example, target organisms or their close relatives 

may not yet be represented in the database, and horizontal gene transfer can result in conflicting 

phylogenetic signal, especially in prokaryotic microbes (17, 18). 

In molecular ecology, the gene for the small subunit ribosomal RNA (SSU rRNA) is the most 

important marker because it can be readily used to link sequences to actual cells. The SSU rRNA is 

available in high copy numbers in ribosomes and can be accessed through the well-established 

molecular probing technique of fluorescence in situ hybridization (FISH) (19, 20) Its value in imaging 

based analyses together with its high phylogenetic reliability due to low rates of horizontal transfer has

made the SSU rRNA gene the best-sampled marker in terms of phylogenetic diversity (21). Even with 

the current advances of metagenomics, where drafts of microbial genomes can automatically 
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extracted (“binned”) from metagenome assemblies (22), the SSU rRNA gene has the same essential 

role and is crucial for phylogenetics, imaging, and experimental verification. However, despite all the 

progress on automated binning (23), most metagenome assembled genomes (MAGs) do not even 

contain fragments of the SSU rRNA gene, not to mention the full gene (1, 24).

Ideally, we would like to leverage the vast existing knowledge base of the SSU rRNA gene in 

(meta-)genomics projects for several different outcomes: taxonomic profiling without assembly (6, 7), 

targeted assembly of full-length sequences for phylogenetics and probe design (15, 16, 25, 26), and 

linking SSU rRNA sequences to complete genomes (27). For each of these aims, separate software 

tools have already been developed, each with their own merits and shortcomings (16). However, 

these are ultimately different aspects of the same problem and should be considered together.

Here we describe phyloFlash, an open-source pipeline for the rapid profiling and targeted assembly

of SSU rRNA from metagenomes. We use the pipeline to evaluate the trade-offs in different steps of 

taxonomic profiling and targeted assembly, starting from the preparation of the reference database, to 

the extraction and assembly of target reads, and finally to linking the assembled sequences to 

genome bins. We compare the performance of rRNA-specialized vs. general-purpose read mappers 

and assemblers, by using both simulated read data and real-world environmental metagenomes. We 

also reanalyze published data to show how the pipeline can be used to assess and compare the 

composition of metagenomes. Finally, we show how genome bins from metagenomes can be linked 

to SSU rRNA sequences, to bridge the divide between genome-centric metagenomics and 

experimental molecular ecology. 

MATERIAL AND METHODS

Implementation of phyloFlash

The phyloFlash pipeline is written in Perl 5, with additional scripts in Perl and R for downstream 

analyses such as visualizations or multi-sample comparisons. The pipeline is outlined in Figure 1, and

a manual is available at https://hrgv.github.io/phyloFlash/. 

Database filtering and preparation. The pipeline uses the SSU Ref NR99 database from the SILVA 

project (https://www.arb-silva.de) (28). Sequences containing fragments of the large subunit (LSU) 

rRNA are detected with a hidden Markov model (HMM) from a customized version of Barrnap (E-

value cutoff 10-10, >10% of total model length) (https://github.com/tseemann/barrnap), and are 

removed. Sequence regions containing low-complexity sequence or repeat k-mers are masked with 

bbmask.sh (from BBmap, https://sourceforge.net/projects/bbmap/) using k-mer lengths between 4 and

8 to detect both repeats and low-complexity, with a minimum masked sequence length of 20 bp, and 

entropy cutoff of 0.7. Known sequencing or cloning vectors are filtered by matching against the NCBI 

Univec database (ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/) with bbduk.sh (BBmap), using k-mer length 

27 (down to 11 at ends of sequences), maximum Hamming distance of 1, and discarding sequences 

below 800 bp after trimming. The sequences are converted from RNA to DNA alphabet, and 

ambiguous bases are replaced by random base characters. The sequences are then clustered with 

VSEARCH cluster_fast at 99% (“NR99”) and 96% identity (“NR96”) (29). The NR99 sequences are 
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indexed for BBmap with bbmap.sh, and in UDB format with VSEARCH (v2.5.0+). The NR96 

sequences are indexed for Emirge (15) with Bowtie (30), and for SortMeRNA (31) with indexdb_rna 

(from SortMeRNA). The script phyloFlash_makedb.pl automates the database preparation steps 

described above. phyloFlash_makedb.pl can be used to update to new releases of the SILVA 

database and has been tested with the latest available SILVA release (132 at the time of submission) 

SSU rRNA read extraction. The inputs for phyloFlash are shotgun metagenomic paired-end libraries, 

which have been generated by an Illumina sequencer. SSU rRNA reads can be extracted either with 

BBmap or SortMeRNA. 

For BBmap, the input reads are aligned (mapped) against the filtered NR99 database, with 

minimum identity 70% by default, retaining all ambiguous alignments if there are multiple best-scoring 

hits. Insert-size and mapping-identity histograms are also reported to evaluate library quality. Output is

written in SAM and Fastq formats, retaining all read pairs where at least one read could be aligned. 

Known limitations in the BBmap implementation of SAM bitwise flags and read name handling are 

addressed. 

For SortMeRNA, the input reads are first reformatted to uncompressed interleaved Fastq format 

with reformat.sh (BBmap). The reads are then aligned against the filtered NR96 database, using 

min_lis of 10 and E-value cutoff 10-5, reporting the 10 best alignments. Aligned reads are reported in 

SAM and Fastq formats. The SAM file is further processed to edit the bitwise flags, as SortMeRNA 

does not report complete pairing information in its implementation of the SAM format.

Taxonomic summary from read mapping. The edited SAM files from the read extraction step are read 

into memory. For each read pair, the taxonomic affiliation is assigned by taking the last common 

ancestor (LCA) of the taxonomy strings of all the database hits, using the SILVA taxonomy. The 

counts of LCA-consensus taxa for the library are then summarized at a user-specified taxonomic level

between Domain and Species (Class by default). 

Assembly of full-length SSU rRNA sequences. The extracted reads are assembled to full-length 

sequences using SPAdes (32) and optionally with Emirge. 

For SPAdes, k-mer lengths are chosen based on the input read lengths. For reads ≥ 134 bp, k-mers

of length 99, 111, and 127 bp are used. For shorter reads, the k-mer lengths used are next lower odd 

number to the read length minus 27, 17, and 7 bp. After assembly, contigs are screened for SSU 

rRNA sequences with HMM models for Bacteria, Archaea, and Eukaryota as implemented in the 

customized version of Barrnap. SSU rRNA regions under the E-value cutoff of 10-100 and at least 0.6 

times the full-length model are extracted with Bedtools (33).

For Emirge, read pairs are run as single reads when their length is > 152 bp. For paired-end input, 

the average insert size estimated from the initial mapping with BBmap is used if the insert size is 

greater than 2.2 times the read length, otherwise a minimum insert size of 2.2 times the read length 

plus 0.5 is used. Emirge is run with 40 iterations.

To estimate the proportion of the extracted reads that were successfully assembled, the reads are 

re-mapped to the assembled sequences with bbmap.sh (BBmap) in fast mode using minimum identity

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2019. ; https://doi.org/10.1101/521922doi: bioRxiv preprint 

https://doi.org/10.1101/521922
http://creativecommons.org/licenses/by-nc-nd/4.0/


of 98%. The closest-matching database sequences are also found with usearch_global (34) as 

implemented in VSEARCH at minimum identity 70%. Assembled sequences and their closest 

database hits are then aligned with Mafft (35) to produce an alignment and guide tree.

Reporting of results. Results are reported in both plain-text and HTML formats; the HTML report 

features interactive SVG-formatted graphics and allows the results to be shared easily in a single file 

that is compatible with modern web browsers without additional software. The report contains the 

taxonomic summary, mapping statistics, tree and tables of assembled full-length sequences and their 

closest database hits. All outputs, including mapping files and assembled sequences, can also be 

compressed into a single archive file at the end of the phyloFlash run.

Comparison of multiple samples. The phyloFlash results of multiple metagenomes can be graphically 

compared with the phyloFlash_compare.pl script. This uses the mapping-based taxonomic summary 

to generate either a barplot or heatmap of taxa for each library, at a user-specified taxonomic level. 

The clustering of libraries in the heatmap can either treat each taxon as independent, or account for 

the taxonomy in calculating the distance matrix, using a Unifrac-like metric.

The abundance-weighted taxonomic Unifrac-like metric treats the hierarchical taxonomy as a tree 

where each taxon is represented by a node i associated with a branch of unit length. The raw 

weighted Unifrac value u of (36) therefore reduces to u=∑i

n

| AiAT −
Bi
BT |  where n is the total number

of nodes in the tree, Ai and Bi are the numbers of sequences in samples A and B respectively 

classified to node i or its descendants, and AT and BT are the total numbers of sequences in samples 

A and B respectively. Furthermore, as the taxonomy tree is ultrametric (all branches of the same 

length), the parameter dj of (36) reduces to the taxonomic level at which the comparison is performed,

e.g. 4 for ‘Order’ in the Linnaean hierarchy. Then the scaling factor D = 2d where d is the taxonomic 

level, and the normalized abundance-weighted taxonomic Unifrac-like metric is u '=
u
2d

.

Evaluation of unfiltered vs. filtered database

Database preparation and indexing. The SILVA release 132 SSU Ref NR99 database was 

downloaded from arb-silva.de in Fasta format. For the unfiltered database, sequences were clustered 

at 96% identity with VSEARCH v2.5.0 (“NR96”) and converted from RNA to DNA alphabet, and any 

ambiguous bases were replaced by random base characters. Indices were built for BBmap v37.99 

and SortMeRNA v2.1b with default parameters. The filtered database was prepared as described 

above for the phyloFlash pipeline. Read mapping for this comparison was performed with E-value 

cutoff 10-5 for SortMeRNA (this is the default cutoff used by the Matam assembler) and minimum 

mapping identity 70% for BBmap on 10 metagenomic libraries from the Tara Oceans project, using 

only the first 10 million read pairs per library (Supplementary Table 3) (37). 
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Calculation of sequence entropy and redundancy. The number of possible DNA k-mers of length k is

N=4k . For a sequence of length L, k-mers are counted by applying a sliding window of width k 

across the sequence. The total occurrences of a given k-mer i is wi. The total count is

∑
N
w i=L−k+1 . The probability of each k-mer is pi=w i /∑i

N
wi . Hence the entropy of the 

sequence using k-mer length k is H=−∑i

N
pi log2 pi .

The redundancy R=1−H / log2 A , where A=N  if L−k+1>N  and A=L−k+1  otherwise. 

This is because if L is short and k is long, the maximum possible entropy of the sequence is 

constrained by the length of the sequence. Redundancy is thus always between 0 (maximum entropy)

and 1 (zero entropy). The calculation was performed on the SAM file from each mapping with the 

script readEntropy.pl (https://github.com/kbseah/misc_tools/).

Evaluation of read-mapping and assembly methods

Simulated metagenome. Shotgun metagenome paired-end reads were simulated from 10 bacterial 

RefSeq genomes (Supplementary Table 1) with the software package ART v2.5.8 (38) at average 50-

fold coverage per genome, with the first library using the Illumina HiSeq2000 error profile (100 bp read

length, insert size 220 ± 110 bp), and the second library using a HiSeq2500 profile (150 bp, insert size

300 ± 110 bp). Plasmid sequences were excluded from the simulation. To compare the effect of 

different mapping settings on read extraction, the phyloFlash pipeline (v3.3) was run with either 

BBmap (at three different minimum identity cutoffs: 50%, 60%, and 70%) or with SortMeRNA (at three

different E-value cutoffs: 10-5, 10-7, 10-9), and using the filtered SILVA 132 SSU Ref database as 

described above (“Implementation of phyloFlash pipeline”). Overlap between the reads aligned by 

each method was calculated with the script samDiff.pl (https://github.com/kbseah/misc_tools/). 

Coverage of genomic features was calculated with featureCounts v1.5.2 using the RefSeq feature 

tables and the SAM-formatted alignment produced by ART to track the extracted reads back to the 

original genomes. Timings for BBmap and SortMeRNA read extraction given in Supplementary Table 

2 were based on runs on the same computer using eight processors (Intel Xeon CPU E5-1650 v2, 3.5

GHz).

SPAdes v3.11.1 and Emirge v0.60 were used to assemble extracted reads within the phyloFlash 

pipeline, using the parameters described above. The library was also separately assembled with 

Matam v1.4.0 (16) for comparison, using the filtered SILVA 132 SSURef NR96 database, extracting 

reads with SortMeRNA at E-value 10-5, and with other parameters at default. The scaffolds assembled

by each tool from the read set extracted by SortMeRNA at E-value 10-5 were aligned against SSU 

rRNA sequences identified from the original genome assemblies by Barrnap, using Mafft v7.187 (FFT-

NS-2 strategy) (35). The phylogeny was inferred from the alignment with FastTree v2.1.7 (39) using 

the Jukes-Cantor substitution model, and CAT approximation with 20 rate categories. 
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Environmental metagenomes. 85 metagenomic libraries from the Tara Oceans project (37) were used 

to evaluate performance on real-world data (Supplementary Table 3). For each library, only the first 

10 million read pairs were used, to control for the effect of library size on assembly quality. Different 

mapping settings were tested as described above. Assembly with SPAdes, Emirge, and Matam was 

performed as described above. The uchime_ref chimerism score (5) was calculated for each 

assembled SSU rRNA gene sequence with VSEARCH v2.5.0, using the filtered SILVA 132 SSURef 

NR99 database as reference.

Usage examples

Low-diversity metagenome and reference database completeness. The metagenomic library 

(accession PRJEB29979) of a small marine flatworm and its associated symbiotic bacterium was 

processed with phyloFlash with the option -everything (BBmap mapper, SPAdes and Emirge 

assemblers), using either the default SILVA 132 SSURef database or version of the database where 

all sequences with ≥87% identity to the flatworm and symbiont SSU rRNA genes were removed. 

Sequences were also assembled with Matam as described above for the simulated metagenome. The

library was also processed with Kaiju v1.4.5 (13) using the NCBI nr protein database prepared with 

the Kaiju script makeDB.sh -e (prokaryotes and microbial eukaryotes), in “greedy” mode allowing up 

to 5 mismatches. Kaiju was run again using only reads mapping to the complete symbiont bacterial 

genome (see below for the binning procedure), which were extracted with bbmap.sh (“fast” mode). 

The Kaiju output was summarized at the taxonomic class level.

Comparison of multiple environmental metagenomes. Publicly available metagenomic libraries from 

seven gutless oligochaete worm species, whose symbiotic bacteria had previously been characterized

by Sanger-sequenced clone libraries of PCR-amplified SSU rRNA (Supplementary Table 5), were 

processed with phyloFlash with the option -everything. Samples were compared as a heatmap on the 

basis of mapping-based taxonomic composition at the order level using phyloFlash_compare.pl with 

options --task heatmap,barplot --level 4. 

SSU rRNA-based binning of microbial genomes. Libraries from the simulated metagenome (150 bp), 

Paracatenula and gutless oligochaete animal metagenomes, and selected Tara Oceans 

metagenomes were assembled for the SSU rRNA-targeted genome binning example (Supplementary 

Table 6). Each assembly was performed with the same protocol, using both the Megahit v1.1.3 (40) 

and MetaSPAdes v3.12.0 (32) assemblers (code in Supplementary Information). Each read library 

was first screened with phyloFlash (option -everything). Sequencing adapters and low-quality bases 

(minimum Phred score 2) were trimmed from both ends of the reads with bbduk.sh (from BBmap 

suite). Reads with k-mer depth below 6 (k=31) were filtered out with bbnorm.sh (BBmap). The 

trimmed, high-k-mer-coverage reads were assembled with Megahit using minimum k-mer length 21, 

maximum k-mer 141, with steps of 20; the Fastg file was generated with megahit_toolkit contig2fastg 

from the k=141 contigs, and binned with phyloFlash_fastgFishing.pl, keeping only SSU rRNA above 

60% full-length and contig clusters above 100 kbp total length. The reads were also assembled with 
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MetaSPAdes with k-mer lengths 21,33,55,77,99,127, and binned in the same manner. Bin quality 

(completeness, contamination) was estimated with CheckM v1.0.11 using the taxonomy workflow and 

Bacteria domain marker set.

RESULTS AND DISCUSSION

Reference database artifacts influence targeted read extraction

The preparation of the reference database affects the number and quality of reads extracted for 

downstream analysis, even when using a curated resource such as the SILVA databases. Although 

potential contaminants and low-complexity sequences represented only a small fraction of the total 

sequences, they had a disproportionate effect on the reads recovered. In release 132 of the SILVA 

SSU Ref NR99 database (total 695171 sequences, 1.006 Gbp), we detected 42.88 kbp (in 151 

sequences) of matches to partial LSU rRNA, and 1.102 Mbp (in 56075 sequences) of potential vector 

contamination. Furthermore, sequence-repeat and low-complexity regions constituted 23.31 kbp. 

Fewer reads were extracted with a filtered database, but their quality was improved. For example, 

in library ERR315856, 32937 reads were recovered by SortMeRNA (E-value 10-5) before filtering, but 

only 17227 afterwards. Moreover, the mean informational redundancy decreased from 0.0748 to 

0.0151, indicating that fewer low-complexity sequences were extracted (Figure 2). The degree of 

impact from filtering depends on the metagenome library composition, but similar results were 

observed when reads were extracted with BBmap, and for other metagenome libraries 

(Supplementary Figure 1). Subsequent results reported here used the filtered database.

Some SSU rRNA genes may indeed contain low-complexity regions, nonetheless it is still desirable 

to remove them from the reference database. This is because any low-complexity sequence in the 

library (e.g. from eukaryotic genomes), regardless of origin, will tend to map to these regions. This 

would skew any analysis of the taxonomic composition of a metagenome that is based on mapping to 

reference sequences, and could also affect assembly and other downstream analyses.

BBmap provides similar sensitivity and higher selectivity vs. SortMeRNA at five-fold faster 
runtimes

Different tools have been developed for extracting SSU rRNA reads from shotgun metagenomes. 

Those that depend on alignment to a reference database (“mapping”) can be used to derive an 

approximate taxonomic assignment from the closest-matching reference sequences, which is not 

possible with model-based methods (e.g. HMMs or covariance models). We compared two reference-

based tools for read extraction: SortMeRNA, originally designed to identify rRNA reads in 

metatranscriptomes (31), and BBmap, a general-purpose mapper. 

The performance of these read extraction tools was dependent on their stringency settings (E-value

cutoff for SortMeRNA, minimum mapping identity for BBmap), as well as properties of the read library 

such as read length, insert size (for paired end reads), and error profile. We simulated two Illumina 

paired-end metagenomes from the same ten RefSeq bacterial genomes (Supplementary Table 1): a 

HiSeq2000 library with 100 bp reads (220 ± 110 bp insert size, mean ± standard deviation) and a 

HiSeq2500 library with 150 bp reads (300 ± 110 bp insert size). In terms of their sensitivity, i.e. the 
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fraction of reads originating from annotated SSU rRNA features that they could recover, both tools had

a similar performance (ca. 94–96%, depending on settings) with 100 bp reads, and SortMeRNA 

performed slightly better (96–97%) than BBmap (93–96%) with 150 bp reads (Figure 3, 

Supplementary Table 2). However, in terms of selectivity, i.e. the proportion of true SSU rRNA reads 

among the total reads recovered, BBmap performed better with 150 bp reads than 100 bp reads (86–

95% vs. 82–92%) whereas SortMeRNA performed worse (73–82% vs. 82–89%). The main source of 

false positive hits were tRNA genes (Figure 3). BBmap was also about five-fold faster than 

SortMeRNA when run on the same machine (Supplementary Table 2).

SortMeRNA can yield more assembled reads than BBmap with environmental metagenomes

In real metagenomic libraries, the origin of each read is not known a priori. The extraction of SSU 

rRNA reads can only be evaluated indirectly, by comparing the overlap in reads recovered by both 

tools. An alternative measure for the quality of read extraction is the fraction of extracted reads that 

can be assembled to full-length gene sequences. We performed both comparisons with 85 

environmental metagenomes from the surface ocean seawater habitat (Supplementary Table 3).

More restrictive settings (lower E-value cutoff for SortMeRNA, higher minimum identity for BBmap) 

resulted in more overlap between the reads recovered by both tools, with a mean 87.2% overlap for 

the most restrictive settings tested (SortMeRNA E-value 10-9, BBmap 70% min. identity) vs. a mean 

66.6% overlap for the least restrictive settings tested (10-5, 50%) (Figure 4). More permissive settings 

for a given tool resulted in more reads extracted only by that tool (Supplementary Figure 2). Similarly, 

more restrictive settings resulted in a higher fraction of reads that could be assembled into full-length 

SSU rRNA sequences, e.g. for SortMeRNA, the mean fraction was 45.4% at E-value cutoff 10-9 vs. 

40.6% at E-value 10-5, and for BBmap, mean 41.1% at minimum mapping identity 70% vs. 34.2% at 

>50% minimum identity. This can be seen in Figure 4b as the slope of the relationship between the 

number of assembled reads vs. the total extracted reads increased as settings became more 

restrictive, irrespective of the extraction tool. 

The absolute number of reads that can be assembled does not vary much for most libraries with the

cutoff settings, and on average, SortMeRNA performs better than BBmap in extracting reads that can 

be assembled, with this improvement being more pronounced for some libraries (Supplementary 

Figure 3). The mean ratio of assembled reads extracted by BBmap to SortMeRNA is between 85.9% 

to 90.6% depending on the program settings being compared (Supplementary Table 4), but for more 

than half the libraries, both BBmap and SortMeRNA have comparable performance: out of the 81 

libraries with a nonzero number of assembled reads, the BBmap:SortMeRNA ratio was >90% for 47 

libraries, and >95% for 37 libraries. 

We chose BBmap as the default read extraction tool as it was much faster in our tests with both 

simulated and real metagenomes and had similar performance in most cases. For more detailed but 

time-intensive analyses, and to investigate the possibility of highly-divergent taxa by targeted 

assembly, both SortMeRNA and more permissive settings for both tools can be tested. For BBmap, 

this comes with the caveat that the taxonomic summary would likely become less reliable. More 
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permissive settings for initial read extraction may increase the probability of false positives, but can 

also make it possible to detect possible distant relatives. Given the popularity of SSU rRNA as a 

phylogenetic marker, and that SSU rRNA sequences in public databases represent the accumulated 

results of several decades of taxon sampling, the more restrictive settings should be adequate for the 

routine assessment of taxonomic composition using read-mapping hits to reference sequences. 

Defaults of E-value < 10-9 for SortMeRNA and minimum identity >70% for BBmap were therefore 

chosen for the phyloFlash pipeline. 

General-purpose assembler SPAdes yields longer and more divergent scaffolds at acceptable 
levels of chimerism

Existing software tools that have been developed for the targeted assembly of SSU rRNA sequences 

employ various algorithms and reference data (Table 1). The ideal assembler should have the 

following properties: be able to assemble full-length gene sequences, while avoiding chimeric 

assemblies, be able to assemble highly-divergent sequences, and yet differentiate between closely-

related strains or paralogs. In reality, optimizing for one metric may preclude another. For example, 

attempting to recover strain-level variation will result in more fragmented assemblies, because insert 

sizes from Illumina shotgun libraries are usually too short to resolve full-length sequences that only 

differ in the variable regions of the SSU rRNA gene.

We compared three different assemblers, two targeted-assembly tools Emirge (15) and Matam (16)

and the general-purpose genome assembler SPAdes (32), on SSU rRNA reads extracted with 

SortMeRNA using the filtered SILVA 132 SSURef NR96 reference database and E-value cutoff 10-5. 

To ensure a uniform comparison, we used only sequences matching at least 60% of a full-length SSU 

rRNA HMM model.

We first tested the assemblers on the same simulated metagenome previously used to test read 

extraction. This dataset originally contained a total of 25 SSU rRNA gene copies from ten species, 

which reduced to eleven sequences when clustered at 99% identity (Supplementary Table 1). SPAdes

assembled the same ten scaffolds (one per genome) each time from both the 100 and 150 bp 

libraries, whereas the scaffolds assembled by Emirge and Matam differed between the two libraries 

(Supplementary Figure 4). Although Emirge also assembled ten scaffolds from each library, some 

were chimeric sequences that did not have a close match to any of the original sequences. Scaffolds 

assembled by Matam were often fragmented, e.g. from the 100 bp library, full-length sequences were 

not assembled for four genomes. 

Some organisms have multiple SSU rRNA gene copies which may be only slightly divergent and 

pose a challenge to assembly. Included in the simulated metagenome was Escherichia coli K-12 

MG1655 which has seven copies that fall into two clusters at 99% identity. SPAdes only assembled 

one version, whereas Matam assembled both (Emirge assembled none). However Matam also 

assembled more chimeras and fragments that clustered with the genuine E. coli sequences, and the 

sequences differed between the 100 bp and 150 bp libraries (Supplementary Figure 4). This suggests

that reference-based assemblers like Emirge and Matam are more sensitive to the input read length 

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 17, 2019. ; https://doi.org/10.1101/521922doi: bioRxiv preprint 

https://doi.org/10.1101/521922
http://creativecommons.org/licenses/by-nc-nd/4.0/


or insert size, and also may produce spurious assemblies, especially with clusters of close 

sequences, and are hence less consistent.

When tested against the real-world environmental metagenomes, there was a strong linear 

relationship between the number of SSU rRNA reads extracted per library and the number of scaffolds

(Emirge R2 = 0.683; Matam 0.558; SPAdes 0.669; p < 2×10-16 for all, Figure 5). Emirge assembled the 

most scaffolds per library (Emirge mean 16.9; Matam 6.95; SPAdes 7.48), but performs poorly by 

other metrics. Emirge scaffolds have more ambiguous bases (Emirge mean 2.775 Ns per scaffold; 

other assemblers 0), and are more likely to be chimeric (Emirge mean uchime_ref score 2.65; Matam 

0.137; SPAdes 1.71). Matam scaffolds have the lowest chimerism scores, but are shorter (mean 1193 

bp) than those from Emirge (1420 bp) or SPAdes (1368 bp). Matam scaffolds also have on average 

high identity to reference sequences in the database (Matam mean 99.8%; Emirge 97.7%; SPAdes 

99.0%).

Chimeric sequences are an acknowledged problem and steps are taken to flag them in SILVA (28) 

but it is not possible to eliminate them entirely as the data ultimately comes from the wider scientific 

community. Chimera detection by reference-based methods, such as the uchime_ref score, are 

dependent on the reference database being free of chimeric sequences and having sufficiently close 

relatives to the query sequence. However, this cannot be guaranteed for public databases, where the 

deposited sequences have been assembled by different methods and tools, including reference-

based assemblers that are known to produce chimeras, such as Emirge (16). Once chimeric 

sequences have been established in the reference database, subsequent chimerism scoring becomes

less reliable. Based on our observed uchime_ref scores, some of the sequences assembled by either 

Emirge or SPADes may turn out to be chimeric, but each case will likely need to be examined 

separately. 

Although Matam appears to be optimized for minimizing chimerism, this is at the expense of 

assembling more fragmentary scaffolds, and possibly overlooking SSU rRNA sequences that do not 

have a close relative in the reference database. SPAdes was therefore selected as the default in the 

phyloFlash pipeline as it yields a compromise between these two extremes, assembling longer 

scaffolds that are potentially more divergent as it is not dependent on a reference database. 

SSU rRNA-based metagenome analysis with phyloFlash

We designed phyloFlash (https://hrgv.github.io/phyloFlash/) for the rapid screening of SSU rRNA 

sequences in metagenomic libraries, through both a mapping-based overview of the taxonomic 

composition and full-length targeted assemblies. phyloFlash implements the database filtering 

described above, and allows the user to choose between different mapping tools (SortMeRNA or 

BBmap) and assemblers (Emirge and/or SPAdes), to evaluate the various trade-offs discussed above 

in a consistent way. The results and summary statistics are formatted as standalone HTML files, to 

make sharing and reporting easier. Additional utilities are also provided to compare the phyloFlash 

results from different libraries based on their taxonomic composition, e.g. graphically with bar plots or 

heat maps, or numerically as a distance matrix.
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The default settings of phyloFlash have been chosen to allow quick run times on metagenomes of 

low to moderate diversity that have been sequenced as paired-end reads on Illumina platforms. High-

diversity samples or those with uneven coverage, such as multiple displacement amplification libraries

or metatranscriptomes, would likely need parameter optimizations. 

Here, we present examples of how phyloFlash can be used to analyze a single metagenome, to 

compare multiple samples, and as part of a genome binning pipeline. Example commands to 

reproduce the phyloFlash runs are given in Supplementary Information.

Low-diversity metagenome and reference database completeness. We used a low-diversity, natural 

metagenome of known composition – a species of the marine catenulid flatworm Paracatenula sp. – 

to evaluate the effect of reference database completeness on the taxonomic composition and targeted

assembly reported by the phyloFlash pipeline. Each species from this flatworm genus has an obligate 

symbiosis with a corresponding species of intracellular bacteria from the candidate genus Riegeria 

(Alphaproteobacteria: Rhodospirillaceae), which makes up ca. 40% of the biomass (41). The 

sequence library is hence predominantly composed of two genomes, one eukaryotic and one 

prokaryotic. 

The majority of reads recovered by phyloFlash were either classified as Animalia (79.5%) or 

Rhodospirillales (17.8%), based on their best mapping hits to the SILVA reference database 

(Supplementary Figure 5). Each of the two assemblers included in the phyloFlash pipeline, SPAdes 

and Emirge, assembled full-length SSU rRNA sequences of both target organisms. This was expected

because SSU rRNA sequences with >99% identity to the targets were already available in the SILVA 

database. 

When SSU rRNA sequences >87% identical to those of the target organisms were removed from 

the reference database, which is equivalent to removing relatives up to the family level (21), targeted 

assembly could still yield a consistent picture of the metagenome composition, but reference-based 

classification of the extracted reads was less reliable. SPAdes assembled the same two full-length 

sequences as before, whereas Emirge only assembled a partial animal 18S rRNA sequence (962 bp, 

of which 203 were Ns), and no bacterial sequences (Supplementary Figure 6). The read classification 

based on mapping still assigned the majority of SSU rRNA reads to Animalia (75.5%) but only 1.5% to

Rhodospirillales. Instead there was a higher proportion assigned to unclassified Alphaproteobacteria 

(9.6%), unclassified Proteobacteria (3.2%), or other alphaproteobacterial taxa (5.0%) (Supplementary 

Figure 5). 

In comparison, the assembler Matam, which aligns contigs to the SSU rRNA reference database 

during scaffolding, produced fragmented assemblies when relatives were excluded from the reference

database. Four sequences (508 to 740 bp) corresponded to the animal, and two (647 and 1043 bp) to

the bacterium (Supplementary Figure 6). When the complete reference database was used, both the 

full-length target SSU rRNAs were assembled by Matam. This illustrates a possible drawback of 

reference-guided assembly approaches, such as those used by Emirge and Matam, in that their 

assemblies can be fragmented or incomplete when the target sequence is too divergent from existing 

reference sequences.
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The lack of reference data from close relatives can also affect read classifiers that target whole-

genome or protein-coding sequences. We could test the effect of reference data availability, as at the 

time of writing, Riegeria genome data were not yet publicly released. Furthermore, metagenomic read

classifiers like Kaiju (13) and Kraken (14) include only microbial sequences as reference data but 

exclude animals and other multicellular eukaryotes. Kaiju assigned 17.4% of the reads to a taxonomic

order, of which the most abundant taxa were Rhodospirillales (2.6%), fungal Glomerales (1.5%), and 

alphaproteobacterial Rhizobiales (0.88%) (Supplementary Figure 5). When only reads originating from

the Riegeria genome were used as input, 14.7% could not be assigned to a taxonomic order, and 

30.7% were classified as Rhodospirillales. At the class level, 55.0% were classified as 

Alphaproteobacteria. 

SSU rRNA-based metagenome profiling therefore remains a powerful complement to read 

classifiers that use whole-genome data. Although the SSU rRNA makes up only a small percentage of

total read data in most metagenomes, the reference databases for this gene are more 

phylogenetically representative than their equivalents for whole-genome data, particularly for 

eukaryotes. When samples contain divergent taxa whose close relatives are not represented in the 

reference database, taxonomic profiles based on SSU rRNA read classification may be misleading or 

inconsistent, and targeted assemblers that depend on alignment to a reference database may perform

poorly, as shown in this example. Misclassification of reads could be exacerbated by inconsistencies 

between the taxonomy and the actual gene phylogeny (42). However, if they are sufficiently well-

represented in the metagenome, full-length SSU rRNA sequences can still be assembled for divergent

taxa by reference-independent assemblers, such as SPAdes.

Comparison of multiple metagenome samples. The taxonomic summary produced by the phyloFlash 

pipeline permits a rapid comparison of multiple metagenomes at a coarse-grained level, which can be 

followed by a finer-grained examination of specific taxa using the assembled sequences. To 

demonstrate the comparison of multiple samples, we applied the phyloFlash pipeline to metagenomes

from six species of marine oligochaete worms of the genera Olavius and Inanidrilus. Each worm 

species in these genera has multiple species of symbiotic bacteria, with the most abundant symbiont 

being typically from the candidate genus Thiosymbion (Gammaproteobacteria: Arenicellales) (43). 

These worm species were chosen because their symbiont diversity is relatively low (no more than six 

bacteria per host species), and they have been characterized in previous studies by Sanger 

sequencing of SSU rRNA clone libraries and FISH (Supplementary Table 5) (44–49). Publicly-

available sequencing data were directly downloaded and processed with phyloFlash using the script 

ENA_phyloFlash.pl that is provided with phyloFlash (Supplementary Information).

The results files from phyloFlash were directly used by the phyloFlash_compare.pl script to plot a 

synoptic overview of the read-mapping-based taxonomic composition for all samples, which can either

be a heatmap (Figure 6) or barplot. Certain bacterial taxa occurred in multiple animal species and 

hence were likely to represent secondary symbionts, e.g. Desulfobacterales, Rhodospirillales, and 

Spirochaetales. The samples also fell into two clusters, one where Desulfobacterales and 
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Spirochaetales were both present, and the other where Alphaproteobacteria (especially 

Rhodospirillales) were more abundant.

The full-length sequences produced by targeted assembly can give more specific information about

the most abundant members of each metagenome, compared to the mapping-based taxonomic 

overview. Most of the previously-characterized symbiont SSU rRNA sequences were recovered from 

the metagenomes by targeted assembly with the phyloFlash pipeline, and those that were not 

recovered have been described as likely facultative symbionts (Supplementary Table 5). The 

metagenomes also contained bacterial SSU rRNA that were not previously reported from these host 

animals. Some had high sequence identity to known planktonic or sediment bacteria, e.g. Vibrio 

tasmanensis and Psychrobacter sp. from the Olavius loisae library, and hence may have been 

contamination from environmental bacteria. Each phyloFlash report file hyperlinks to GenBank 

records for the closest reference sequences to each assembled SSU rRNA sequence, for convenient 

browsing and comparison.

Assembly graph and SSU rRNA-based binning of microbial genomes. The SSU rRNA gene is an 

essential tool in microbial ecology, being used as a phylogenetic marker, and as a target for molecular

probing to visualize specific taxa or species in environmental samples (19, 50). rRNA-targeted 

molecular ecology previously involved PCR amplification of the gene with specific primers, followed by

one or more iterations of phylogenetic analysis, primer/probe design, microscopy, and PCR, the so-

called rRNA cycle approach. Shotgun metagenomics can also yield full-length SSU rRNA sequences, 

assembled by phyloFlash or other tools, which can then be used as input into the “rRNA cycle”. In 

addition, microbial genomes can be “binned” from metagenome assemblies (metagenome-assembled

genomes, or MAGs), offering functional information not otherwise accessible through the classical 

rRNA cycle. 

However, MAGs often lack SSU rRNA sequences, as observed in several recent studies (1, 24). 

The SSU rRNA gene itself is difficult to assemble, because the gene has several highly conserved 

regions. These conserved regions lead to sets of shared k-mers among the SSU rRNA sequences 

present in the read pool that confound the assembly graph structure and eventually cause fragmented

assemblies. Even if a full-length SSU rRNA gene is assembled, it may be difficult to assign to a 

specific MAG bin because the rRNAs often have multiple copies, that result in the rRNA genes being 

assembled into separate contigs from the rest of the genome. In addition, binning strategies often 

cannot assign such rRNA contigs to their correct bins because the rRNA genes are compositionally 

different. Coverage-based binning approaches also have similar problems, again due to the higher 

and variable copy number of rRNA genes. Although MAGs without SSU rRNA genes can still be 

phylogenetically informative and lead to the discovery of new microbial diversity (51), the lack of an 

SSU rRNA means that these genomes cannot be linked to known clades that have been defined on 

the basis of SSU rRNA sequences (21), nor can they be targeted by molecular probing for 

visualization or sorting (52).

To counter these problems, and to incorporate MAGs into the rRNA cycle of molecular ecology, we 

implemented a gene-targeted and assembly graph-based binning approach to assign rRNAs to 
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genome bins. We used phyloFlash and two metagenome assemblers, Megahit (40) and MetaSPAdes 

(32), which both produce a graph-based representation of the assembly in the Fastg format 

(http://fastg.sourceforge.net/). This reports branching or circular connections between contigs, which 

can be exploited for genome binning in an automated and systematic fashion, but which would not be 

reported when the assembly is resolved into linear scaffolds. Each metagenome (Supplementary 

Table 6) was profiled with phyloFlash, and then assembled with Megahit and MetaSPAdes. Contigs 

connected to SSU rRNA sequences in the metagenome assembly graph were “fished” and compared 

to the SSU rRNA sequences from targeted assembly, with the script phyloFlash_fastgfishing.pl. 

SSU rRNA-targeted binning worked reliably with low-diversity metagenomes that contained ten or 

fewer microbial genomes (Figure 7, Supplementary Table 6). As a first test case, we used the 

simulated metagenome which comprised ten genomes. Up to eight MAGs with high completeness 

and low contamination could be recovered.

We then moved to real-world examples, starting again with the simple monospecific Paracatenula 

metagenome. Both assemblers produced graphs that yielded bins, but at different completeness. 

Even though the input read set only had a mean nucleotide coverage of 39.3, the recovered bin from 

the Megahit assembly was a complete representation of the symbiont’s genome. Manual inspection of

the assembly graph using Bandage showed a closed bi-circular representation, with the rRNA operon 

forming the only repeat region. The CheckM pipeline underestimated genome completeness, as it 

belongs to an endosymbiont that has experienced genome reduction (Jaeckle et al., submitted). In 

contrast to the complete microbial genome recovered from the Megahit assembly, only half the 

genome was recovered from the MetaSPAdes assembly graph. This could be due to the low coverage

of the target genome of 1–3x k-mer coverage at the longest k-mer employed and to different levels of 

low-count k-mer removal in the assembly pipelines. 

In a next step, we tested the targeted binning approach on the microbial communities of the gutless

oligochaetes. More than half of the microbial community from the gutless oligochaetes predicted by 

phyloFlash targeted SSU rRNA assemblies (between four and seven per library, Supplementary Table

6) could be recovered as MAGs of moderate to high quality (> 70% completeness, < 10% 

contamination). We again observed different levels of completeness from the two assemblers. Unlike 

the Paracatenula dataset, MetaSPAdes yielded consistently better results than Megahit, likely due to 

the higher coverage of each genome compared to the Paracatenula dataset. 

We expected that the performance of our assembly graph-based genome binning procedure would 

deteriorate as the microbial community, and hence the assembly graph, becomes more complex. This

would happen when different genomes contain SSU rRNA sequences that share enough k-mers to 

prevent the unambiguous assembly of full-length genes, resulting either in fragmented or linked 

assemblies. Furthermore, many genomes in a high-diversity metagenome may not have adequate 

coverage to permit a linked assembly graph and therefore the binning of a complete MAG, as 

observed in the low-coverage Paracatenula example. However, these drawbacks can be turned into 

an advantage when specific organisms are being targeted for assembly. By screening metagenomic 

read sets using phyloFlash for full-length assemblies of the SSU rRNA of a given target species or 
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taxon, one could select which read sets to assemble. Such prior screening could drastically reduce 

the computational load for recovering high quality genome bins for a defined group of organisms, and 

can be easily integrated into existing assembly and binning pipelines.

To test the screening of metagenomes by phyloFlash for specific organisms of interest, we focused 

on an enigmatic bacterial clade called Marinamargulisbacteria (Carnevali et al., BioRxiv: 

https://doi.org/10.1101/328856 ). The first genomes of Marinamargulisbacteria were recently reported 

under the name UBP8, among sixteen other novel phylum-level clades (UBP1 to 17) that were 

recovered in a set of over 8000 MAGs binned from a wide collection of metagenomic samples (1). 

Marinamargulisbacteria belongs to the Margulisbacteria, a clade that is sister to Cyanobacteria. 

Marinamargulisbacteria was initially designated as a separate phylum, but is currently classified as a 

class of Margulisbacteria and is listed as ‘GWF2-35-9’ in the GTDB (53). Carnevali et al. designated 

the name Marinamargulisbacteria because all members come from marine samples, and they also 

provided new observations from single cell amplified genomes (SAGs). Currently, one MAG and five 

SAGs of poor to moderate quality are available for UBP8/Marinimargulisbacteria. None of the initially 

recovered MAGs had a full-length SSU rRNA gene; only one featured a 500 bp fragment that was 

tentatively annotated as belonging to a clade designated ML635J-21 (1). To link full-length SSU rRNA 

information to the Marinamargulisbacteria, we set up a targeted reanalysis of all Tara Oceans samples

reported to contain Marinamargulisbacteria/UBP8. Using phyloFlash, we recovered full length SSU 

rRNA that fell into ML635J-21/Margulisbacteria (SILVA 128/132 taxonomy) from all of these samples. 

We then applied our SSU rRNA-targeted binning approach via assembly graph-based fishing, and 

recovered a complete MAG based on the closed graph structure from sample ERR59434 (98% 

completeness and 1.72% contamination, of which 100% can be explained by strain variation). Based 

on phylogenomic analyses using 43 conserved marker genes, the genome is the complete MAG 

representation of a population genome that had previously been recovered at 51.72% completeness 

with traditional binning approaches (accession DBHN01.1) (1).

In practice, which assembler and binning software produces the best results for a given dataset has

to be determined empirically. phyloFlash aids this process by giving a quick overview of the expected 

diversity in the library, and with its command line based binning procedure that exploits the assembly 

graph as well as the properties of the SSU gene. phyloFlash can be effectively used to evaluate and 

compare different assemblers and assembly parameters and can complement existing binning 

strategies (23).

Conclusion

The SSU rRNA gene remains indispensable to molecular ecology in the current era of whole-genome 

metagenomics, particularly because of the extensive reference data that has been accumulated for 

this gene, and the use of rRNA as a target for molecular probing. phyloFlash is a complete workflow 

for SSU rRNA-targeted profiling of metagenomes that integrates database preparation, read 

extraction, taxonomic classification, targeted assembly and SSU rRNA targeted binning. It has been 

designed to provide a quick and user-friendly overview of the composition of metagenomic sequence 
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libraries based on all domains of life, and can be used for the rapid screening and comparison of 

multiple samples, and for retrieving complete SSU rRNA genes and the associated genomic bins. 

AVAILABILITY

phyloFlash is available at https://github.com/HRGV/phyloFlash under a GNU GPL3 license. The 

software is also archived on Zenodo at doi:10.5281/zenodo.1327399. The version described in this 

paper is v3.3. Results from the usage examples have been archived at doi:10.5281/zenodo.1464895.
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Figure 1. Flowchart of the phyloFlash pipeline. Grey boxes depict main data files, white boxes with bold print

show processes. Full arrows indicate primary workflow, dashed lines processing of secondary output.
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Figure 2. Database filtering removes low complexity read hits. Informational redundancy (k=5) in reads 

extracted by SortMeRNA (left) or BBmap (right) using unfiltered (above) and filtered (below) reference 

databases, for library ERR315856.
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Figure 3. False positive read extraction depends on stringency cutoffs, but only BBmap results improve with 

read length. Origin of reads extracted by SortMeRNA and BBmap at different parameters (horizontal axes) 

from simulated metagenome of 100 bp (above) or 150 bp reads (below), showing the proportion of total 

originating from actual SSU rRNA features (left), and the origin of non-SSU rRNA extracted reads (right). 

Horizontal lines indicate the total actual SSU rRNA-origin reads in each library (20213 and 13829 

respectively).
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Figure 4. Mapper and cutoff settings influence SSU rRNA reads extraction from Tara Oceans metagenome 

libraries but yield highly similar assembly ratios. (a) Fraction of reads extracted by both tools at different 

BBmap minimum identities (horizontal) and SortMeRNA E-value cutoffs (vertical). (b) Reads assembled by 

SPAdes vs. total reads extracted for different parameter settings (colors) of SortMeRNA (above) and BBmap 

(below), overlaid with linear regression lines and 1:1 line for reference (in grey).
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Figure 5. Comparison of scaffolds assembled by SPAdes, Emirge, and Matam using reads extracted by 

SortMeRNA (E-value 10-5, filtered reference database) from 85 Tara Oceans metagenomic libraries. (a) Plot 

of scaffolds assembled per library vs. number of extracted SSU rRNA reads. (b) Histograms of per-scaffold 

metrics for each assembly tool: scaffold length (bp), undetermined bases (Ns) per scaffold, uchime_ref 

chimerism score, and identity to closest reference sequence.
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Figure 6. Heatmap of taxonomic assignments (rows) for SSU rRNA reads in metagenome libraries of six 

gutless oligochaete species with symbiotic consortia (columns). Plot was generated with the comparison 

scripts provided with phyloFlash. Color intensities represent the percentage of reads mapping to a given 

taxon, separated by prokaryotes (blue) and eukaryotes (red). 
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Figure 7. Genome recovery in assembly graph based binning depends on assembler software used. 

Comparison of MAGs above quality thresholds (> 70% completeness, < 10% contamination) that could be 

binned by SSU rRNA-targeted Fastg approach. The numbers of genome bins are plotted vs. SSU rRNA 

scaffold numbers assembled per library by SPAdes in phyloFlash pipeline. Reference line indicates 1:1 ratio. 
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Table 1. Comparison of targeted assembler software for SSU rRNA sequences. * as of 2018-10-08

Tool Read 
extraction

Data-base Method Taxon 
classifier

Availability Documen-
tation

License Last update*

Emirge Bowtie (v1) SILVA Expectation- 
maximization

(From 
mapping)

GitHub Readme, 
User forum

GPL3 2016-11-09

REAGO Infernal (CM) - Overlap graph, 
pruning, paired-
end guided path-
finding

- GitHub Readme BSD 2017-01-12

Matam SortMeRNA SILVA NR95 Overlap graph, 
compression, 
SGA assembler 
on subgraphs

RDP 
classifier

GitHub, 
Conda, 
Docker

Readme AGPL3 2018-09-11

RAMBL Bowtie2 Greengenes Taxonomic tree 
search and 
Dirichlet process 
clustering

RDP 
classifier

GitHub Readme Not 
specified

2017-03-18
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