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ABSTRACT

Neurodata Without Borders: Neurophysiology (NWB:N) is a data standard for neurophysiology, providing neuroscientists with a
common standard to share, archive, use, and build common analysis tools for neurophysiology data. With NWB:N version 2.0
(NWB:N 2.0) we made significant advances towards creating a usable standard, software ecosystem, and vibrant community
for standardizing neurophysiology data. In this manuscript we focus in particular on the NWB:N data standard schema and
present advances towards creating an accessible data standard for neurophysiology.

1 Introduction
Motivation: Brain function is produced by the coordinated
activity of multiple neuronal types that are widely distributed
across many brain regions. Neuronal signals are acquired
using extra- and intracellular recordings, and increasingly
optical imaging, during sensory, motor, and cognitive tasks.
Neurophysiology research generates large, complex and het-
erogeneous datasets at terabyte scale. The data size and com-
plexity is expected to continue to grow with the increasing
sophistication of experimental apparatuses. Lack of standards
for neurophysiology data and related metadata is the single
greatest impediment to fully extracting return-on-investment
from neurophysiology experiments, impeding interchange and
reuse of data and reproduction of derived conclusions. This
gap motivated the launch of the Neurodata Without Borders :
Neurophysiology (NWB:N) data standards project. The goal
of NWB:N is to develop a standardized format and methods
for neurophysiology data and metadata.

Background: The first NWB:N 1.0.x standard was the re-
sult of a 1 year pilot project in 201512. As part of this pilot,
neurophysiologists and software developers met during two
hackathons to create a common data format for recordings

and metadata of cellular electro- and optical physiology ex-
periments (Fig. 1, top). Despite the important advances that
NWB:N 1.0 made towards creating a neurophysiology data
standard, the standard was not easily accessible to users. To en-
hance broad adoption, a sustainable software and community
strategy and easy-to-use, high-level application programming
interfaces (APIs) were desperately needed. Here we describe
NWB:N 2.0, a modern ecosystem for data standardization and
accessible data standard for neurophysiology.

A Brief History of NWB:N 2.0: The development of the sec-
ond version of NWB:N began in Janurary 2017 with the start
of the Kavli funded NWB4HPC project. The goal was to
develop infrastructure and algorithms to enable data-driven
discovery and dissemination on high-performance comput-
ing systems for the BRAIN Initiative (Fig. 1, bottom). One
main goal of the project was to develop the next version of
NWB:N to enhance its adoption, with an initial focus on
high-level APIs for read, write, and extension of the original
NWB:N 1.0.x standard. This standard represented a critical
first step toward a unified framework for neural data, but it
became clear that in order to achieve these goals we needed
an advanced software architecture, a well-articulated data

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/523035doi: bioRxiv preprint 

https://doi.org/10.1101/523035


2014	
Nov	

1st	NWB	
Hackathon	
at	HHMI	

2015	

2nd	NWB	
Hackathon	
at	HHMI	

May	 Aug	

NWB:N	1.0	
Released	

2016	
Nov	

NWB:N	1.0.5g	
Released	

2017	
Jan	

KAVLI	funds	
NWB4HPC	Project	

led	by	LBNL		

3nd	NWB	
Hackathon	
at	HHMI	

Jul	 Aug	

NWB	Executive	
Board	Founded	

NWB:N	2.0beta,	
PyNWB,	and	
MatNWB	

released	(SfN)			

Nov	

Neuron	
Paper	

Nov	

4th	NWB:N	
Developer	

Hackathon	at	
AIBS	

Apr	

5th	NWB:N	
User	

Hackathon	
at	LBNL	

2018	

Welcome	
to	SfN	

Nov	 Jan	

NWB:N	2.0,	
PyNWB,	
MatNWB,	
release		

NWB:N	2.0	

Oct	

NIH	
funds	
NWB:N	

NWB:N	1.0	

2019	

Figure 1. Overview of the history of the NWB:N project.

standards ecosystem, an open community software strategy,
and advancements to the NWB:N data standard itself. Under
leadership of K. Bouchard, O. Ruebel, and A. Tritt (LBNL),
in collaboration with F. Sommer, J. Teeters et al. (UCB),
the LBNL team developed a modern software strategy for
NWB:N, identified and implemented critical changes to the
NWB:N data standard, and identified, created, and separated
the core components of the NWB:N ecosystem, i.e., the spec-
ification language, standard schema, data storage, and data
APIs (Sec. 2). Throughout both this early phase of the project
and the subsequent development of NWB:N 2.0, the Frank
and Chang laboratories at the University of California at San
Francisco (UCSF) provided additional funding support to the
LBNL team as well as feedback and use-cases.

In July 2017 the 3rd NWB:N hackathon was held at HHMI
Janelia, marking the beginning of the second main phase of
the NWB:N 2.0 endeavour. The goal of the hackathon was
to review the team’s proposal and progress towards NWB:N
2.0 and to create a governance structure for NWB:N. As a
result of the hackathon, the NWB:N Executive Board was
established in August 2018 and NWB:N 2.0 was officially es-
tablished as a community project, including the organization
and public release of all sources via the NeurodataWithout-
Borders GitHub organization and creation of open community
channels via Slack and GoogleGroups. Driven by these ad-
vances, the user and developer community around NWB:N
began to grow as well as engagement with industry partners.
Kitware Inc. contributed significantly to the design of contin-
uous integration processes for NWB:N4. Vidrio Technologies,
in collaboration with the LBNL team, led development of the
MatNWB Matlab API for NWB:N. The Allen Institute for
Brain Science (AIBS) as a major early adopter of NWB:N
also contributed significantly to the development of NWB:N
2.0. A first beta version of NWB:N 2.0, including first full ver-
sions of the PyNWB (Python) and MatNWB (Matlab) APIs,
was then released in November 2017 in conjunction with the
annual Society for Neuroscience (SfN) conference.

With the NWB:N 2.0 Beta release, the third main phase of

the NWB:N 2.0 project began, focused on refinement and con-
tinued development of NWB:N 2.0 based on feedback and col-
laboration with a broad range of early adopters and beta testers
and the broader community. To facilitate development and
integration across the developer community, the 4th NWB:N
developer hackathon was held at AIBS on April 3-6, 20181.
To enhance user engagement and adoption, a 5th NWB:N user
training hackathon was held at LBNL on April 26-27, 20185, 6.
Based on the feedback from these hackathons and continued
feedback and experience from early adopters, development of
NWB:N 2.0 then continued through the remainder of 2018.
Throughout this process, the broader NWB:N community con-
tributed code and feedback via GitHub, Slack, GoogleGroup,
and email.

In October 2018, NIH announced its support to continue
development of the NWB:N data standard as part of a BRAIN
Initiative grant led by Dr. Ruebel (LBNL) and Dr. Ng (AIBS).
In November 2018 the NWB:N 2.0 schema was then finalized
and development-focus switched to bug fixes and stabilization
of the APIs and tools. The full release of NWB:N 2.0, includ-
ing the new data standard schema, PyNWB and MatNWB
APIs, tools (e.g., nwb-docutils), and supporting documents,
was then announced in January 2019.

Contributions: In this manuscript we present the advances
in the NWB:N 2.0 data standard schema compared to the
previous NWB:N 1.0.6 standard. In Sec. 2 we first provide a
high-level overview of the NWB:N 2.0 ecosystem and high-
light specific changes as they relate to the schema. In Sec. 3
we discuss technical advances in the NWB:N 2.0 data stan-
dard with a focus on new general capabilities, e.g., support
for data referencing, tables, ragged arrays or compound data
types. We then discuss in Sec. 4 the application of these new
methods in practice to improve storage and management of
neurophysiology data as part of the NWB:N 2.0 data standard.
Finally, in Sec. 5 we conclude with a discussion of the current
NWB:N community and future directions.

2 Overview of the NWB:N 2.0 Ecosystem
NWB:N 2.0 is more than just a file format; it defines an
ecosystem for standardization of neurophysiology data. In the
following we provide a brief overview of the different core
components of the NBW:N ecosystem and highlight the main
changes compared to NWB:N 1.0.x. In this manuscript we
focus on advances in the data standard schema (Sec. 3 and 4).
Advances in the software strategy, APIs, schema language
and storage will be the focus of other publications.

2.1 Specification Language
To support the formal and verifiable specification of neu-
rodata file formats, NWB:N defines and uses the NWB:N
specification language7. The specification language defines
formal structures for describing the organization of complex
data using basic concepts, e.g., groups (similar to folders),
datasets (n-D arrays), attributes (metadata objects on groups
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and datasets), and links (to groups/datasets/files). The spec-
ification language also enables users to define extensions to
the NWB:N format to support the integration and storage
of currently unsupported data with NWB:N. NWB:N 2.0 in-
cludes a substantial overhaul of the original 1.0.x specification
language and provides advanced APIs for creating, reading,
and writing specification language documents and tools to
generate Sphinx documentation from specifications. See the
schema language7 and PyNWB10 documentations for details.

2.2 Data Standard Schema
Using the NWB:N specification language, the NWB:N stan-
dard schema formally specifies the organization of neuro-
science data8. The standard schema provides a verifiable,
computer and human readable document that governs the
NWB:N format. As a result, the format specification is central
to the development of APIs and codes compliant with the
NWB:N data standard.

The NWB:N data standard uses a modular design in which
all main semantic components of the format have a unique
neurodata_type (similar to a class in object-oriented de-
sign). This allows for reuse and extension of types through
inclusion and inheritance. All datasets and groups in the for-
mat can be uniquely identified by either their name and/or
type. At a high level, data are organized in an NWB:N file in
the following main groups:

• /acquisition for storage of data streams recorded
from the system, e.g., recordings from electro- and opto-
physiology or behavioral tracking systems.

• /processing for storage of standardized processing
modules, often as part of intermediate analyses required
before scientific analysis, e.g., results from spike sorting,
signal filtering, or image processing.

• /intervals for storage of experimental intervals, e.g.,
experimental epochs or trials.

• /stimulus for storage of stimulus data.
• /general for storage of experimental metadata, e.g.,

protocol, notes or device descriptions.
• /analysis for storage of lab-specific and custom sci-

entific analysis data.

Neural data typically involves measurements taken over
time. Thus, the NWB:N data standard is designed around
the concept of TimeSeries, a generic neurodata_type for
storing time series data that is extended via sub-classing to
account for different storage requirements and data modal-
ities (e.g., ElectricalSeries for electrophysiology or
ImageSeries for optical imaging). The full sources of the
NWB:N 2.0 schema are available as YAML online using an
open BSD license model. For further details see Sec. 3 and 4
as well as the NWB:N data standard documentation8.

2.3 Data Storage
The role of the data storage backend is to map NWB:N prim-
itives (Groups, Datasets, Attributes, Links etc.) to storage.

Currently NWB:N uses the Hierarchical Data Format (HDF5)
as its primary file-based storage mechanism13. HDF5 is a
mature data format standard that is widely supported across
programming languages (e.g., C, C++, Python, MATLAB,
R among others) and tools (e.g. HDFView, VisIt, ParaView,
Jupyter and many others). Within a single file, HDF5 sup-
ports complex data organizations analogous to a file system
in which Groups and Datasets correspond to directories and
files. This powerful approach enables organization of large-
scale and complex data and metadata within a single file. The
data modeling primitives of the NWB:N specification lan-
guage largely mirror the primitive types in HDF5 so that the
mapping between the schema and HDF5 storage is largely
1-to-19. Overall, HDF5 is an excellent choice for storage,
sharing and transfer of large scientific data. However, the
NWB:N community recognizes that as the applications of the
NWB:N data standard grow, requirements and needs for data
storage may change and depending on the specific use and ap-
plication area, other storage backends may be preferable, e.g.,
databases, RDD, JSON, or others. As such, one main con-
sideration in the design of the NWB:N 2.0 software strategy
was to insulate the data storage as much as possible from the
schema and to provide APIs that will facilitate the integration
of new storage methods with the NWB:N ecosystem in the
future.

2.4 Data API
The role of data API(s) is to facilitate easy and efficient in-
teraction with neuroscience data stored in the NWB:N data
format, e.g., for reading, writing, querying, and analyzing
neurophysiology data. A data API should provide a stable and
usable interface for programmatic use and development of
new applications while insulating developers and users from
implementation details related to the specification language,
format specification, and data storage.

Development of advanced data APIs for NWB:N files and
the specification language has been a central focus of the de-
velopment of NWB:N 2.0. The newly developed PyNWB10

(Python) and MatNWB3 (Matlab) APIs both provide easy-
to-use representations of NWB:N 2.0 neurodata types for
programmatic use and enable the mapping of these repre-
sentations to/from data storage based on the NWB:N format
specification. Both APIs also support read/write of custom
format extensions. PyNWB further provides functionality for
creating schema extensions and defines abstractions to enable
the creation of custom data storage backends for NWB:N.
We refer the interested reader to the API documentation for
details3, 10.

3 Methods
In the following we describe core technical advances in the
NWB:N 2.0 data standard. We will then describe the appli-
cations of these methods in practice to enhance management
and storage of neurophysiology data in Sec. 4.
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3.1 Base Data Types
In order to define common functionality and ease future evo-
lution and extension of functionality, NWB:N 2.0 defines
core base types for typed groups, datasets, and primary data
groups. Beyond specification of common content as part of
the schema, a main role of the base types is to allow APIs to
implement shared functionality as part of the base types.
NWBContainer defines the common base type for all

groups with an assigned neurodata_type in the NWB:N 2.0
data standard schema. The specification of NWBContainer
is minimal and mainly requires a help attribute.
NWBData serves a similar function to NWBContainer

but instead of for groups it defines the common base type for
all datasets with an assigned neurodata_type in the schema.
NWBDataInterface extends NWBContainer and

serves as base type for primary data (e.g., experimental or
analysis data). In the schema it is used to distinguish between
non-metadata data containers and metadata containers. NWB-
DataInterface serves as base type for all primary data types in
NWB:N 2.0, including the TimeSeries base type.

3.2 Supporting Explicit Data Referencing
The ability to cross-reference data is essential for neurophysi-
ology; multiple sources of data are typically acquired together
and analyzed in context of each other. For example, mea-
surements from multiple devices and brain regions as well as
external stimuli and behavior.

Links: To enable cross-referencing of diverse data, NWB:N
1.0.x supported the creation of links, and the ability to specify
and create links has been further enhanced in NWB:N 2.0.
Similar to soft links on a file system, links allow users to
include existing datasets or groups inside a group by linking
to the existing object.

Object/Region References: Links are mainly useful in
cases where we need to reference single objects, however,
their utility is limited in cases where we need to store large
collections of references. To address this challenge, NWB:N
2.0 adds support for object references. Object references be-
have like links but instead of being stored as independent
objects as part of the content of a group, object references are
stored as values of datasets or attributes (i.e., they are part of
the data type). This approach supports management of large
collections of references as part of multi-dimensional arrays.
NWB:N 2.0 also adds support for region references, which
are similar to object references but support linking to subsets
of datasets. The ability to store object- and region references
has been central to enable many of the advancements in the
NWB:N 2.0 data standard schema.

3.3 Supporting Compound Data Types
Compound data types are essentially a struct, i.e., the data
type is a composition of several primitive types. In practice,
this is useful to support complex data types, e.g., for storage of
complex numbers, vectors or tensors as elements of datasets

1 - neurodata_type_inc: VectorData
2 name: timeseries
3 dtype:
4 - name: idx_start
5 dtype: int32
6 doc: Start index into the ...
7 - name: count
8 dtype: int32
9 doc: Number of data samples ...

10 - name: timeseries
11 dtype:
12 target_type: TimeSeries
13 reftype: object
14 doc: Reference to the TimeSeries ...

Figure 2. Example illustrating the definition of a compound
data type used as part of the management of time intervals
(described later in Sec. 4.1.5) to store the mapping of explicit
time interval to specific time series. The compound data type
stores the integer start index and count along with an object
reference to the TimeSeries object.

as well as to create table-like data structures (described next in
Sec. 3.4). With regard to the NWB:N specification language,
compound types are defined via a list of sub-types each with
a name, dtype, and description (Fig. 2).

3.4 Supporting Data Tables
Data tables are a natural way to organize large collections of
related data/metadata. In the context of databases, we typi-
cally distinguish between row-based and column-based table
storage. To support a wide variety of use cases, NWB:N
2.0 adds support for row-based, column-based, and hybrid
approaches for storing tables. In practice, the optimal ap-
proach to storing tables depends on the structure, size, and
most common read/write access patterns of a table. Broadly
speaking, row-based tables generally work well for tables with
potentially large numbers of rows, small number of fixed, a
priori known columns, and primarily row-oriented read/write
access. In contrast, column-based tables generally work best
for tables with arbitrary (and potentially dynamic) number of
columns and primarily column-oriented read/write access.

Row-based Tables: Using the concept of compound data
types, we can define a data table via a one-dimensional dataset
with a compound data type. Here, each element in the data
array represents one row and the components of the compound
data type describe the table columns (Fig. 3a).

The advantage of row-based tables is that they provide easy
access to rows and can be expressed via a single dataset. This
allows row-based tables to support: i) referencing of sets of
rows via a single region-reference, ii) addition of rows by
appending to a single dataset, and iii) fast read of individual
rows of a table. Conversely, a main disadvantage of row-
based tables is lack of efficient support for column-based
operations, e.g.: i) extracting the values of a single column
requires reading the full table, ii) referencing of columns is
not supported natively, and iii) appending columns requires
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electrodes	(Group)	

electrodes	(Group)	

electrodes	(Dataset)	
(id,					x,				y,					z,	imp,		location,	…)	

0	 (0	,	0.1,	0.3,	0.4,			4.5,						‘CA1’,	…	)	
1	 (1	,	0.5,	0.4,	0.2,	10.4,						‘CA1’,	…)	
2	 (2	,	1.5,	2.6,	1.8,			1.1,						‘CA2’,	…)	
..	 …	

id	
0	 0	
1	 1	
2	 2	
..	 …	

x	
0.1	
0.5	
1.5	
…	

y	
0.3	
0.4	
2.6	
…	

z	
0.4	
0.2	
1.8	
…	

location	
CA1	
CA1	
CA2	
…	

imp	
4.5	
10.4	
1.1	
…	

…	

..	

..	
…	

id	
0	 0	
1	 1	
2	 2	
..	 …	

location	
CA1	
CA1	
CA2	
…	

imp	
4.5	
10.4	
1.1	
…	

…	

..	

..	
…	

(x,y,z)	
(0.1,	0.3,	0.4)	
(0.5,	0.4,	0.2)	
(1.5,	2.6,	1.8)	

…	

(a) 

(b) 

(c) 

Figure 3. Example of a (a) row-based , (b) column-based
and (c) hybrid table storage scheme. See Appendix A for
example specifications of these three tables.

changing the compound data type and is, hence, not possible
dynamically and requires the creation of extensions to the data
standard.

Column-based Tables: As illustrated in Fig. 3b, NWB:N
2.0 supports column-based tables via the new, reusable type
DynamicTable that stores for each table column a separate
VectorData dataset, while the first dimension of each of
the column datasets must have the same length as the total
number of rows in the table.

The advantage of column-based tables is that they provide
easy access to columns and can be more easily extended. This
allows column-based tables to support: i) referencing of sin-
gle columns via simple links or object references, ii) dynamic
addition of new columns without the need for extensions to
the data standard and iii) easy and efficient read/write of in-
dividual columns, and iv) potential to customize data-layout
and compression on a per-column basis. Conversely, a main
disadvantage of column-based tables lies in the fact the num-
ber of data objects required grows linearly with the number
of table columns and the resulting overhead for row-based
operations, e.g. read/write/append of a single row requires
access to multiple datasets. As column-based tables do not na-
tively support row-based references, NWB:N 2.0 provides the
dataset type DynamicTableRegion, which stores the inte-
ger indices of the relevant rows as well as an object reference
to the corresponding DynamicTable.

Hybrid Tables: In the context of DynamicTable,
NWB:N 2.0 also supports the use of compound type datasets
as part of individual table columns. This approach allows for
great flexibility to create hybrid row/column table stores. In
practice, this approach can be useful, for example, to optimize

	times	
0	 0.03	
1	 0.14	
..	 ..	

	times	
0	 1.23	
1	 1.37	
..	 ..	

1 
1 

1..* 

1 

UnitTimes	
unit_0	

unit_1	

unit_n	

1 

1 

spike_times_index	
0	 6	
1	 9	
2	 11	
..	 …	

<VectorData>	

	spike_times	
0	 0.03	
1	 0.14	
2	 0.6	
3	 1.25	
4	 2.62	
5	 3.07	
6	 1.23	
7	 1.37	
8	 2.12	
9	 0.56	
10	 0.91	
..	 …	(b)	NWB:N	v2.0	(a)	NWB:N	v1.0.x	

	times	
0	 0.56	
1	 0.91	
..	 ..	

unit_2	 1 

1 

target	<VectorIndex>	

Figure 4. Illustration showing the use of (a) implicit ragged
arrays as used in NWB:N 1.0.x, and (b) region-based ragged
arrays used in NWB:N 2.0 to store the times of spikes from
single units (putative single neurons).

row-based access to select columns in a dynamic table that are
typically accessed in conjunction, e.g., the (x,y,z) position of
a neuron (Fig. 3c).

3.5 Supporting Ragged Arrays
Ragged arrays (a.k.a., jagged arrays) are arrays where each
element of the array is itself an array of variable length. In
neurophysiology the need for ragged arrays arises commonly
during feature extracting (e.g., detection of spikes or ROIs),
where each feature is described by a variable-length vector,
e.g., a pixel mask or spike times. Unfortunately, many com-
mon data storage solutions do not natively support ragged
arrays. Using the NWB:N primitives we can, however, model
ragged arrays via implicit ragged arrays (NWB:N 1.0.x) and
region-based ragged arrays (NWB:N 2.0) (as well as dense
arrays, as discussed in Appendix B). Here we focus on simply-
ragged arrays where the array is ragged along the second
dimension only and does not itself contain ragged arrays.

Implicit Ragged Arrays: The original NWB:N 1.0.x
schema used combinations of groups and datasets to store
large collections of variable-size arrays. Here, each element
of the ragged array is assigned a group that then stores the
corresponding data array(s) (Fig. 4a). For large ragged arrays
this approach is costly as the number of groups and datasets
required grows linearly with the number of elements. This ap-
proach also hinders efficient search and collective and parallel
I/O operations across array components. As performance is
a concern for many NWB:N user teams, this motivated the
creation of the following alternative design.

Region-based Ragged Arrays: In this approach we first
concatenate the elements of the ragged array—each of which
is a variable-length vector or n-d-array with variable-length
first dimension—and store them as a single dataset (Fig. 4b,
<VectorData>). A second, one-dimensional integer in-
dex array then stores for each element of the ragged array
the stop-index in the value array, defining the region in the
value array that contains the relevant data subsets (Fig. 4b,
<VectorIndex>). Finally, we define the attribute target
on the index array, which stores an object reference to the
value array to explicitly describe the relationship between
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/general/extracellular_ephys	

/units	

id	
0	 0	
1	 1	
2	 2	
..	 …	

electrode_group	

…	

electrodes	
0	
1	
2	
3	
4	
5	
…	

waveform_mean	
[0.1,	0.3,…]	
[1.2,	1.3,…]	
[0.2,	0.4,…]	

…	

waveform_sd	
[0.04,	0.06,…]	
[0.07,	0.08,…]	
[0.05,	0.02,…]	

…	

spike	times	
0.03	
0.14	
0.6	
0.71	
0.82	
…	

electrodes		

id	
0	 0	
1	 1	
2	 2	
..	 …	

x	
0.1	
0.5	
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Figure 5. Storing spiking unit data and metadata in NWB:N 2.0. Using a single column-based table allows us to consolidate
and greatly simplify the data organization. Using the concept of ragged arrays then supports storage of variable-length spike
times and observation intervals directly as part of the units table. Combining the concepts of ragged arrays and row-based table
references, then enables referencing of a variable number of electrodes in the electrodes table for each unit.

the index and value array. This approach supports storage of
ragged arrays of arbitrary size using only two datasets and
enables efficient collective and parallel I/O and more efficient
data search. An alternative approach to using stop indices
would be to store region-references as part of the index vector.
We opted for stop indices in NWB:N 2.0 because they are
more compact and to ease introspection of the indices.

3.6 Integrating Data Tables and Ragged Arrays
A column-based DynamicTable is a collection of
VectorData datasets, each representing a table column.
We can, hence, interpret the VectorData dataset of a
ragged array as a table column that is segmented by the
VectorIndex (Fig. 4b). Using this powerful approach en-
ables us to store variable-size data arrays as elements of table
columns. As just one example, this approach is useful in
the context of feature extraction (e.g., the detection of spik-
ing units in electrophysiology or ROIs in optophysiology) to
describe in a single table both feature metadata (e.g., id or
location) and associated feature vectors (e.g., the times of
neuron spikes or ROI transients). Note, while this approach
requires two datasets in HDF5, APIs (e.g., PyNWB) will typi-
cally abstract this behavior and instead describe the data as a
single table column of variable-length arrays.

4 Results
Here we describe the application of the above methods, as
well as a broad range of other advances in the NWB:N 2.0
schema and language, to improve storage and management
of common neurophysiology data and metadata. In Sec. 4.1
we discuss the application of data tables, ragged arrays and
data references to improve organization of neurophysiology

data and metadata in NWB 2.0. Afterwards we discuss how
refinement to base types has helped to improve organization
of acquisition and processing data in NWB:N 2.0 in Sec. 4.2.
Sec. 4.3 then presents advances in the schema aimed at im-
proving specificity of the schema and identifiability of objects
and types. Finally, in Sec. 4.4 we discuss changes aimed at
improving separation of concerns in the NWB:N ecosystem
related to the standard schema.

4.1 Improving Data Organization via Tables,
Ragged Arrays, and Explicit Data References

The combination of tables, ragged arrays, and explicit data
referencing allowed us to significantly improve organization
and management of electrodes (Sec. 4.1.1), spiking units
(Sec. 4.1.2), ROIs (Sec. 4.1.3), sweeps (Sec. 4.1.4), time inter-
val data and metadata (Sec. 4.1.5), and spectral decomposition
results (Sec. 4.1.6).

4.1.1 Electrode Metadata
As shown in Fig. 5 (gray boxes), in NWB:N 2.0 we have
consolidated all data about individual electrodes in a dynamic,
column-based electrodes table. To ease data access
and management and avoid data duplication, metadata about
groups of electrodes is then stored using the extensible type
ElectrodeGroup and referenced from the electrodes table
via explicit object references. Compared to NWB:N 1.0.x,
this structure supports: 1. explicit data references avoiding
implicit, text-based references, 2. per-electrode metadata
for impedance and filtering settings, 3. dynamic electrode
metadata via support for dynamic table columns, and 4. effi-
cient data access, search, and maintenance through the use
of a consolidated, standard data table. The chosen structure
further avoids the need for per-electrode groups and datasets,
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ensuring that the number of data objects required remains
constant as the density of electrode-based neural recording
devices continues to grow.

4.1.2 Spiking Units in Electrophysiology
In NWB:N 1.0.x data about extracted spiking units (i.e., puta-
tive single neurons) was stored across several types, specifi-
cally: i) UnitTimes to store event times of observed units
and ii) ClusterWaveforms to store waveform shape statis-
tics of clusters. This organization had several critical short-
comings with regard to efficiency, adaptability, and usability.

Efficiency: As illustrated in Fig. 4a, previously each unit
was stored as a separate group unit_n with the times and
description for the corresponding unit. For use cases
with very large numbers of units (e.g., neural simulations or
very high-channel-count electrophysiology), this structure re-
quired the creation of a very large number of data objects and
small, independent I/O operations, reducing I/O and data pro-
cessing performance and usability. To address this challenge,
NWB:N 2.0 organizes the variable-length spike time vectors
associated with each unit using the region-based ragged array
design described in Sec. 3.5. This approach enables storage of
arbitrary numbers of units using a constant number of data ob-
jects, supports collective I/O, and eases usability by enabling
users to access all units via iteration over a single dataset.

Adaptability: A common need is the ability to provide
experiment-specific metadata associated with each unit. To
avoid the need for custom schema extensions for every ex-
periment, NWB:N 2.0 introduces /units, a column-based,
dynamic table that enables users to store metadata about units
in a convenient and easy-to-use data table.

Usability: Finally, to improve usability, we removed the
UnitTimes and ClusterWaveforms types and inte-
grated the corresponding data with the units table. In this
way, NWB:N 2.0 makes all unit-specific data accessible via
a single, consolidated data table. Fig. 5 illustrates the new
structure for storing unit data in NWB:N 2.0.

4.1.3 ROIs in Optophysiology
Image segmentation is used in optophysiology techniques,
such as calcium imaging, to extract regions-of-interest (ROIs)
describing discrete units of investigation (e.g., neurons). Sub-
sequent extraction of fluorescence traces for each ROI then
results in the creation of timeseries describing the activity of
each ROI-based unit.

As part of our work with early adopters and through commu-
nity feedback, we identified several critical issues in NWB:N
1.0.x. 1. Efficiency: Similar to the organization of spiking
units, efficiency and usability were a concern as NWB:N
1.0.x required the creation of separate groups and datasets
for each individual ROI. 2. Implicit Relationships: Rela-
tionships between ROIs and the corresponding time series
(i.e., ROIResponseSeries) were only defined implic-
itly via a string, so that users had to know a priori which
ImageSegmentation and ImagingPlane was used to
produce the ROI. 3. 3D ROIs: Finally, lack of support for
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Figure 6. Overview of the main data types used in the
stages of a typical optophysiology analysis pipeline.

three-dimensional ROIs produced by multi-plane imaging was
identified as a central issue for users.

To address these needs, NWB:N 2.0 uses dynamic, column-
based tables to efficiently store large collections of ROIs in
combination with explicit data references to ensure unique
identification of related objects (Fig. 6). To support 2D and
3D ROIs the PlaneSegmentation table supports both
pixel and voxel masks as well as 2D and 3D image masks.
For a detailed list of changes compared to NWB:N 1.0.x see
the online release notes11.

4.1.4 Sweeps

In intracellular electrophysiology it is common to have
sweeps, similar to trials. This results in the need to asso-
ciate multiple time series with each other, or more specifically,
to group a set of PatchClampSeries. NWB:N 1.0.x did
not support the concept of sweeps. To address this need,
NWB:N 2.0 adds a dynamic, column-based SweepTable
to the /general/intracellular_ephys group used
to store intracellular electrophysiology data. The sweep table
stores for each sweep a unique sweep number as well as a
variable-length vector of patch-clamp time series associated
with the sweep. The latter uses the concept of ragged arrays
integrated with data tables described earlier in Sec. 3.6.
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Figure 7. Storing time interval tables in NWB:N 2.0. See
Fig. 2 for an example specification of the compound dataset
“timeseries” using the NWB:N specification language.

4.1.5 Managing Time Intervals
A common need in neurophysiology is the ability to describe
time intervals, i.e., ranges in time associated with particular
events or features, e.g., spikes, experimental intervals, stimuli
or behavioral events, among many others. To address this
need, NWB:N 1.0.x specifically supported the concept of
epochs, where each epoch was stored as a separate group as
part of the top-level /epochs group.

While this concept was generally useful, we identified three
critical unmet needs as part of our requirements analysis and
from user feedback. 1. Efficiency: Users often need to store
very large numbers of epochs (and other time intervals). This
led to concerns with regard to efficiency and usability due
to the need for individual groups/dataset for each epoch in
NWB:N 1.0.x. 2. Adaptability: Users commonly need to
store additional metadata for time intervals. With the removal
of “Custom” to allow users to arbitrarily add data, this means
that using the original design required users to create format
extensions to add custom metadata. 3. Generality: Beyond
experimental epochs, users often require collections of dif-
ferent kinds of time interval data, each with different sets of
metadata. Specifically, lack of support for trials was identified
as a common issue for users.

To address these needs, we have generalized the concept of
storing collections of time intervals. Specifically, NWB:N 2.0
defines the new type TimeIntervals, a dynamic, column-
based table for storing time intervals (Fig. 7). For each time
interval (i.e., row in the table) we store an id, start time, stop
time, and (using the concept of region-based ragged array
table columns) a variable length list of tags and timeseries
references. More specifically, the "timeseries" column is
a compound dataset that stores the object reference to the
TimeSeries object along with the corresponding start in-
dex (idx_start) and number of timesteps (count) that
the specific start and stop times map to. This approach allows
us to define general, dataset-independent time intervals while
at the same time supporting direct look-up of data in related
time series. By storing time intervals in a dynamic table, the
TimeIntervals type addresses (1) the need for more effi-
cient and convenient storage by allowing users to store large
collections of time intervals in a convenient table as well as (2)

the need for adaptability by supporting the dynamic addition
of table columns.

To support (3) the need for experiment trials and the ability
to store multiple collection of time intervals, we introduced
a new top-level group /intervals. Here users can store
arbitrary collections of TimeIntervals tables, including
the predefined tables for epochs, trials, and invalid times.

4.1.6 Spectral Decomposition
A common analysis in neurophysiology is to decompose mea-
sured neural or behavioral signals using frequency decomposi-
tion or bandpass filtering. NWB:N 2.0 introduces a new time
series type DecompositionSeries to offer a common
interface for labs to exchange the result of common time-
frequency analysis. The series includes a link to the source
TimeSeries object to support unique identification of the
raw signal that is being decomposed. The metadata needed
to fully describe the bands often depend on lab needs and the
decomposition method used. To address this need, we use a
dynamic, column-based table with standard columns for band
name, limits, and (optionally) mean, and standard deviation
while allowing users to flexibly add new band features without
the need for custom format extensions.

4.2 Refining Base Types to Improve Storage of
Acquisition- and Processing Data

NWB:N 2.0 makes the storage of acquisition data (Sec. 4.2.1)
and results from standardized processing pipelines (Sec. 4.2.2)
more flexible and easy to use.

4.2.1 Acquisition Data
NWB:N 1.0.x defined the group /acquisition for stor-
age of acquisition data, which included subgroups for
timeseries and images. Here we identified two main
challenges. First, the limitation to only allow timeseries as
acquisitions was too restrictive for many users. Second, the
fixed structure of the subgroup for images was not reusable
and specific enough to support the common needs in neu-
rophysiology for storing additional photographs and other
imagery related to an experiment.

To improve flexibility, NWB:N 2.0 allows users to store any
primary data type (i.e., NWBDataInterface, Sec. 3.1) as
part of the acquisition group and removed the timeseries and
images subgroups. Also, to improve specificity and reusabil-
ity for storage of additional images, NWB:N 2.0 adds the
generic dataset type Image and corresponding subtypes for
GrayscaleImage, RGBImage, and RGBAImage as well
as a corresponding NWBDataInterface container type
Images for storing basic image collections. Note, in addi-
tion to these generic image types for storing arbitrary image
collections, NWB:N provides dedicated types for storing time-
series of images from optophysiology experiments.

4.2.2 Processed Data
Results from standardized processing pipelines are stored
in ProcessingModules as part of the top-level
processing/ group in NWB:N.
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ProcessingModule: NWB:N 1.0.x defined the concept
of a “Module,” which is a container for storing results
from common data processing pipelines. In NWB:N 2.0,
“Module” has been renamed to the more specific term
ProcessingModule to avoid ambiguity and help clarify
the purpose and use of this type. Also, similar to the ac-
quisition group, a processing module may now contain any
NWBDataInterface, which, as we will discuss next, has
allowed us to significantly improve flexibility in the definition
of processing modules.

NWBDataInterface: NWB:N 1.0.x introduced the type
“Interface” which was used as the base type that all objects in
a processing module had to inherit from. This design led to
several challenges in practice. First, data products from pre-
processing and analyses are often derived time series. How-
ever, as “Interface” was not a base type of TimeSeries,
this meant that analysis containers could not directly inherit
from TimeSeries (but could only contain them) and that
processing modules could not directly contain timeseries ob-
jects. Second, all analysis types in NWB:N 1.0.x had fixed
names so that each processing module could only contain a
single instance of each analysis. Third, the name “Interface”
was seen as ambiguous and often led to confusion among
users and developers as towards the function and purpose of
the type.

To address these challenges, NWBDataInterface was
introduced as a more general base type (Sec. 3.1) and replace-
ment for “Interface”, and now serves as a base type for all
primary data (including TimeSeries). This generalization,
while seemingly simple, has been critical to enable users to
create analysis data containers that extend TimeSeries and
to permit storage of timeseries types directly as part of pro-
cessing modules. Further, NWB:N 2.0 now defines default
names (rather than fixed names) for all analysis types so that
users can store multiple instances of the same analysis in a
processing module and customize their names. Finally, the re-
naming and generalization of “Interface” has helped to clarify
the purpose and use of the new NWBDataInterface type.

4.3 Improving Specificity and Identifiability
To enable more accurate data interpretation, NWB:N 2.0 im-
proves the specificity of reference timestamps (Sec. 4.3.1),
ensures that all objects can uniquely be identified (Sec. 4.3.2),
makes links explicit (Sec. 4.3.3), supports specification of data
shapes (Sec. 4.3.4) and default names and values (Sec. 4.3.5),
and includes various other enhancements to improve consis-
tency and use (Sec 4.3.6).

4.3.1 Defining Reference Time
NWB:N 1.0.x defined the start time of the session as the global
clock that all timestamps in a file are synchronized with. How-
ever, the format for storing the reference time was not defined,
allowing users to store the session start time as an arbitrarily
formatted string. To address this need, we extended the spec-
ification language and APIs to support ISO8061 formatted

datetimes2 as the data type isodatetime, which allows us
to enforce the use of ISO8061 in the NWB:N 2.0 schema,
ensuring consistent human and programmatic interpretation
of timestamps within and across data files.

In addition, the use of session start time to indicate both 1)
the start time of a session and 2) the reference clock for all
timestamps in a file meant that users could only store times
relative to a session. Relative times are commonly used to
support direct interpretation and analysis of individual ses-
sions. However, use cases involving files from many sessions
or subjects, and more broadly management of data across
neuroscience labs and projects, benefit from having the ability
to define a common standard reference time across files (e.g.,
1970-01-01T00:00:00Z in the case of POSIX time). To
support these use cases, NWB:N 2.0 now defines a separate
timestamp reference time in addition to the session start time.
For convenience, the reference time is by default set to the
same value as the session start time (assuming common rela-
tive times).

4.3.2 Ensure Unique Object Identifiability
NWB:N 1.0.x allowed untyped groups and datasets with user-
defined names as part of the schema. In the case where mul-
tiple objects with variable name and no assigned type are
contained in the same group, this leads to ambiguity with
regard to which part of the schema governs a particular object.
To ensure that each object can be uniquely associated with the
corresponding description in the schema, NWB:N 2.0 requires
that each dataset and group must either have a unique type
(i.e., neurodata_type) or fixed name.

To ensure compliance with this rule, we defined pre-
viously missing neurodata_types for a number of types,
e.g., ImagingPlane, IntracellularElectrode, or
OptogeneticStimulusSite among others. By defin-
ing a unique type for previously untyped schema also helped
improve reuse and extensibility of types, e.g., to facilitate ex-
tension for Subject metadata. Finally, to ensure that we can
uniquely identify the schema for each object in an HDF5 file,
we defined a set of reserved attributes, which are populated
automatically based on the schema. These attributes store the
neurodata_type and information about the name and version
of the namespace where the type is defined.

4.3.3 Making Data Links Explicit
The original NWB:N 1.0.x schema specified a number of
datasets containing implicit links, i.e., datasets with lists of
either 1) strings with object names, 2) strings with paths, or
3) integer indexes to implicitly point to other locations in an
NWB:N file. These forms of implicit links were not self-
describing, e.g., the kind of linking, target location, implicit
size and numbering assumptions could not easily be identified.
As such, this approach hindered human interpretation of the
data as well as programmatic resolution of these kind of links.
In the NWB:N 2.0 schema we have modelled these implicit re-
lationships explicitly through a combination of reorganization
of metadata using tables and the use of links and datasets of
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object- and region-references. See Sec. 4.1 and Appendix D
for an overview of corresponding changes in the schema.

4.3.4 Specifying Data Shape
In addition to labels for dataset dimensions via the dims key
(a.k.a. “dimensions“ in NWB:N 1.0.x), the NWB:N 2.0 speci-
fication language adds the key shape to support restriction
and validation of the shape of datasets. Specifying the shape
of datasets has helped to clarify and further formalize the
specification of a large number of datasets in the NWB:N 2.0
schema.

4.3.5 Supporting Default Names and Values
In addition to specification of fixed names and values, NWB:N
2.0 adds the ability to define default names for groups and
datasets and default values for datasets and attributes. This ca-
pability is useful to simplify use of the NWB:N data standard
by providing users with practical defaults wherever possible
while still enabling users to customize the values if necessary.

4.3.6 Others: Consistency and Identifiability
Beyond the above main schema changes, NWB:N 2.0 imple-
ments a broad range of additional schema changes to improve
consistency and identifiability. For example, names have been
harmonized and missing metadata fields added in the schema
to improve consistency of object specifications across types.
Several previously required groups (e.g., for epochs and op-
togenetics metadata) have been made optional to reduce the
need for empty groups. Also, NWB:N 2.0 adds a keywords
field to allow users to define keywords for their data to ease in-
tegration with data archives. NWB:N 2.0 further adds the type
LabMetaData as part of /general. This allows users to
more easily integrate lab-specific metadata by extending the
LabMetaData type.

4.4 Improving Separation of Concerns
One main goal during the development of NWB:N 2.0 was
to identify, define, and separate the main components of the
NWB:N ecosystem. This process ultimately also required
changes to both the data standard schema (Sec. 4.4.1) as
well as the specification language (Sec. 4.4.2) to improve
management and improve separation of concerns.

4.4.1 Refine and Remove Common Attributes
Here we discuss changes to common attributes in the NWB:N
schema that have been removed or refined in NWB:N 2.0.

ancestry: In NWB:N 1.0.x the attribute ancestry was
used to explicitly store the list of types a given type inherits
from with the goal to allow users to easily inspect the ancestry
of an object. As the type hierarchy is encoded in the schema,
the ancestry attribute stored redundant information, which
lead to maintenance issues as well as possible inconsistencies
in the schema, as the ancestry attributes of every object had to
be updated any time the type hierarchy changed in the schema.
As such, the ancestry attribute has been removed in NWB:N
2.0. Inspection of the ancestry of a type or object is ultimately

the function of the data and specification APIs and much more
appropriately solved there.

neurodata_type: Similar to ancestry, NWB:N 1.0.x ex-
plicitly defined the attribute “neurodata_type” to store the
type of an object. However, as the type of an object is defined
by the neurodata_type key in the schema (not the attribute
object), this approach easily lead to inconsistencies between
the stored and actual type. As such, the manually defined
attribute neurodata_type has been removed for all types in
the NWB:N 2.0 schema. Instead NWB:N 2.0 defines a cor-
responding reserved attribute that is automatically populated
with the value of the “neurodata_type” key in the schema.

Custom: NWB:N 1.0.x permitted users to add arbitrary data
to the file simply by defining the neurodata_type attribute of
a group or dataset in a file as Custom. Unfortunately, this
approach makes it hard to interpret the data, design effective
APIs, and interact with the data in a standard fashion. One
main decision in the design of NWB:N 2.0 has been that all
objects stored in the file must be governed by the schema. As
such, NWB:N 2.0 requires the use of schema extension for
integration of new data types and support for dynamic addition
of objects with “neurodata_type=Custom” has been removed .
For metadata, NWB:N 2.0 provides the added flexibility via
support for dynamic columns in tables. This approach ensures
that all objects in a file are indeed governed by the schema
while at the same time providing well-defined mechanisms
for dynamic integration of experiment-specific metadata.

source: In NWB:N 1.0.x the attribute source was de-
fined as a free text attribute intended for storage of provenance
information. Practical experience with early adopters, how-
ever, consistently showed that instead of encoding provenance,
the source attribute was often either ignored, contained no
useful information, or was misused to encode custom meta-
data. The source attribute has, therefore, been removed as a
required field from the base types in NWB:N 2.0 (Sec. 3.1).
However, the NWB:N community recognizes data provenance
as a critical issue and we plan to investigate more advanced
options for integration of data provenance with NWB:N as
part of our future work.

4.4.2 Specification Language
As part of the development of NWB:N 2.0 we have overhauled
the specification language significantly. Here we focus on two
main changes that affected the data standard schema.

autogen: In NWB:N 1.0.x the key autogen was used to
specify computations in the schema that an API would then
have to carry out to automatically create datasets and attributes
derived from other fields. This feature was implemented in
response to requirements voiced during the early development
of NWB:N 1.0.x that data files should be human-readable us-
ing the HDFView utility. With the emergence of PyNWB and
MatNWB as dedicated NWB:N data APIs, this requirement
has since been dropped. After a careful review of autogen
at the 3rd NWB:N hackathon at HHMI it was decided to
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remove the autogen feature and all corresponding objects
from the NWB:N 2.0 schema. See Appendix C for details.

Separating keys and values: One main focus of our work
on the specification language as part of the NWB:N 2.0 efforts
was to ensure that all information is being defined explicitly
via dedicated key/value pairs. This requirement helped to sig-
nificantly improve readability of the schema, specificity and
interpretability of the schema, and avoids potential collisions
between keys. For example, in NWB:N 1.0.x the specification
of each object was identified in the schema language by a
key constructed from a regular expression of a combination
of the path, name, type and quantity of the corresponding
specification. This led to keys that were hard to read and
construct, implicitly encoded specification values in keys, and
ultimately led to collision of keys. In NWB:N 2.0 the schema
language has been updated to define explicit key/value pairs
for all specification details, e.g., groups, datasets, links, name,
dtype, or quantity among others. For details please see the
specification language documentation7.

Simplify Reuse of Types: The concept of a neurodata_type
is similar to the concept of a class in object-oriented program-
ming. A neurodata_type is a unique identifier for a specific
type of group or dataset in the schema. Assigning a neuro-
data_type enables the reuse of the specified type by inclusion
or inheritance. Previously, in NWB:N 1.0.x reuse of types
was implemented via a combination of multiple different keys,
specifically, merge, merge+, include, properties,
and allow_subclasses12.

To simplify the specification and reuse of types, the
NWB:N 2.0 specification language instead defines the keys: 1)
neurodata_type_def to define (i.e, create) a new type
and 2) neurodata_type_inc to define the base type of
a type. The combination of neurodata_type_inc and neuro-
data_type_def provides an easy-to-use mechanism to reuse
types via both inheritance (i.e., extension of a type) and com-
position (i.e, embedding of a type as a component of a new
type) as follows:

1. Create type: If only neurodata_type_def is set then we
create a new type from scratch without a base type.

2. Include type: If only neurodata_type_inc is set then we
include (reuse) an existing type.

3. Extend type: If both neurodata_type_inc and neuro-
data_type_def are set, then we create a new type that
inherits from an existing type.

4. Create named object: Finally, if neither neuro-
data_type_inc nor neurodata_type_def are defined then
we define a standard dataset or group without a type and,
hence, the object must have a fixed name to ensure the
object can be uniquely identified.

5 Conclusions
Community: A central goal of NWB:N 2.0 is to work with
the neuroscience community towards better science solutions.

User, developer and application engagement are central to this
mission. In April 2018, 65+ scientists from 20 major institu-
tions attended the NWB:N development and user hackathons
at AIBS and LBNL. Also, many groups are already adopt-
ing NWB:N, including laboratories at UCSF, UCB, Caltech,
LBNL, HHMI Janelia Farm, and the Allen Institute for Brain
Science, among others. The NWB:N teams are also actively
engaging with NIH BRAIN Initiative projects, and the Kavli
foundation funded several seed grants to help various labs to
evaluate and adopt NWB:N. Also, engagement with industry
partners, e.g., Kitware (visualization, continuous integration),
Vidrio (MatNWB), MathWorks (Matlab), Vathes (data man-
agement) and others, is central to our software strategy and to
facilitate the creation of an advanced data science ecosystem
for neurophysiology.

Governance: As an open data standard, all software, doc-
umentation, communication channels, and other NWB:N re-
sources are open to the community via common tools, e.g.,
GitHub, Slack, GoogleGroups, ReadTheDocs, PIP or Conda,
and accessible via https://neurodatawithoutborders.
github.io. Development on NWB:N is currently funded
via several projects by the Kavli foundation and NIH. The
NWB:N Executive and Technical Advisory Boards together
with our sponsors and project teams, play a central role in cre-
ating the vision for and enabling NWB:N to grow to become
a widely accepted standard in neurophysiology.

Future Directions: With the release of NWB:N 2.0, the
next main phase of the NWB:N project begins. One main
goal is to promote adoption of NWB:N 2.0 and to transition
the standard into production use in neuroscience laboratories,
projects, and data archives. Another main goal is to develop
NWB:N 2.x to enhance the standard for new applications and
use cases.

To facilitate integration with lab data management, we plan
to develop methods and tools to support "foreign fields" to
enable referencing of data stored in other systems directly
from NWB:N files. This approach promises to enable users to
seamlessly link data across systems, easily access linked data
via familiar NWB:N file mechanisms, avoid duplicate storage
of data across systems, and integrate NWB:N with lab data
management.

To enable efficient discovery of data, it is critical that meta-
data is specified using interpretable and consistent terms. To
address this challenge we will integrate standardized metadata
models, controlled vocabularies, and ontologies with NWB:N.

An often neglected but critical need in data-intensive anal-
yses is the ability to efficiently identify, select, and process
relevant data subsets. To address this challenge, we will de-
velop tools to make it easy to query and analyze NWB:N data
in parallel using modern commodity and high-performance
compute systems. More broadly, the goal is to develop easy-
to-use data analytics and visualization tools and libraries for
NWB:N as well as integration of NWB:N with existing neu-
rophysiology codes.
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Finally, to enable the neuroscience community to adopt
and curate the NWB:N standard and facilitate the integration
of new use-cases, we will develop standard mechanisms for
extension and tools and processes for sharing, evaluation,
acceptance, and use of NWB:N extensions.
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Appendix

A Specifying Data Tables
Here we provide abbreviated example specifications for the
tables shown in Fig. 3 using the NWB:N specification lan-
guage. Fig. A.1 shows a row-based table in which each row is
stored as a single element of a 1D compound-type array. Here,
the columns of the table are described by the components of
the compound data type. In contrast, the column-based table
shown in Fig. A.2 stores each column as a separate dataset,
i.e., each row spans multiple datasets. Fig. A.3 then illustrates
a hybrid approach in which the (x,y,z) location is stored in
a single compound data-type column as part of an otherwise
column-oriented table.

1 groups:
2 - neurodata_type_inc: DynamicTable
3 name: electrodes
4 doc: A table of all electrodes ...
5 quantity: '?'
6 datasets:
7 - neurodata_type_inc: VectorData
8 name: x
9 dtype: float

10 doc: the x coordinate of the channel ...
11 attributes:
12 - name: description
13 dtype: text
14 doc: value is ...
15 value: the x coordinate of the ...
16 - neurodata_type_inc: VectorData
17 name: y
18 dtype: float
19 doc: the y coordinate of the channel ...
20 attributes:
21 - name: description
22 dtype: text
23 doc: value is ...
24 value: the y coordinate of the ...
25 - neurodata_type_inc: VectorData
26 name: z
27 dtype: float
28 doc: the z coordinate of the channel ...
29 attributes:
30 - name: description
31 dtype: text
32 doc: value is ...
33 value: the z coordinate of the ...
34 - neurodata_type_inc: VectorData
35 name: imp
36 dtype: float
37 doc: the impedance of the channel
38 attributes:
39 - name: description
40 dtype: text
41 doc: value is ...
42 value: the impedance of ...
43 - neurodata_type_inc: VectorData
44 name: location
45 dtype: ascii
46 doc: the location of channel within ...
47 attributes:
48 - name: description
49 dtype: text
50 doc: value is ...
51 value: the location of channel ...
52 - ...
53 ...

Figure A.2. Abbreviated specification of a column-based
table for storing electrode metadata (see Fig. 3b). Note, the id
column is inherited from DynamicTable.

1 datasets:
2 - neurodata_type_def: ElectrodeTable
3 neurodata_type_inc: NWBData
4 dtype:
5 - name: id
6 dtype: int
7 doc: a user-specified unique identifier
8 - name: x
9 dtype: float

10 doc: the x coordinate of the channels ...
11 - name: y
12 dtype: float
13 doc: the y coordinate of the channels ...
14 - name: z
15 dtype: float
16 doc: the z coordinate of the channels ...
17 - name: imp
18 dtype: float
19 doc: the impedance of the channel
20 - name: location
21 dtype: ascii
22 doc: the location of channel within ...

Figure A.1. Abbreviated specification of a row-based table
specified via a 1D compound-type array, for storing electrode
metadata (see Fig. 3a).

1 groups:
2 - neurodata_type_inc: DynamicTable
3 name: electrodes
4 doc: A table of all electrodes ...
5 quantity: '?'
6 datasets:
7 - neurodata_type_inc: VectorData
8 name: (x,y,z)
9 dtype:

10 - name: x
11 dtype: float
12 doc: the x coordinate of the channels ...
13 - name: y
14 dtype: float
15 doc: the y coordinate of the channels ...
16 - name: z
17 dtype: float
18 doc: the z coordinate of the channels ...
19 doc: the x,y,z coordinate of the channel ...
20 attributes:
21 - name: description
22 dtype: text
23 doc: value is ...
24 value: the x,y,z coordinate of the ...
25 - neurodata_type_inc: VectorData
26 name: imp
27 dtype: float
28 doc: the impedance of the channel
29 attributes:
30 - name: description
31 dtype: text
32 doc: value is ...
33 value: the impedance of ...
34 - neurodata_type_inc: VectorData
35 name: location
36 dtype: ascii
37 doc: the location of channel within ...
38 attributes:
39 - name: description
40 dtype: text
41 doc: value is ...
42 value: the location of channel ...
43 - ...
44 ...

Figure A.3. Abbreviated specification of a hybrid table for
storing electrode metadata (see Fig. 3c). Note, the id column
is inherited from DynamicTable.
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B Dense Ragged Arrays
As an alternative to the approach of implicit ragged arrays
and region-based ragged arrays described in Sec. 3.5, NWB:N
generally also supports dense ragged arrays. Using a single
dense array, we can represent ragged arrays by assigning a
unique default value (e.g., NaN) to unused entries and as such,
regularize the array (Fig. B.1). Depending on the raggedness
of the array, this approach can lead to potentially large storage
overheads due to the allocation of unused data values. Here,
storage optimizations like chunking and compression can help
reduce storage overheads but may also introduce additional
memory and I/O cost. While NWB:N generally supports this
approach to store ragged arrays, the NWB:N 2.0 data standard
currently does not use it due to useability and cost concerns.

spike_times	
0	 0.03	 0.14	 0.6	 1.25	 2.62	 3.07	 NaN	 …	
1	 1.23	 1.37	 2.12	 NaN	 NaN	 NaN	 NaN	 …	
2	 0.56	 0.91	 NaN	 NaN	 NaN	 NaN	 Nan	 ...	
..	 ..	 ..	 ..	 ..	 ..	 ..	 ..	 ..	

Dense	ragged	array	

Figure B.1. Illustration showing the use of a dense arrays to
model a ragged array storing the times of spikes from single
units. See Fig. 4 for an example showing the use of implicit
and region-based ragged arrays to describe the same data.

C autogen

Support for autogen has been removed in NWB:N 2.0. The
autogen specification was originally used to specify that the
contents of attributes or datasets (i.e,. their values) can be
derived from the contents of the HDF5 file and, hence, gener-
ated and validated automatically. As such, autogen crossed a
broad range of different functions, including:

• Specification of the structure of format datasets and at-
tributes.

• Description of data constraints (e.g., the shape of the
generated dataset directly depends on the structure of the
input data consumed by autogen).

• Specification of the content (i.e., value) of datasets and
attributes.

• Description of computations to create derived data.
• Validation of the structure and content of datasets and

attributes.

This mixing of functionality in turn led to several concerns:

• autogen exhibited a fairly complex syntax, which made
it hard to interpret and use.

• autogen was specifically used to create derived data from
information that is already in the NWB:N file. Attributes

and datasets generated via autogen, hence: 1) were re-
dundant, 2) required bookkeeping to ensure data consis-
tency, 3) generate dependencies across data and types, 4)
had limited utility as the information could be derived
through other means, and 6) interpretation of data values
may require the provenance of autogen.

• Description of computations as part of a format specifi-
cation was seen as problematic.

• There was potential for collisions between autogen and
the specification of the dataset or attribute itself.

C.1 How did the removal of autogen affect the
NWB:N schema?

autogen was used in NWB V.1.0.6 to generate 17
datasets/attributes primarily to separately store: 1) the path
of links or 2) lists of names of datasets and groups of a given
type/property. The datasets were reviewed at the 3rd NWB:N
hackathon at HHMI and determined to be non-essential and
as such removed from the data standard schema as well. Be-
low a list of the datasets and attributes that were generated
via autogen in NWB:N 1.0.6 that have been removed in
NWB:N 2.0.

1. Datasets and attributes that have been removed due to
redundant storage of the path of links stored in the same
group:

• <IndexSeries>/indexed_timeseries_path
• <RoiResponseSeries>/segmentation_interface_path
• <ImageMaskSeries>/masked_imageseries_path
• <ClusterWaveforms>/clustering_interface_path
• <EventDetection>/source_electricalseries_path
• <MotionCorrection>/image_stack_name/original_path
• <NWBFile>/epochs/epoch_X/links

2. Datasets and attributes that have been removed because
they stored only a list of groups or datasets (of a given type
or property) in the current group.

• <Module>/interfaces
• <ImageSegmentation>/image_plane/roi_list
• <UnitTimes>/unit_list
• <TimeSeries>/extern_fields
• <TimeSeries>/data_link
• <TimeSeries>/timestamps_link
• <TimeSeries>/missing_fields

3. Other datasets/attributes that have been removed to ease
use and maintenance because the data stored is redundant
and can be easily extracted from the file:

• <NWBFile>/epochs/tags
• <TimeSeries>/num_samples
• <Clustering>/cluster_nums

D Replaced Implicit Links/Data-Structures
with Explicit Links

NWB:N 1.0.6 specified datasets of implicit links, containing
lists of either 1) strings with object names, 2) strings with
paths, or 3) integer indexes to implicitly point to other loca-
tions in an NWB:N file. These forms of implicit links were
not self-describing (e.g., the kind of linking, target location,
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implicit size and numbering assumptions were not easily iden-
tified). This hindered human interpretation of the data as well
as programmatic resolution of these kind of links. Below
we provide an (incomplete) list of datasets that have been
replaced to make implicit links between data explicit:

• The text dataset image_plane in the
TwoPhotonSeries type has been changed to a
link to the corresponding ImagingPlane (stored in
/general/optophysiology)

• The text dataset image_plane_name in the
ImageSegmentation type has been changed to a
link to the corresponding ImagingPlane (stored in
/general/optophysiology). The dataset was
also renamed to image_plane for consistency with
the TwoPhotonSeries type.

• The text dataset electrode_name in the
PatchClampSeries type has been changed to a link
to the corresponding IntracellularElectrode
(stored in /general/intracellular_ephys).
The dataset was renamed to electrode for consis-
tency.

• The text dataset site in the OptogeneticSeries
type has been changed to a link to the
corresponding StimulusSite (stored in
/general/optogenetics).

• The integer dataset electrode_idx in
the FeatureExtraction type has been
changed to the dataset electrodes of type
DynamicTableRegion which points to a
region of the ElectrodeTable (stored in
/general/extracellular_ephys/electrodes).

• The integer array dataset electrode_idx
in the ElectricalSeries type has been
changes to the dataset electrodes of type
DynamicTableRegion which points to a
region of the ElectrodeTable (stored in
/general/extracellular_ephys/electrodes).

• The text dataset <electrode_group_X>/device
in /general/extracellular_ephys/ has been
changed to the link <ElectrodeGroup>/device.

• The text dataset <electrode_group_X>/device
in /general/intracellular_ephys/ has been
changed to the link <ElectrodeGroup>/device.

• Also, as discussed in Sec. 4, the Epochs, Unit,
Electrodes, SweepTable, TimeIntervals
and other DynamicTable types in NWB:N 2.0 also
use region and object references to explicitly reference
other data.
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