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Abstract 
The neuroimaging community is steering towards increasingly large sample sizes, which are            
highly heterogeneous because they can only be acquired by multi-site consortia. The visual             
assessment of every imaging scan is a necessary quality control step, yet arduous and              
time-consuming. A sizeable body of evidence shows that images of low quality are a source               
of variability that may be comparable to the effect size under study. We present the MRIQC                
Web-API, an open crowdsourced database that collects image quality metrics extracted from            
MR images and corresponding manual assessments by experts. The database is rapidly            
growing, and currently contains over 100,000 records of image quality metrics of functional             
and anatomical MRIs of the human brain, and over 200 expert ratings. The resource is               
designed for researchers to share image quality metrics and annotations that can readily be              
reused in training human experts and machine learning algorithms. The ultimate goal of the              
database is to allow the development of fully automated quality control tools that             
outperform expert ratings in identifying subpar images. 
 

Background & Summary 
Ensuring the quality of neuroimaging data is a crucial initial step for any image analysis               
workflow because low-quality images may obscure the effects of scientific interest1–4. Most            
approaches use manual quality control (QC), which entails screening every single image of a              
dataset individually. However, manual QC suffers from at least two problems: unreliability            
and time-consuming nature for large datasets. Unreliability creates great difficulty in defining            
objective exclusion criteria in studies and stems from intrinsically large intra-rater and            
inter-rater variabilities 5. Intra-rater variability derives from aspects such as training,          
subjectivity, varying annotation settings and protocols, fatigue or bookkeeping errors. The           
difficulty in calibrating between experts lies at the heart of inter-rater variability. In addition              
to the need for objective exclusion criteria, the current neuroimaging data deluge makes the              
manual QC of every magnetic resonance imaging (MRI) scan impractical. For these reasons,             
there has been great interest in automated QC 5–8, which is progressively gaining attention 9–16             
with the convergence of machine learning solutions. Early approaches 5–8 to objectively           
estimate image quality have employed “image quality metrics” (IQMs) that quantify variably            
interpretable aspects of image quality8–13 (e.g., summary statistics of image intensities,           
signal-to-noise ratio, coefficient of joint variation, Euler angle, etc.). The approach has been             
shown sufficiently reliable in single-site samples 8,11–13, but it does not generalize well to new              
images acquired at sites unseen by the decision algorithm9. Decision algorithms do not             
generalize to new datasets because the large between-site variability as compared to the             
within-site variability of features poses a challenging harmonization problem17,18, similar to           
“batch-effects” in genomic analyses 19. Additional pitfalls limiting fully automated QC of MRI            
relate to the small size of databases that include quality annotations, and the unreliability of               
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such annotations (or “ labels noise”). As described previously, rating the quality of every             
image in large databases is an arduous, unreliable, and costly task. The convergence of              
limited size of samples annotated for quality and the labels noise preclude the definition of               
normative, standard values for the IQMs that work well for any dataset, and also, the               
generalization of machine learning solutions. Keshavan et al. 16 have recently proposed a            
creative solution to the problem of visually assessing large datasets. They were able to              
annotate over 80,000 bidimensional slices extracted from 722 brain 3D images using            
BraindR, a smartphone application for crowdsourcing. They also proposed a novel approach            
to the QC problem by training a convolutional neural network on BraindR ratings, with              
excellent results (area under the curve, 0.99). Their QC tool performed as well as MRIQC 9               
(which uses IQMs and a random forests classifier to decide which images should be              
excluded) on their single-site dataset. By collecting several ratings per screened entity, they             
were able to effectively minimize the labels noise problem with the averaging of expert              
ratings. As limitations to their work, we would count the use of 2D images for annotation and                 
the use of a single-site database. In sum, automating QC requires large datasets collected              
across sites, and rated by many individuals in order to ensure generalizability. 
 
Therefore, the MRIQC Web-API (web-application program interface) provides a unique          
platform to address the issues raised above. The database collects two types of records: i)               
IQMs alongside corresponding metadata extracted by MRIQC (or any other compatible           
client) from T1w (T1-weighted), T2w (T2-weighted) and BOLD        
(blood-oxygen-level-dependent) MRI images; and ii) manual quality ratings from users of the            
MRIQC software. It is important to note that the original image data are not transferred to                
the MRIQC Web-API.  
 
Within fourteen months we have collected over 50,000 and 60,000 records of anatomical             
and functional IQMs, respectively ( Figure 1). These IQMs are extracted and automatically            
submitted (unless the user opts out) with MRIQC ( Figure 2). Second, we leverage the              
efficiency of MRIQC’s reports in assessing individual 3D images with a simple interface that              
allows experts to submit their ratings with a few clicks ( Figure 3). This assessment protocol               
avoids clerical errors from the operator, as ratings are automatically handled and registered.             
In other words, MRIQC users are building a very large database with minimal effort every               
day. As only the IQMs and manual ratings are crowdsourced (i.e. images are not shared),               
data collection is not limited to public datasets only. Nonetheless, unique image checksums             
are stored in order to identify matching images. Therefore, such checksums allow users to              
find public images that IQMs and/or ratings derive from. The presented resource is             
envisioned to train automatic QC tools and to develop human expert training programs. 
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Figure 1. A rapidly growing MRI quality control knowledge base . The           
database has accumulated over 50,000 records of IQMs generated for          
T1-weighted (T1w) images and 60,000 records for BOLD images.         
Records presented are unique, i.e. after exclusion of duplicated         
images. 

 

Methods 
Here we describe an open database that collects both IQM vectors extracted from functional              
and anatomical MRI scans, along with quality assessments done by experts based on visual              
inspection of images. Although it was envisioned as a lightweight web-service tailored to             
MRIQC, the database is able to receive new records from any other software, provided they               
are able to correctly query the API (application programming interface). 

Data generation and collection workflow 

The overall framework involves the following workflow (summarized in Figure 2): 
1. Execution of MRIQC and submission of IQMs: T1w, T2w, and BOLD images are             

processed with MRIQC, which computes a number of IQMs (described in section            
Technical Validation ). The IQMs and corresponding metadata are formatted in          
JavaScript Object Notation (JSON), and MRIQC automatically submits them to a           
representational state transfer (REST) or RESTful endpoint of the Web-API. Users can            
opt-out if they do not wish to share their IQMs. 

2. JSON records are received by the endpoint, validated, and stored in the database.             
Each record includes the vector of IQMs, a unique checksum calculated on the             
original image, and additional anonymized metadata and provenance. 

3. Visualization of the individual reports: MRIQC generates dynamic HTML (hypertext          
markup language) reports that speed up the visual assessment of each image of the              
dataset. Since its version 0.12.2, MRIQC includes a widget (see Figure 2) that allows              
the researcher to assign a quality rating to the image being screened (see Table 3). 

4. Crowdsourcing expert quality ratings: the RESTful endpoint receives the quality          
ratings, which are linked to the original image via their unique identifier. 

5. Retrieving records: the database can be queried for records with any HTTP            
(HyperText Transfer Protocol) client or via the web using our interface:           
https://mriqc.nimh.nih.gov/ . Additionally, a snapshot of the database at the time of           
writing has been deposited to FigShare20. 
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Figure 2. Experimental workflow to generate the database. A dataset is processed with MRIQC. Processing               
finishes with a POST request to the MRIQC Web API endpoint with a payload containing the image quality metrics                   
(IQMs) and some anonymized metadata (e.g. imaging parameters, the unique identifier for the image data, etc.)                
in JSON format. Once stored, the endpoint can be queried to fetch the crowdsourced IQMs. Finally, a widget                  
( Figure 3) allows the user to annotate existing records in the MRIQC Web API. 

 

 

Figure 3. MRIQC visual reports and feedback tool. The visual reports generated with MRIQC include the “Rate                 
Image” widget. After screening of the particular dataset, the expert can assign one quality level (among “exclude”,                 
“poor”, “acceptable”, and “excellent”) and also select from a list of MR artifacts typically found in MRI datasets.                  
When the annotation is finished, the user can download the ratings to their local hard disk and submit them to the                     
Web API. 

Code availability 

The MRIQC Web API is available under the Apache-2.0 license. The source code is accessible               
through GitHub ( https://github.com/poldracklab/mriqcwebapi ). 

MRIQC is one possible client to generate IQMs and submit rating feedback. It is available               
under the BSD 3-clause license. The source code is publicly accessible through GitHub             
( https://github.com/poldracklab/mriqc). 
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Data Records 
A full data snapshot of the database at the time of submission is available at FigShare20.                
Alternatively, data are accessible via DataLad 21 with the dataset URL https://github.com/ 
oesteban/mriqc-webapi-snapshot. Table 1 describes the structure of the dataset being          
released. 
To obtain the latest updated records, the database can be programmatically queried online             
to get all the currently stored records through its RESTful API. 
MRIQC reports, generated for all T1w images found in OpenfMRI are available for expert              
training at https://mriqc.s3.amazonaws.com/index.html#openfmri/ . 
 

Table 1. List of data tables retrieved from MRIQC-WebAPI. The following datasets are             
available at FigShare20. The <name>_curated.csv file versions correspond to the original           
tables after matching checksums to images in publicly available databases (and further            
curation as shown in https://www.kaggle.com/chrisfilo/mriqc-data-cleaning). 

Filename Size Description 

bold.csv 71MB IQMs and metadata of BOLD images (unique records) 

bold_curated.csv 162MB Same as bold.csv, after curation and checksum matching 

T1w.csv 79MB IQMs and metadata of T1w images (unique records) 

T1w_curated.csv 110MB Same as T1w.csv, after curation and checksum matching 

T2w.csv 1.1MB IQMs and metadata of T2w images (unique records) 

T2w_curated.csv 1.7MB Same as T2w.csv, after curation and checksum matching 

rating.csv 131kB Manually assigned quality annotations 

 
 

Technical Validation and Limitations 
MRIQC extends the list of IQMs from the quality assessment protocol 10 (QAP), which was              
constructed from a careful review of the MRI and medical imaging literature. The technical              
validity of measurements stored to the database is demonstrated by our previous work9 on              
the MRIQC client tool and its documentation website:        
https://mriqc.readthedocs.io/en/latest 
/measures.html . Definitions for the anatomical IQMs are given in Table 2, and for functional              
IQMs in Table 3. Finally, the structure of data records containing the manual QC feedback is                
summarized in Table 4. 
 
The main limitation of the database resides in that a substantial fraction of the records (e.g.,                
around 50% for the BOLD IQMs) miss important information about imaging parameters. The             
original cause is that such information was not encoded with the input dataset being fed into                
MRIQC. However, as BIDS is permeating the current neuroimaging workflow we can expect             
BIDS datasets to become more complete, thereby allowing MRIQC to submit such valuable             
information to the Web API. Moreover, the gradual adoption of better DICOM-to-BIDS            
conversion tools such as HeuDiConv22, which automatically encodes all relevant fields in the             
BIDS structure, will surely help minimize this issue. 
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During the peer-review process of this manuscript, one reviewer identified a potential            
problem casting float numbers into integers on the content of the           
"bids_MagneticFieldStrength" field of all records. The bug was confirmed and consequently           
fixed on the MRIQC Web-API, and all records available on the database snapshot deposited              
at FigShare have been amended. When retrieving records directly from the Web-API, beware             
that those with creation date prior to Jan 16, 2019 require a revision of the tainted field. 
 

Usage Notes 
Primarily, the database was envisioned to address three use-cases: 

1. Sampling the distribution of IQMs and imaging parameters across datasets (including           
both publicly available and private), and across scanning sites. 

2. Ease the image QC process, crowdsourcing its outcomes. 
3. Training machines and humans. 

These potential usages are revised with finer detail in the following. Note this resource is               
focused on quality control (QC), rather than quality assessment (QA). While QC focuses on              
flagging images that may endanger downstream analysis for their bad quality (i.e., identifying             
outliers), QA identifies issues that degrade all image's quality (i.e., improving the overall             
quality of images after a problem spotted in the scanning device or acquisition protocol -via               
QC of actual images- is fixed). 

Collecting IQMs and imaging parameters 

Based on this information, researchers can explore questions such as the relationship of             
particular imaging parameters (e.g. MR scan vendor, or more interestingly, the multi-band            
acceleration factor or newest functional MRI sequences) with respect to the signal-to-noise            
ratio or the power of N/2 aliasing ghosts. Jupyter notebooks demonstrating examples of this              
use-case are available at https://www.kaggle.com/chrisfilo/mriqc/kernels . 

Crowdsourcing an optimized assessment process 

To our knowledge, the community lacks a large database of multi-site MRI annotated for              
quality that permits the application of machine learning techniques to automate QC. As             
Keshavan et al. have demonstrated, minimizing the time cost and fatigue load along with the               
elimination of bookkeeping tasks in the quality assessment of individual MR scans enables             
collection and annotation of massive datasets. The graphical user interface for this use-case             
is presented in Figure 2. 

A database to train machines and humans 

Training machines . As introduced before, the major bottleneck in training models that can             
predict a quality score for an image or identify specific artifacts, without problems to              
generalize across MR scanners and sites, is the small size of existing datasets with              
corresponding quality annotations. Additionally, these annotations, if they exist, are done           
with extremely varying protocols. Thus, the ability of the presented database to crowdsource             
quality ratings assigned by humans after visual inspection addresses both problems. The            
availability of multi-site, large samples with crowdsourced quality annotations that followed           
a homogeneous protocol (the MRIQC reports) will allow building models that overperform            
the random forests classifier of MRIQC 9, in the task of predicting the quality rating a human                
would have assigned to an image, given a vector of IQMs (i.e., from IQMs to quality labels).                 
Matching public image checksums, this resource will also enable to train end-to-end (from             
images to quality labels) deep-learning solutions 
Training humans . Institutions can use the resource to train their experts and compare their              
assessments across themselves and against the existing quality annotations corresponding to           
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publicly available datasets. Programs for training experts on quality assessment can be            
designed to leverage the knowledge shared via the proposed database. 
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 Table 2. Summary table of image quality metrics for anatomical (T1w, T2w) MRI. MRIQC              
produces a vector of 64 image quality metrics (IQMs) per input T1w or T2w scan.               
(Reproduced from https://doi.org/10.1371/journal.pone.0184661.t002) 

IQMs based on noise measurements 

CJV 
The coefficient of joint variation of GM and WM was proposed as an objective function by 
Ganzetti et al.23 for the optimization of INU correction algorithms. Higher values are related to 
the presence of heavy head motion and large INU artifacts. 

CNR 
The contrast-to-noise ratio24 is an extension of the SNR calculation to evaluate how separated 
the tissue distributions of GM and WM are. Higher values indicate better quality. 

SNR 

MRIQC includes the signal-to-noise ratio calculation proposed by Dietrich et al.25, using the air 
background as noise reference. Additionally, for images that have undergone some noise 
reduction processing, or the more complex noise realizations of current parallel acquisitions, a 
simplified calculation using the within tissue variance is also provided. 

QI2 

The second quality index of Mortamet et al.8 is a calculation of the goodness-of-fit of a χ2 
distribution on the air mask, once the artifactual intensities detected for computing the QI1 
index have been removed. The description of the QI1 is found below. 

IQMs based on information theory 

EFC 
The entropy-focus criterion26 uses the Shannon entropy of voxel intensities as an indication of 
ghosting and blurring induced by head motion. Lower values are better. 

FBER 
The foreground-background energy ratio 10 is calculated as the mean energy of image values 
within the head relative to the mean energy of image values in the air mask. Consequently, 
higher values are better. 

IQMs targeting specific artifacts 

INU 
MRIQC measures the location and spread of the bias field extracted estimated by the intensity 
non-uniformity (INU) correction. The smaller spreads located around 1.0 are better. 

QI1 

Mortamet’s first quality index8 measures the number of artifactual intensities in the air 
surrounding the head above the nasio-cerebellar axis. The smaller QI1, the better. 

WM2MAX 

The white-matter to maximum intensity ratio is the median intensity within the WM mask over 
the 95% percentile of the full intensity distribution, that captures the existence of long tails 
due to hyper-intensity of the carotid vessels and fat. Values should be around the interval [0.6, 
0.8] 

Other IQMs 

FWHM 
The full-width half-maximum27 is an estimation of the blurriness of the image calculated with 
AFNI’s 3dFWHMx. Smaller is better. 

ICVs 
Estimation of the intracranial volume (ICV) of each tissue calculated on the FSL fast’s 
segmentation. Normative values fall around 20%, 45% and 35% for cerebrospinal fluid (CSF), 
WM and GM, respectively. 

rPVE 
The residual partial volume effect feature is a tissue-wise sum of partial volumes that fall in the 
range [5%-95%] of the total volume of a pixel, computed on the partial volume maps 
generated by FSL fast. Smaller residual partial volume effects (rPVEs) are better. 

SSTATs 
Several summary statistics (mean, standard deviation, percentiles 5% and 95%, and kurtosis) 
are computed within the following regions of interest: background, CSF, WM, and GM. 

TPMs 
Overlap of tissue probability maps estimated from the image and the corresponding maps 
from the ICBM nonlinear-asymmetric 2009c template 28. 
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 Table 3. Summary table of image quality metrics for functional (BOLD) MRI. MRIQC             
produces a vector of 64 image quality metrics (IQMs) per input BOLD scan. 

 

Spatial IQMs 

EFC, FBER, FWHM, SNR, SSTATs (see Table 2) 

IQMs measuring temporal variations 

tSNR 
A simplified interpretation of the original temporal SNR definition by Krüger et al.29. We 
report the median value of the tSNR map calculated as the average BOLD signal across 
time over the corresponding temporal s.d. map. 

GCOR Summary of time-series correlation as in30 using AFNI’s @compute_gcor 

DVARS 
The spatial standard deviation of the data after temporal differencing. Indexes the rate of 
change of BOLD signal across the entire brain at each frame of data. DVARS is calculated 
using Nipype, after head-motion correction 

IQMs targeting specific artifacts 

FD 

Framewise Displacement - Proposed by Power et al.1 to regress out instantaneous 
head-motion in fMRI studies. MRIQC reports the average FD. 

GSR 
The Ghost to Signal Ratio31 estimates the mean signal in the areas of the image that are 
prone to N/2 ghosts on the phase encoding direction with respect to the mean signal 
within the brain mask 10. Lower values are better. 

DUMMY 
The number of dummy scans - A number of volumes at the beginning of the fMRI 
time-series identified as nonsteady states. 

IQMs from AFNI 

AOR 
AFNI’s outlier ratio - Mean fraction of outliers per fMRI volume as given by AFNI’s 
3dToutcount 

AQI AFNI’s quality index - Mean quality index as computed by AFNI’s 3dTqual 
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 Table 4. Summary table of quality assessment values. Annotations received through the            
feedback widget are stored in a separate database collecting one rating value and an array of                
artifacts present in the image. 

 

Expert rating 

Exclude Assigned to images that show quality defects that preclude any type of processing 

Poor 
Assigned to images that, although presenting some quality problem, may tolerate some 
types of processing. For instance, a T1w image that may be used as the co-registration 
reference, but will probably generate biased cortical thickness measurements. 

Acceptable Assigned to images that do not show any substantial issue that may preclude processing 

Excellent 
Assigned to images without quality issues 

Artifacts 

A vector of boolean values corresponding to the following list of possible artifacts found in the image: 
● Head motion artifacts 
● Eye spillover through phase-encoding axis 
● Non-eye spillover through phase-encoding axis 
● Coil failure 
● Global noise 
● Local noise 
● Electromagnetic interference / perturbation 
● Problematic field-of-view prescription / Wrap-around 
● Aliasing ghosts 
● Other ghosts 
● Intensity non-uniformity 
● Temporal field variation 
● Reconstruction and postprocessing (e.g. denoising, defacing, resamplings) 
● Uncategorized artifact 
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