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Abstract 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, whose early detection 

could lead to significant improvements in outcomes through appropriate prescription of 

anticoagulation.  Although a variety of methods exist for screening for AF, there is general 

agreement that a targeted approach would be preferred.  Implicit within this approach is the need 

for an efficient method for identification of patients at risk.  In this investigation, we examined the 

strengths and weaknesses of an approach based on application of machine-learning algorithms 

to electronic health record (EHR) data that has been harmonized to the Observational Medical 

Outcomes Partnership (OMOP) common data model.  We examined data from a total of 2.3M 

individuals, of whom 1.16% developed incident AF over designated 6-month time intervals.  We 

examined and compared several approaches for data reduction, sample balancing (re-sampling) 

and predictive modeling using cross-validation for hyperparameter selection, and out-of-sample 

testing for validation.   Although no approach provided outstanding classification accuracy, we 

found that the optimal approach for prediction of 6-month incident AF used a random forest 

classifier, raw features (no data reduction), and synthetic minority oversampling technique 

(SMOTE) resampling (F1 statistic 0.12, AUC 0.65). This model performed better than a predictive 

model based only on known AF risk factors, and highlighted the importance of using resampling 

methods to optimize ML approaches to imbalanced data as exists in EHRs.  Further studies using 

EHR data in other medical systems are needed to validate the clinical applicability of these 

findings.  
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Introduction 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, and its prevalence is 

increasing1; ~5.1M individuals had AF in 2010, and an increase of 9.3-12.1M is anticipated by 

20302. Importantly, the increased risk of mortality with AF is almost entirely due to an increased 

risk of thromboembolic stroke3, 4.   This risk could be reduced if a moderate or high-risk patient 

with AF is started on oral anticoagulation5-17.   A major challenge in the management of patients 

with AF is that often stroke is the first presentation of AF18, indicating that simply waiting for a 

patient to develop AF may not be the optimal approach to limit the risk of stroke.  On the other 

hand, population-wide screening for AF is not currently recommended19-21, although some 

suggest that targeted screening may be useful21. A model that could predict risk of AF over a 6-

month period could be applied to target screening to identify a patient with AF prior to the next 

clinic visit.  

 

The promise of electronic health record (EHR) data has included the potential to leverage ‘big 

data’ analytical approaches to predict clinical outcomes within a real-world context.  However, 

despite widespread adoption of EHRs as mandated under the Affordable Care Act,22 there are 

limited examples of practical application of EHR data to predict a meaningful clinical outcome23-27. 

In addition to technical limitations of working with data at the scale of the EHR, there are also 

challenges in performance of external validation across healthcare systems28-30. Nonetheless, 

with increasing availability of cloud-computing25 platforms and data storage31, 32,  as well as 

scalable computational models that can be developed and potentially shared across healthcare 

systems, opportunities to apply EHR data to clinical decision making are emerging.   

 

A great deal of enthusiasm has accompanied applications of deep learning33 and artificial 

intelligence to outperform humans in image recognition34, 35, text recognition36, 37, and games38, 

such as checkers39 or Go40. However, within the healthcare setting, the ‘black box’ characteristic 

of machine learning (ML) has caused hesitancy in application.  In certain situations, ML 

approaches, such as support vector machines41 or random forests42, have been found to produce 

greater predictive performance than standard regression models43-45.  More recently, there has 

been increased recognition that deep-learning models33, 46, composed of multiple hidden layers of 

a neural network rather than a single layer, are better equipped to handle the large amount of 

data that exists in EHRs.  However, in order to understand how these approaches can be applied 

to a clinical situation, such as prediction of incident AF, additional study is needed.  

 

In this investigation, we developed and tested an ML model to predict 6-month incidence of AF 

using EHR data.  We conducted a systematic examination of EHR data sampled from 2.3 million 

individuals, in whom we have harmonized 26,000 features, including diagnostic codes and 
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medications under the OMOP common data model.  Among the characteristics we examined in 

this developmental process includes the appropriate use of data reduction techniques, data 

resampling to manage dataset imbalance, and identification of a classification algorithm based on 

training time and accuracy.   

 

Methods 

Study Population and Case Ascertainment 

The UCHealth hospital system includes 3 large regional centers (North, Central, South) over the 

front range of Colorado that share a single Epic instance, which allows data from all centers to be 

pooled into a single data warehouse, a copy of which is located on the Google cloud platform.  

This warehouse of data was queried using Google BigQuery to create a dataset and conduct 

analyses directly on the Google cloud platform, where an array of machine-learning tools can be 

run on virtual machines. To create our study dataset, we applied a classification approach based 

on predicting risk of incident AF over a 6-month period, as this timeframe is also the standard 

follow-up time for most cardiovascular providers.  We performed a SQL query on the UCHealth 

EHR for subjects with new diagnosis of AF obtained over a 6-month interval. To identify cases, 

we filtered out all patients with prevalent AF on first encounter, and then over 6-month intervals 

(from each encounter), assigned patients to a ‘case’ classification if they had AF diagnosed by 

ICD code (ICD-9 427.31 or ICD-10 I48.91) within that interval. Once a patient was designated a 

case, he/she was removed from the pool, and all non-case patients without AF were designated 

as ‘controls’. Data was available in the EHR for the period from January 1, 2011 until October 1, 

2018 for 2.3M subjects.  This study protocol was approved for analysis of de-identified data 

(limited dataset with dates included) by the University of Colorado Institutional Review Board.  

 

Common Data Model and Data splitting 

To provide the opportunity for validation of findings in this study, we used a common data model 

for EHR data, based on the Observational Health Data Sciences and Informatics (OHDSI) 

collaboration, which uses the Observation Medical Outcomes Partnership common data model 

(OMOP-CDM)47.  The OMOP CDM is a mapping of the raw EHR data to a harmonized dataset; 

for this investigation, we used this CDM with 26k variables (i.e., features) from the EHR, including 

diagnosis codes and medications.  These values are time-stamped with the time of entry into the 

medical record, which is used to correlate with the timing of the outcome of interest.  Features are 

encoded using one-hot encoding, and were collected cumulatively from the time of first encounter 

until diagnosis of AF (cases) or end of follow-up (controls).  To reduce the time for computation, 

as well as preserve additional data for future validation studies within our medical system, we 

obtained a random sample of 412,291 subjects (407,550 controls and 4741 cases), which was 

then split into training (80%) and testing (20%) sets to compare the models developed in this 
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investigation. The training set underwent an additional split to create a validation set (10% of the 

training set) for comparing unsupervised stacked autoencoder models (see below).  Figure 1 

displays the data management scheme for this investigation.  

 

Model Development 

Hyperparameter tuning was performed using iterative random sampling of 10,000 records for 

manual grid search (neural networks), and 10-fold cross validation for automated grid search (for 

other machine learning approaches).  See Supplemental Methods for details.  Unsupervised 

analysis was performed first using principal component analysis to examine overall data 

structure.  For dimensionality reduction, we employed stacked autoencoders48 using fully 

connected neural networks of several architectures, with a goal to identify the lowest replication 

error (cross-entropy loss) within the validation set (10% of training set). We also conducted 

analyses using the full (non-reduced) feature set of 26k features for comparison. 

 

We examined several strategies for resampling, including random oversampling, SMOTE49, 

random undersampling, and cluster centroid.  To identify the best resampling approach, we used 

random forest classifier, as pilot analyses using a smaller dataset suggested this approach might 

be superior to other ML approaches. We also compared with a model using no resampling 

(imbalanced). 

 

Once we identified an optimal resampling approach, we compared several classification 

algorithms, including naïve Bayesian classification, random forest classification, boosted gradient 

classification, support vector machines, one-layer fully connected neural networks (shallow) and 

multiple layer fully connected neural networks (deep). Model comparison was based on area-

under-curve and F1 statistic50-52.  Computation time includes all prior data sampling and algorithm 

performance.   Once an optimal model and resampling approach were identified, we conducted 

sensitivity analysis using several alternative resampling and modeling approaches in combination 

to ensure that the combination (dimensionality reduction, resampling, and classification algorithm) 

identified was indeed optimal.  Precision-recall and receiver-operator characteristic curves, as 

well as feature importance plots, were created for the optimal model for manual inspection.   

 

Validation of Developed Model 

The optimal model was then compared with an unregularized logistic regression model based on 

presence of known clinical predictors of AF, including hypertension (ICD-9 and 10–Hypertension: 

401.x and I10, Obesity: 278.x and E66.9, Diabetes: 250.x and E 11.9, Coronary disease: 414.x 

and I25.1x, Heart failure: 428.x and I50.9, Valvular heart disease: 424.x and I08).  
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Computation and Analysis 

All analyses were run on Google Cloud Platform, using 96 CPUs and 620 GB of RAM.  Scripts 

were composed in Python (version 3) and were run on Jupyter Notebook with Tensorflow 

platform on the Google Cloud Platform.  Machine learning packages included scikit-learn and 

keras. Confidence intervals were calculated using Wald method53, 54, although almost all were 

within the rounding error of the estimates due to the large testing sample size (N = 82,458), and 

are not displayed.  See Supplemental Methods for additional details. 

  

Results 

Across the entire UCHealth population of 2.3M, we identified over 26k patients with 6-month 

incident AF (Table 1).  Although essential hypertension was the most common data element in 

both groups, patients with 6-month incident AF had more standard cardiovascular diagnoses 

compared to the larger population who were never diagnosed with AF.  From this population, a 

random sample selected for model development included 407,550 controls and 4,741 cases, 

which were split into a training set (80%) of 326,040 controls and 3,793 cases and a testing set 

(20%) of 81,510 controls and 948 cases (Figure 1).   

 

To explore the data structure of the EHR data prior to modeling, we performed principal 

component analysis (PCA), where we noted a large amount of overlap between components in 

patients with and without 6-month incident AF within the first two principal components (Figure 

2A).  We noted that only a small amount of overall variability was explained by the first few 

components, and that there was not a clear plateau present over the first 500 components that 

were analyzed (Figure 2B).   We then created several architectures of stacked autoencoder 

(SAE) neural networks, using regularization techniques such as drop-out and several activation 

functions.  We found that a deep neural network [10000, 2000, 500, 2000, 10000] with three 

encoding and three decoding layers, dropout, and sigmoid activation function, resulted in the 

lowest reconstruction (validation) error (Table 2).   

 

We then examined the role of undersampling and oversampling methods to identify the optimal 

approach to manage the imbalance between cases and controls that we identified in this dataset.  

Using a random forest classification algorithm with three-layer sigmoid/dropout SAE (see above),  

we found that SMOTE not only provided the shortest training times, but it also resulted in the best 

classification F1 score (Table 3), compared with other methods.   

 

Using the SMOTE resampling strategy combined with three-layer SAE (dropout + sigmoid 

activation), we then examined several classification algorithms to identify a potential ‘overall’ best 

model.  Several models, specifically support vector machines, did not converge after over 24 
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hours of processing and were not included.  Among the approaches examined, we found that 

random forest classification was superior to other methods that included regularized regression, 

boosted gradient descent, shallow, and deep neural networks (Table 4).   

 

To ensure that our modeling combination did not favor a particular combination of dimensionality 

reduction, resampling, and classification algorithm, we then performed a sensitivity analysis using 

various combinations of each.  We found that a model that used the raw features as input (no 

dimensionality reduction), SMOTE and random forest classifier (F1 0.12, AUC 0.65) performed 

better than other combinations, including raw features, SMOTE and 2-layer neural network (F1 

0.05, AUC 0.53), and was overall the best predictive model identified from our EHR.  This model 

had a specificity of 94.7%, sensitivity of 35.74%, negative predictive value of 99.3% and positive 

predictive value of 6.93% at a probability (decision) cutoff of 0.5. The confusion matrix for the 

model is displayed in Supplemental Figure 1.   As shown in Figure 3A, several additional 

probability cutoffs for classification before 0.4 provided over 95% sensitivity, at the expense of a 

significant decrease in specificity.  Feature importance was examined for the optimal model, 

which found that none of the features most common across the population (Table 1) were of high 

importance in classification of 6-month AF (Supplemental Table 1 and Supplemental Figure 2), 

although several features predominant in incident AF patients had non-zero importance 

(42872402 Coronary arteriosclerosis in native artery: 1.61e-05; 254761 Cough: 4.11e-06; 201826  

Type 2 diabetes mellitus: 1.96e-07).  Calibration curves also revealed relatively poor classification 

across all probability thresholds (Supplemental Figure 3) for several models.       

 

Finally, we found that the optimal model (raw features, SMOTE, random forest classifier) 

performed better than an unregularized logistic regression model based on known AF risk factors, 

which had an F1 score of 0.073, AUC of 0.64 with SMOTE resampling prior to fitting (training), 

and an F1 score of 0.00 and AUC of 0.5 without resampling prior to fitting.  

 

Discussion 

In this investigation of development of a machine-learning model using harmonized EHR data for 

predicting 6-month incident AF, we found that a random forest classifier created from raw feature 

inputs with SMOTE oversampling provided better classification than any other combinations of 

approaches tested, including deep learning models and known risk factors of AF.  These results 

are significant because in addition to motivating future investigations to apply ML methods to 

EHR data to identify patients at risk for AF, they also incorporated harmonized data (OMOP-

CDM), which means that the optimal model can not only be directly applied in our EHR, but to 

data from the EHR of any other medical institution participating in OMOP/OHDSI.  In clinical 

application, our model could thus be inserted directly back into the user interface to guide 
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targeted screening patients at risk of AF, including development of prospective follow-up studies 

to use the prediction for targeted screening for AF, including routine ECGs, implantable, or 

wearable devices.   

 

However, there are several reasons for hesitancy before taking these results directly back to the 

bedside to guide clinical management, without additional investigation.  First, the model that we 

identified was not extremely accurate, with an F1 score well under 20%, and a sensitivity of 

35.74% based on a cutoff probability of 0.5 for risk.  Although we noted that the probability 

threshold can be lowered to improve sensitivity of classification, the drop in specificity, and 

number of false-positives, with such an approach would result in a large number of patients 

undergoing unfruitful screening.  Second, we found that the features identified as important in the 

classification process were atypical, with many of unclear association with AF based on known 

pathophysiology55, 56 and clinical risk factors57, 58.  Although this finding may reflect the fact that 

none of the features was particularly strong in predicting risk of AF, as evident from the low 

feature-importance scores, it also suggests that the model may be overfitting our population 

(despite validation in a held-out testing set).  Importantly, because we performed a harmonization 

step prior to the modeling process, the necessary external population validation to explore the 

possibility of overfitting is simply a matter applying this model directly to OMOP-CDM from an 

outside EHR.  It is also important to keep our findings in context as there is a great deal unknown 

about clinical risk in development of AF, and one need look no further than to the field of genetic 

investigation, where whole-genome approaches have identified novel risk loci whose role in AF 

pathophysiology remains poorly understood59, 60, but which provide far superior prediction over 

many candidate genes.  

 

In the process of developing of a 6-month risk prediction model for AF, we made several 

important observations about the application of machine learning to EHR data.  First, we found 

that dimensionality reduction was inferior to use of raw feature inputs for predicting incident AF.   

This finding likely reflects the sparsity of EHR data, which resulted in a significant loss of 

information even using dimensionality reduction methods with very low reconstruction loss.  This 

finding implies that within our population, the strongest predictors of 6-month incident AF are 

relatively rare, and thus minimized with dimensionality reduction approaches.  The relatively 

obscure features identified in the feature importance evaluation supports this contention. To our 

knowledge, this phenomenon has not been described in EHR-analysis approaches, many of 

which apply some form of dimensionality reduction61, although further exploration is likely 

necessary.  
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Second, we found that for a rare condition like 6-month incident AF (1.2% of the total population), 

oversampling to rebalance the data was superior to using the imbalanced dataset and 

undersampling, regardless of the classification algorithm applied.  In fact, the majority of the ML 

approaches tested failed to provide any added improvement (F1 0.0 and AUC 0.5) without 

sample rebalancing.  This finding is likely reflective of the increase in power obtained with 

oversampling, although further work is needed to understand why this particular approach was 

superior. 

 

Finally, we found that random forest classification provided the optimal classification algorithm, 

with better classification than a deep neural network approach when the input was raw features.  

This finding demonstrates that although deep learning approaches may be superior for 

classification of structured datasets, such as in image62 or voice recognition63, they are not always 

optimal over other ‘standard’ ML algorithms, and highlights the importance of examining all 

approaches for each classification problem, rather than assuming a giving approach is optimal.  

 

Strengths 

In addition to the insights above, there are several additional strengths noteworthy in this 

investigation. First, all models were created using a harmonization scheme (OMOP common data 

model) that could allow for direct application and validation to data mapped from a separate EHR.  

Such harmonization allows for the opportunity to explore transfer-learning64 approaches, which 

could provide additional insight into similar and divergent AF risk factors across populations. 

Second, we conducted a systematic approach to identify the best dimensionality reduction, 

resampling, and classification algorithm for this outcome.  Further work in other outcomes is 

needed to determine if the combination we identified for predicting 6-month incident AF is also 

optimal for prevalent or longer-term AF prediction, as well as for outcomes that are more or less 

common than AF.  Finally, we examined a dataset of over 2 million subjects, which provided more 

than enough sample size from our single institution to conduct cross-validation and out-of-sample 

validation.  This power from use of big data is possible by the unique circumstances of our 

relationship with Google Cloud Platform, although many other EHRs are moving to the cloud, 

providing further opportunities for development and testing.   

 

Limitations 

There were several limitations in this study, many of which are the subject of future, more 

targeted investigations.  For one, our study included a very simple method for the temporal 

relationships between features in our dataset, which did not account for time-varying effects or 

censoring.  An AF event that occurs the day after an encounter is modeled the same as one 

occurring the day before a subsequent encounter, and a diagnosis or medication that was given 
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one month before the AF diagnosis was weighted the same as one given 4 years prior.  While we 

suggest that the approach we employed for this investigation is reasonable based on the typical 

6-month follow-up schedule for patients seen in cardiology clinic, we realize that additional 

information about temporal risk will be needed for more accurate prediction approaches. More 

sophisticated methods, such as recurrent neural networks61, 65 or parametric survival functions66 

could provide more accurate prediction in future investigations.  A second weakness is that we 

excluded some additional data elements, such as lab values and diagnostic test results, which 

may have had prognostic value for predicting 6-month AF67, 68.  Some of these values have been 

difficult to harmonize across datasets via OMOP-CDM, and others suffer from high variability in 

inter-institutional measurement, such as echo measures of diastolic function57, 69.  Nonetheless, 

there are many additional biomarkers67, 68 likely to have a more ‘biological’ relationship to risk of 

AF than a diagnostic code, and future applications that include this information would be 

expected to provide both predictive and inferential knowledge about risk of AF.  Finally, although 

the systematic, harmonized approach we employed in this study holds potential for cross-

institutional validation, much work is needed in terms of data sharing before actual testing can be 

performed.  Our group and others are working in this direction, and the hope is that sometime in 

the not-to-distant future, all EHRs will incorporate a ‘standard’ risk prediction model for AF and 

many other conditions.   

 

In conclusion, we studied the development of an ML model to predict 6-month risk of AF using 

harmonized EHR data and found that the combination of raw feature inputs, SMOTE 

oversampling, and random forest classification provided superior prediction than other models, 

including one with known clinical risk factors.  Further work is needed to explore the technical and 

clinical applications of this approach model to improving outcomes.   
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Table 1. Description of UCHealth cohort by AF diagnosis. Provided are the mean age and 
gender by 6 month AF diagnosis, as well as the top 10 diagnosis codes, according to whether AF 
was diagnosed within a 6-month period.   
  

 No AF 6-month Incident AF 
Number 
(%) 

2.3M (98.85%) 26K (1.15%) 

Age 
 (Mean 
± SD) 

42.48 ± 22.28 71.14 ± 16.28 

Female 
sex (%) 

54.79% 45.2% 

#1 code 320128 Essential 
hypertension 
15.6% 
SNOMED:59621000 

320128 Essential 
hypertension 
44.66% 
SNOMED:59621000 

#2 code 254761 Cough 
10.03% 
SNOMED:49727002 

432867 Hyperlipidemia 
32.42% 
SNOMED:55822004 

#3 code 200219 Abdominal 
pain 
9.89% 
SNOMED:21522001 

77670    Chest pain 
17.08% 
SNOMED:29857009 

#4 code 432867 
Hyperlipidemia 
9.23% 
SNOMED:55822004 

318800 Gastroesophageal 
reflux disease 
14.94% 
SNOMED:235595009 

#5 code 257011 Acute upper 
respiratory infection 
8.87% 
SNOMED:54398005 

312437 Dyspnea 
14.91% 
SNOMED:267036007 

#6 code 77670    Chest pain 
8.86% 
SNOMED:29857009 

201826 Type 2 diabetes 
mellitus 
14.65% 
SNOMED:44054006 

#7 code 25297    Acute 
pharyngitis 
8.15% 
SNOMED:363746003 

42872402 Coronary 
arteriosclerosis in native 
artery 
13.38% 
SNOMED:1641000119107 

#8 code 378253 Headache 
7.67% 
SNOMED:25064002 

40481919 Coronary 
atherosclerosis 
13.35% 
SNOMED:443502000 

#9 code 442077 Anxiety 
disorder 
7.66% 
SNOMED:197480006 

439926 Malaise and 
fatigue 
12.80% 
SNOMED:271795006 

#10 
code 

436096 Chronic pain 
7.39% 
SNOMED:82423001 

254761 Cough 
12.38% 
SNOMED:49727002 
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Table 2. Comparison of Stacked Autoencoders 
Architecture of Stacked Autoencoders Validation 

Error 
26000-13000-6000-2000-500-2000-6000-13000-26000  0.035 

26000-13000-6000-2000-500-2000-6000-13000-26000, dropout  0.049 

26000-10000-500-10000-26000,dropout  0.038 

26000-10000-2000-500-2000-10000-26000, dropout, sigmoid activation  0.007 

26000-500-26000  0.067 

26000-10000-500-10000-26000, dropout, sigmoid activation  0.045 

26000-10000-2000-100-2000-10000-26000, dropout, sigmoid activation  0.019 
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Table 3. Comparison of Resampling Strategies. Sampling comparison from Random Forest 
model; performed using SAE encoded as specified. 
 
  F1 Score AUC Training time 
Oversampling      
  Random (SAE 

encoded) 
0.033 0.56 65.4 minutes 

  SMOTE (SAE 
encoded) 

0.033 0.57 66.7 minutes 

Undersampling      
  Random (SAE 

encoded) 
0.036 0.61 4.6 minutes 

  Cluster centroid 
(SAE encoded) 

0.033 0.56 65.4 minutes 

None   0.00 0.5 10.2 minutes 
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Table 4. Comparison of machine learning approaches. Using SMOTE resampling technique 
and all features.  F1 and AUC calculated from model applied to held-out testing set (20%); 
training time is for training of training set (80%) 
 
 F1 Score AUC Training time 
Naïve Bayes 0.034 0.57 0.1 minutes 
Logistic regression with 
L2 regularization  

0.039 0.61 2.1 minutes 

RF 0.116 0.65 1489.1 minutes 
Shallow NN 0.00 0.5 2.9 minutes 
Deep NN 0.050 0.53 252.8 minutes 
GBM 0.041 0.64 109.8 minutes 
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Figure 1. Study sampling design.  *Note that for comparison of stacked autoencoders 
(unsupervised learning), the training set was split into an additional validation set (10% of training 
set).  See Methods for details.   
 
 
Figure 2.  A. First two principal components of codes (color labeled by case and control). 
Red = control, green = case.  B. Variance explained by PC. 
 
Figure 3. A. Precision-recall curve for optimal model. B. ROC curve for optimal model. 
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Total	Sample:	407550	controls,	4741	cases,	26000	features	

Train	Set:	326040	controls,	3793	cases	
Testing	Set:	81510	controls,	948	cases	

	26000	features	

Train	Set*:	326040	controls,	3793	cases	
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Figure	2.		
A.	PCA	plot	

B.	Variance	explained	by	PC	

Zoomed-in	variance	by	PC	
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Figure	3.	
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