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Supplementary Notes

Supplementary Note 1: Resolution limits of community detection algorithms

The Louvain method is subject to a resolution limit (1), whereby the minimum size of detected clusters
increases as the size of the graph increases. However, each implementation of the Louvain method generates
a hierarchical clustering, with the resolution limit applying to the highest (most coarse) level. To minimize
the effect of the resolution limit on the preliminary clustering performed by StormGraph during node degree
thresholding when localization uncertainties are unknown, the lowest (finest) level of the hierarchy is used
(matching the approach taken by Emmons et al in their comparison of community detection algorithms (2)).
The two-level Infomap algorithm is also subject to a resolution limit, but it is orders of magnitude smaller
than that of the Louvain method (3) and therefore not a major concern. For best results, the lowest level of
a hierarchical clustering optimized by the multi-level Infomap method, which is not subject to a resolution
limit (3), could be used instead, but for computational efficiency we use the faster two-level method during
the preliminary clustering step.



Supplementary Tables

Table S1
Algorithm: ilzsseler Sigiter DBSCAN | OPTICS | FOCAL Elii’flsolzn g;’;;‘l
References (4) (5; 6) (7) (8) 9) (105 11) N/A
Mathematical Voronoi Voronoi Density- Density- Pixel- Bayesian, Graph-
. . model-

approach tessellations | tessellations | based based based based based
Independent
of global o
localization yes yes no no yes yes yes
density
3D capability no yes yes yes no yes yes
Adapts to axial
variation in 3D N/A yes no yes N/A yes** yes
SMLM data
Suitable for
arbitrary cluster | yes yes yes yes yes*t** no yes
shapes and sizes
Accounts for
localization no no no no # yes yes
errors
Includes
colocalization no yes no no no no yes
analysis
Hierarchical
clustering no no no yes no no yes
Automatically
generates
single-level yes yes yes no yes yes yes
clustering

Table S1. Comparison of features of StormGraph and other clustering algorithms.

# Uses a single global estimate of localization uncertainty to define a pixel size, but does not account for
each individual localization’s specific positional uncertainty.

* Requires user-specification of the same two density-based parameters as DBSCAN, but theoretically the
search radius € can be made arbitrarily large, unlike for DBSCAN. This means that, theoretically, OPTICS
can operate independent of the global localization density (i.e. it can be implemented with parameters that
do not depend on the density). However, this would result in all localizations being grouped together in
a single cluster at the most coarse level of the cluster hierarchy and would be computationally inefficient.
Therefore, in practice, the parameter € should be set.

** Technically possible by modifying the mathematical model used by the algorithm. However, this is
non-trivial and likely beyond the capabilities of biologists using the algorithm.

*** Yes, except that clusters will be composed of square pixels.
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Figure S1. The two available methods for setting the search radius r¢ in StormGraph. (a) The
heuristic elbow method for setting ro when there is a natural number of clusters in the data. (i) Example



SMLM localizations with well defined clusters and minimal dispersed localizations between clusters. Color
bar = density (nm~2), scale bar = 500 nm. (ii) Number of connected components in the e-neighborhood
graph vs ¢ for the data in (i). StormGraph sets rg = €2, where an es-neighborhood has twice the area/volume
of an e;1-neighborhood, if the number of connected components remains constant for €1 < ¢ < €5. Inset:
enlarged region of plot. (b) (i) Example SMLM localizations with poorly defined clusters and many dispersed
localizations between clusters. Color bar = density (nm~2), scale bar = 500 nm. (ii) The heuristic elbow
method for setting ro for the data in (i). A function f(e) is fit to number of connected components vs e
for the e-neighborhood graph (top). The concavity f”(e) of this curve is then computed (bottom), and the
value of rg (vertical dashed line) is set as the value of ¢ at which f”(g) returns to 2% (horizontal dashed
line) of its maximum value. (c) The k-nearest neighbor (kNN) method for setting rq (illustrated for the
data in panel (b)). A histogram of distances from nodes to their k" nearest neighbors is obtained for both
the clustered SMLM data (red) and a random distribution of points with the same average density (blue),
where k is a user-specified parameter. For data with known localization uncertainties, the 95% confidence
level from Monte Carlo simulations is used for the k*" nearest neighbor distance for each localization. The
value of ro (vertical white dashed line) is set as the distance at which the two histograms first intersect.



Figure S2
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Figure S2. Effect of varying StormGraph’s parameters k and « for an example SMLM ROI.
(a) An ROI containing localizations of Alexa Fluor 647-labeled cell-surface B-cell antigen receptors of IgM
isotype on a TMD8 diffuse large B-cell lymphoma cell imaged by dSTORM. Scale bar = 500 nm, color bar
= density (nm~2). (b) Clusters identified by StormGraph using different values of the parameters k and
a. In all cases, StormGraph was implemented in 2D, using localization uncertainties, and with a minimum
cluster size of 5 localizations. Clusters are colored according to their areas (nm?) calculated by StormGraph.
A cluster area of 0 (dark blue) indicates that a localization was classified as unclustered (i.e. not assigned to
any cluster).
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Figure S3. For simulated data with known ground-truth clusters, StormGraph assigns local-
izations to clusters more accurately, as measured by mean F-measure, than DBSCAN and



ClusterViSu. This figure presents the exact same data as Figure 2b—c, using mean F-measure as an al-
ternative to normalized mutual information to measure the accuracy of the cluster assignments of points.
(a) Accuracy of assigning data points to clusters as assessed by mean F-measure (1 = perfect). A total
of 64 simulated datasets were analyzed using StormGraph, ClusterViSu, and DBSCAN. StormGraph was
run either with (+) or without (-) localization uncertainties. The value of ry used by StormGraph was
determined using the heuristic method (auto.) or the k-nearest neighbor method with & = 10, 15 or 20.
DBSCAN was implemented using 16 different selections of its two parameters, MinPts and ¢, of which the
two best-performing are shown here. ClusterViSu results are only shown for the 49 datasets on which the
analysis was completed in under 2 h. Boxes show medians and interquartile ranges. (b) The same results
as in panel (a) are displayed normalized to ClusterViSu’s performance for each of the 49 simulated datasets
for which analysis by ClusterViSu was completed in under 2 h. StormGraph was consistently more accurate
than ClusterViSu at assigning points to clusters, indicated by ratios > 1.
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Figure S4. DBSCAN is sensitive to the choice of parameters, and no single choice of pa-
rameters is suitable for batch processing cluster analysis when localization density is variable
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between datasets. (a) Accuracy of cluster assignments by DBSCAN, using different values of the param-
eters MinPts and ¢, of localizations in the 64 simulated datasets used for Figure 2b. Accuracy was measured
by (i) mean F-measure and (ii) normalized mutual information (NMI). A total of 16 parameter pairs cor-
responding to four different threshold densities (0.020, 0.013, 0.010 and 0.008 nm™2) were tested. Boxes
show medians and interquartile ranges. (b) A visual demonstration that two different DBSCAN parameter
choices corresponding to the same threshold density produce very different clustering results. Top left: the
simulated dataset example used in Figure 2a; color bar = density (nm2); scale bar = 500 nm. Bottom left:
ground-truth clusters present in the example simulated dataset; colors distinguish distinct clusters. Right
panels: clusters identified by DBSCAN using two different parameter pairs, both of which correspond to a
threshold density of 0.013 nm™.
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Figure S5
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Figure S5. StormGraph’s cluster hierarchy accurately recovers clusters at different scales in
simulated data. (a) An example simulated SMLM dataset containing isolated and aggregated nanoclusters
of radius 50 nm and randomly distributed molecules outside of clusters. This was one of the 64 simulated
datasets used for Figure 2. Color bar = density (nm™?), scale bar = 500 nm. (b) Ground-truth clusters at the
two levels of clustering in the simulated data from (a). Colors distinguish different clusters. Top: Large-scale
clustering. Some nanoclusters are aggregated into larger clusters. Bottom: Individual nanoclusters (50 nm
radius) at the small scale. (c) Clusters from the cluster hierarchy found by StormGraph (a = 0.05, minimum
cluster size = 5 localizations) using either the heuristic (auto.) method or the kNN method with k = 15
to set ro and using localization uncertainties. Top: Colors show distinct clusters at the top (coarsest) level
of the cluster hierarchy. Bottom: Colors show distinct clusters at a manually identified level of the cluster
hierarchy.
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Figure S6. StormGraph is more accurate than ClusterViSu and DBSCAN at assigning local-
izations to clusters in simulated data with no overcounting of single molecules. We simulated
2D SMLM data as described for Figure 2 in Methods but with every molecule having exactly one localiza-
tion (i.e. no overcounting). We then performed the same algorithm testing that we performed for Figure 2.
(a) Accuracy of cluster assignments by StormGraph, DBSCAN, and ClusterViSu, measured by (i) Normal-
ized Mutual Information (NMI) and (ii) mean F-measure, for 38 simulated datasets in which every molecule
is localized exactly once. StormGraph was implemented either using (4) or not using (-) localization uncer-
tainties during clustering and with ro set either using the heuristic method (auto.) or using k = 10, 15 or
20. For all runs of StormGraph, a = 0.05 and MinCluSize = 5 were fixed. DBSCAN was tested using 24 dif-
ferent pairs of its two user-specified parameters MinPts and . Shown here are the two choices of DBSCAN
parameters that yielded the best results. A minimum cluster size of 5 points was used for ClusterViSu.
ClusterViSu results are not shown for one of the 38 datasets because it failed to complete analysis in under
2 h. Boxes show medians and interquartile ranges. (b) Same as (a), but with StormGraph’s or DBSCAN’s
accuracy, measured by (i) NMI and (ii) mean F-measure, divided by ClusterViSu’s NMI or mean F-measure
for each of the 37 simulated datasets for which ClusterViSu analysis completed in under 2 h. Ratios > 1
indicate that StormGraph or DBSCAN was more accurate than ClusterViSu for the corresponding datasets.
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Figure S7
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Figure S7. Ripley’s H-function is unsuitable for quantifying SMLM data containing heteroge-
neous clusters. Left panels: Six simulated circular clusters of various radii and densities, and approximately
1000 randomly distributed points. Simulated data contained no uncertainties. Color bar = density (nm=?2),
scale bar = 500 nm. Middle panels: Ripley’s H-function vs length scale (r) for the simulated data. De-
viation above 0 indicates clustering. The position (r value) of the peak of H(r) is often used to estimate
cluster radius. Right panels: Clusters found by StormGraph and colored by their radii estimated from the
StormGraph-quantified cluster areas (radius = y/area/w). StormGraph was implemented using k = 10,
a = 0.05, and a minimum cluster size of 5 points. (a) All clusters contain approximately 200 points and
have radius 100 nm. (b) Clusters all have radius 100 nm but contain different numbers of points (100, 200,
300, 400, 500, and 600). (c) Clusters all have the same density but have different radii (20 nm, 30 nm,
40 nm, 50 nm, 100 nm, and 200 nm). (d) Clusters all contain approximately 300 points but have different
radii (20 nm, 30 nm, 40 nm, 50 nm, 100 nm, and 200 nm). (e) Smallest cluster (20 nm radius) contains
approximately 1000 points. All other clusters (radii 30 nm, 40 nm, 50 nm, 100 nm, and 200 nm) contain
approximately 300 points.

15



Figure S8
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Figure S8. Repeated cluster analysis of dSTORM data of IgM-BCRs from Figure 3 using
different StormGraph settings. This figure presents the same data as Figure 3 using different settings
for StormGraph analysis. StormGraph was implemented using either the heuristic method (auto.) or the
k-nearest neighbor method with £ = 15 to determine the value of ry. Positional uncertainties in dASTORM
localizations were either used (4) or not used (-) during analysis by StormGraph. (a—b) Cumulative distri-
bution function (CDF) for (a) the mean area and (b) all areas of IgM-BCR clusters detected by StormGraph,
using different settings, in each ASTORM ROI from resting (blue) and anti-Igx-treated (red) ex vivo murine
splenic B cells. (c—d) CDF for (c) the mean area and (d) all areas of IgM-BCR clusters detected by Storm-
Graph, using different settings, in each dSTORM ROI from BJAB (blue), HBL-1 (red) and TMDS8 (green)
cells.
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Figure S9

a SMLM StormGraph + uncertainties StormGraph - uncertainties
localizations % auto.

Percentage localizations added at random

S| - . B . .
b 10 ¢ o EE EEY R T R
£ : . . - s DR IR . s
£ 104 £ H ] 3 4 RO T P
© 4 &
19}
% 10° k
© L ¥
o b A ¥ oA 5
B0 PRt o R LI A
o < . .
10!
O I R N EEE R EE EEEEE E EEE EEE
8838 FREE"RENRELBELERF°ABREITRE “RBRELBEE

Scurll et al, Figure S9

Percentage localizations added at random

Figure S9. Effect on StormGraph of increasing random noise. (a) IgM-BCR dSTORM localizations
in an ROI from an HBL-1 cell (top-left panel) with increasing numbers of additional randomly distributed
points (left panels; color bars = density (nm™2)). The number of random points added are specified as
a percentage of the original number of localizations: 0% (top), 75% (middle) and 150% (bottom). For
each case, distinct clusters were identified by StormGraph either using (+) or not using (-) localization
uncertainties and using either the heuristic method (auto.) or k-nearest neighbor (k = 15) method to set
ro. Localization clusters possibly arising from overcounted single molecules were not removed. Color bars =
cluster area (nm?)). Scale bar = 500 nm. (b) Areas of all distinct clusters identified by StormGraph in the
ROI when different numbers of randomly distributed points were added (up to 200% of the original number
of localizations). Results are for the four implementations of StormGraph in the corresponding columns of

panel (a).
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Figure S10
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Figure S10. StormGraph identifies clusters in 3D simulated data more accurately than DB-
SCAN. (a) (i) Simulated 3D SMLM data example. Color bar = 3D density. In this example, the density of
molecules outside of clusters was 5% of the within-cluster density of molecules, which still resulted in ~85%
of localizations not belonging to any true cluster. We also tested examples with up to four times this relative
density of unclustered molecules. (ii) Ground-truth clusters in the simulated example. Colors distinguish
distinct clusters. (iii) Clusters identified by StormGraph implemented in 3D with localization uncertainties
used during clustering, rg determined heuristically (auto.), & = 0.05, and MinCluSize = 5 localizations. Col-
ors distinguish distinct clusters. (iv) Clusters identified by DBSCAN implemented in 3D using MinPts = 15
and € = 35.5 nm. These were the DBSCAN parameter values that had the best average NMI scores for 3D
clustering of 130 simulated datasets. (b) (i-ii) 2D projections of (a)(i)—(ii) respectively onto the zy-plane.
(iii-iv) Clusters identified, in the 2D projection of the 3D simulated example, by 2D implementations of (iii)
StormGraph, and (iv) DBSCAN. StormGraph was implemented in 2D using the same settings as the 3D
implementation in (a)(iii). DBSCAN was implemented in 2D using MinPts = 20 and £ = 22.6 nm. These
were the DBSCAN parameter values that had the best average NMI scores for 2D clustering of 130 simulated
datasets. Color bar = 2D density; scale bar = 500 nm. (¢) Accuracy of cluster assignments by 3D and 2D
implementations (applied, respectively, to the full 3D data or to the 2D zy projections) of StormGraph and
DBSCAN for 130 simulated 3D datasets, as assessed by (i) normalized mutual information (NMI; 1=per-
fect) and (ii) mean F-measure (1=perfect). Boxes show medians and interquartile ranges. StormGraph was
implemented using o = 0.05 and MinCluSize = 5 localizations. Localization uncertainties were either used
(+) or not used (-) during clustering, and ro was determined using the heuristic method (auto.) or using the
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indicated values of k. DBSCAN was implemented using the indicated parameters. The first set of DBSCAN
parameters was optimized for 3D clustering and the second set was optimized for 2D clustering.
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Figure S11
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Figure S11. Identical repeat runs of StormGraph yield highly similar results. (a) 2D projection of
a 3D ROI containing heterogeneous localizations of AF647-labeled cell-surface IgM-BCRs on a TMDS8 B cell
imaged by dSTORM. Scale bar = 500 nm, color bar = density (nm~2). (b) Normalized mutual information
(NMI) measuring the similarity between single-level cluster assignments of localizations by multiple identical
runs of StormGraph. For each of the indicated StormGraph settings, StormGraph was run identically 11
times on the data in (a). The NMI values in the figure score the similarity of the cluster assignments of
localizations by the first run of StormGraph to the cluster assignments of localizations by each of the 10
subsequent identical runs of StormGraph. StormGraph was implemented in 2D or 3D either not using (-)
or using (+) localization uncertainties. The value of 7y was determined using either the heuristic method
(auto.) or the kNN method with & = 15. NMI values can range from 0 to 1, with NMI = 1 corresponding to
perfect similarity. Boxes show medians and interguartile ranges. (c—d) Single-level clusters (distinguished
by colors) identified by one run of StormGraph (left) and the least similar results of 10 subsequent identical
runs of StormGraph using the indicated settings.
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Figure S12
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Figure S12. Computational localization and positional uncertainty estimation of dASTORM
fluorescence emission events. (a) A point spread function (PSF) is fit to the fluorescence intensity
profile of each SMLM blink. (b) The localization coordinates of each fluorescence emission event and
their associated uncertainties (i.e. estimated measurement errors) are determined simultaneously from the
computational fit of the PSF. (c¢) Distributions of the z, y and z positional uncertainties, expressed as
standard deviations, in ASTORM localizations in a representative dataset.
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