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1 Theory of concentration fluctuations in mesoscopic droplet systems

In this section, we will develop a theoretical model to study the influence of liquid-liquid phase separation on gene
expression variability. In Section 1.1, we will first construct a simple mesoscopic model of phase separation based
on the equilibrium physics of binary mixtures. Subsequently, we will extend the model to account for variability
in the composition of this mixture due to gene expression noise. In Section 2 we show how the model was used to
analyze and interpret our experimental single-cell data.

1.1 Minimal model of phase separation in a binary mixture

We consider a system of a fixed volume Vtot (e.g. the volume of the cell or the nucleus) which is filled by a binary
mixture. Each of the two components of the mixture can represent a single molecule or a bundle of different
molecules in a fixed ratio that form a unit. For the sake of clarity, we refer to one component as ’solvent’ and to
the other as ’protein’ in the following. The two components can phase separate by forming a droplet of volume V−
which is surrounded by a bulk phase of volume V+ = Vtot − V− (Fig. ST1). Thereby the total number of proteins
N̄ is split up between the two phases such that the phases differ by their concentrations (c± = N±/V±) of the
protein. Here N− denotes the number of molecules or units of the component that is enriched in the droplet, i.e.
the protein, inside the droplet, while N+ is the number of molecules in the surrounding bulk phase. With the
effective molecular volume, we can define a volume fraction occupied by the protein (component) as φ = vN/V .
As explained in the main text volume fractions can, therefore, be understood as normalized concentrations, with
φ = 0 equal to a system without any protein molecule and φ = 1 for a system completely filled with the protein
component. We will focus on the comparison of noise in the volume fraction of the whole system, φ̄ = vN̄/Vtot, to
the noise of volume fraction of the bulk phase, φ+ = vN+/V+. We aim to understand if and to which extent such
a system is able to keep the volume fraction of the bulk phase close to a fixed value. This ability is what we refer
to as buffering.

droplet	phase

bulk	phase
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Figure ST1: Minimal model of phase separation in a binary mixture.

1.1.1 Free energy of a binary mixture

To describe the thermodynamic properties of such a mesoscopic system containing a single droplet we have to
consider its free energy. If the respective volume fractions within the droplet and in the solvent are homogeneous,
the free energy F of the system is given by

F = V−f−(φ−) + (Vtot − V−)f+(φ+) + γA (1)

where f±(φ±) are the free energy densities of the droplet phase and the bulk phase respectively and γ and A are
the surface tension and the area of the droplet-bulk interface. We consider the case of a droplet that is entirely
filled with one component

φ− = vN−/V− = vc− = 1 , (2)

1



such that we can write the free energy density of the droplet phase as

f−(φ−) = −µ
v
, (3)

with µ as a relative chemical potential. From eq. (2) also follows v = 1/c−. With eq. (2) and N̄ = N+ + N− we
can express the volumes of the two phases as:

V−
(
N+, N̄

)
= v

(
N̄ −N+

)
V+

(
N+, N̄

)
= Vtot − v

(
N̄ −N+

)
Furthermore, we consider the droplet to be spherical such that

A = 4π

(
3

4π
vN−

) 2
3
. (4)

The free energy density of the bulk phase is considered to contribute as an ideal gas, i.e.

f+ (φ+) =
kBT

v
[φ+ ln (φ+)− φ+] , (5)

where kB denotes the Boltzmann constant and T the temperature. The free energy of the whole system can then
be written as

F
(
N+, N̄

)
= −µ

(
N̄ −N+

)
+ kBTN+

(
ln

(
N+

Vtot/v − N̄ +N+

)
− 1

)
+ γ (36π)

1
3
(
v
(
N̄ −N+

)) 2
3 . (6)

Equivalently, the free energy can be expressed in terms of volume fractions

F̂
(
φ+, φ̄

)
= −µVtot

v

(φ̄− φ+)

(1− φ+)
+ kBT

Vtot
v

(1− φ̄)φ+

(1− φ+)
(ln (φ+)− 1) + γ (36π)

1
3

(
Vtot

(φ̄− φ+)

(1− φ+)

) 2
3

. (7)

1.1.2 Thermal fluctuations at equilibrium: Boltzmann statistics

From here on we follow the convention to use upper case letters for random variables and lower case letters for their
realization. To analyze the influence of thermal fluctuations on the buffering properties of the system, we calculate
the partition function:

Zn̄ =

n̄∑
n+=0

exp

(
−F (n+, n̄)

kBT

)
, (8)

such that the Probability Peq to find the system in a state with n+ molecules outside the droplet is given by the
Boltzmann distribution

Peq (N+ = n+) =
1

Zn̄
exp

(
−F (n+, n̄)

kBT

)
. (9)

Equivalently, this distribution can be expressed in terms of volume fractions, i.e., Peq (φ+) = Peq (N+ = φ+V/v).
With eq. (9), we can determine the mean and variance of the volume fraction of the bulk phase as:

〈Φ+〉 =

n̄∑
n+=0

Peq (N+ = n+)φ+ (n+, n̄) (10)

σ2 (Φ+) =
〈

(Φ+ − 〈Φ+〉)2
〉

=

n̄∑
n+=0

Peq (N+ = n+) [φ+ (n+, n̄)− 〈Φ+〉]2 . (11)

Throughout this text, we denote means and variances of random variables as 〈 · 〉 and σ2 ( · ), respectively. Means
and variances of bulk phase are illustrated in Fig. ST2 for different φ̄.

For the sake of readability, we drop the explicit dependence of the volume fraction on the protein numbers in the
following. However, the reader should keep in mind that with discrete protein numbers, also the corresponding
volume fractions are discrete-valued.
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Figure ST2: Thermal fluctuations at equilibrium. The grey shaded areas illustrate the probability to find a certain volume
fraction in the bulk phase. The solid cyan line indicates the mean and the dashed blue lines indicate a standard deviation
around the mean, i.e. 〈Φ+〉 ± σ (Φ+) . The model parameters are set to the same values as for Figure 2 in the main text and
are listed in Tab. 3 on page 14.

1.1.3 Analytical characterization of thermal fluctuations

To find an analytical expression for the concentration fluctuations, we approximate the Boltzmann distribution
using the saddle point method. To this end, we interpret the protein volume fractions as continuous quantities and
expand the free energy around its minimum up to order two. The global minimum of the free energy, (if it exists,
i.e. if φ̄ is sufficiently large and phase separation is favored) obeys

0 =
∂F̂
(
φ+, φ̄

)
∂φ+

=
Vtot(1− φ̄)

v(1− φ+)2
(µ+ kBT (lnφ+ − φ+) + 2γH) ,

(12)

where H = ∂A
∂V−

is the mean curvature. When the contribution of the interface energy becomes negligible (i.e. if γ
is small, or if the system approaches the thermodynamic limit), eq. (12) is satisfied if:

0 = µ+ kBT (lnφ+ − φ+) . (13)

This provides and implicit relation for the saddle point of the Boltzmann distribution and we refer to its solution
as φ∗. The latter can be expressed in terms of Lambert W function:

φ∗ = −W
(
−e

−µ
kBT

)
. (14)

Since this function is invertible on the domain φ∗ ∈ [0, 1], we can replace the dependency of the Boltzmann distribu-
tion on µ by φ∗. The new parameter φ∗ has an important physical interpretation. In particular, it corresponds to the
volume fraction above which a mesoscopic system is expected to exhibit two distinct phases. In the thermodynamic
limit, the volume fractions in the bulk and droplet phase change discontinuously at φ∗ owing to a thermodynamic
phase transition. In the following, we will refer to φ∗ as threshold concentration.

In order to characterize the fluctuations in the bulk phase in the phase separating regime, we further calculate the
second derivative of the free energy at the saddle point φ∗,(

∂

∂φ+

)2

F̂
(
φ+, φ̄

)∣∣∣∣∣
φ+=φ∗

= kBT
Vtot

(
1− φ̄

)
vφ∗ (1− φ∗)

, (15)

where we again neglected contributions from the surface tension. We can now approximate the Boltzmann distri-
bution with the saddle point method as a Gaussian

p̃eq (φ+) =
1

Z̃φ̄
exp

(
−
Vtot

(
1− φ̄

)
2vφ∗ (1− φ∗)

(φ+ − φ∗)2

)
, (16)
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where p̃eq is now a probability density and Z̃φ̄ is the corresponding normalization constant. The mean and variance
of (16) are given by

〈Φ+〉 = φ∗ and σ2 (Φ+) =
vφ∗ (1− φ∗)
Vtot

(
1− φ̄

) (17)

and the squared coefficient of variation becomes

η2 (Φ+) =
σ2 (Φ+)

〈Φ+〉2
=

v (1− φ∗)
Vtot

(
1− φ̄

)
φ∗

. (18)

Throughout this text, we denote the coefficient of variation by η ( · ) = σ ( · ) / 〈 · 〉 and define by η2 ( · ) the noise
strength of the system, a commonly used metric to assess concentration variability.

When both the threshold concentration and total volume fraction are small
(
φ∗ < φ̄� 1

)
, the above expression

simplifies to

η2 (Φ+) ≈ v

Vtotφ∗
. (19)

Since n− ≤ n̄ we can without further assumptions approximate φ∗ by expanding φ+ in n− as

φ∗ = 〈Φ+〉 =

〈
N+

Vtot/v −N−

〉
=

〈
N+

Vtot/v
+

N+N−

(Vtot/v)
2 +O

(
N2
−
)〉

=
〈N+〉
Vtot/v

+
〈N+N−〉
(Vtot/v)

2 +
〈
O
(
N2
−
)〉

.

(20)

With eqs. (19) and (20), the noise strength is approximately given by

η2 (Φ+) ≈ 1

〈N+〉
. (21)

This resembles the mean-noise relationship of a Poisson-distributed random variable.

1.1.4 Ensembles of phase separating systems with different molecule numbers

So far, we have studied fluctuations of phase separating systems for which the total protein number was considered
to be fixed. We will next extend our analysis to the case where the total protein concentration is a random variable
itself. This is an important intermediate step that will later allow us to study how fluctuations caused by gene
expression are affected by phase separation (Section 1.2).

To address this scenario, we consider an ensemble of independent phase separating systems at equilibrium, each
having identical material parameters, but different total protein amounts. To capture the variability in the total
protein amount across the ensemble, we describe the total protein volume fraction as a random variable Φ̄ ∼ P

(
φ̄
)
,

with P
(
φ̄
)
as an arbitrary, discrete probability distribution. Our goal is now to relate the variability in the total

protein amount (characterized by P
(
φ̄
)
) to the variability in the bulk phase (characterized by a corresponding

distribution P (φ+)). If the ensemble is at equilibrium, the distribution P (φ+) can be readily obtained from the
Boltzmann distribution in eq. (9). Since the total protein amount Φ̄ is now a random variable, the Boltzmann
distribution associated with an individual phase separating system is now interpreted as a conditional probability
distribution Peq

(
φ+|Φ̄ = φ̄

)
, where φ̄ is the particular realization of Φ̄ corresponding to that system. In order to

compute P (φ+) we have to average this conditional distribution over all possible realizations of Φ̄, i.e.,

P (φ+) =
∑
φ̄

Peq
(
φ+|Φ̄ = φ̄

)
P
(
φ̄
)
. (22)

With this expression, we can now compare the noise strength of the total protein amount and the bulk phase by
analyzing P

(
φ̄
)
and P (φ+), respectively.

Moreover, we can use the law of total variation to decompose the noise strength of the bulk phase into

η2 (Φ+) =
σ2
(〈

Φ+|Φ̄
〉)

〈Φ+〉2︸ ︷︷ ︸
ensemble noise

+

〈
σ2
(
Φ+|Φ̄

)〉
〈Φ+〉2︸ ︷︷ ︸

buffering noise

. (23)
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If the systems in the ensemble are likely below the threshold concentration φ∗, the bulk phase concentration φ+ is
approximately equal to φ̄. In this case, σ2

(
Φ+|Φ̄ = φ̄

)
and σ2

(〈
Φ+|Φ̄

〉)
≈ σ2

(
Φ̄
)
, which means that the second

term in (23) vanishes and that the first term explains all the variability in the bulk phase. In this scenario, the
variability in the total concentration cannot be suppressed and is entirely inherited to the bulk phase. If, on the
other hand, all systems in the ensemble would be above φ∗, we know by eq. (17) that the expected bulk phase
volume fraction is widely independent of the total volume fraction φ̄, such that the first term is close to zero and
the second term captures the expected thermal fluctuations around the threshold concentration. In this sense, the
first term of eq. (23) describes the variance due to ensemble variability, while the second term describes the noise
introduced by phase separation itself. We thus refer to the respective contributions as ensemble noise and buffering
noise.

1.1.5 Stochastic dynamics of phase separating systems at equilibrium

In our discussion above, we have described concentration fluctuations in terms of probability distributions over the
total protein and bulk phase concentration. We will next investigate the temporal dynamics of phase separating
systems at equilibrium. To this end, we will derive rate functions of protein exchange between the bulk and droplet
phase, such that the resulting fluctuations are consistent with the equilibrium fluctuations of mesoscopic droplet
systems described in Section 1.1.2. These rate functions will be instrumental later in Section Section 1.2 to link our
theory of phase separation to gene expression noise.

For a fixed total protein number N̄ , the dynamic partitioning of protein between the bulk and droplet phase can
be described by stochastic exchange reactions

N+
kout−−−−−⇀↽−−−−−
kin

N−,

with N± as the bulk and droplet phase protein and kin and kout as the respective reaction rates. These rates
determine how likely each reaction takes place per unit time and thus set the time scale of phase separation. Our
goal is to determine explicit expressions for kin and kout such that they are consistent with our equilibrium model
of phase separation. At equilibrium, the rates satisfy the detailed balance condition:

kout (n+, n−)Peq
(
n+ | N̄ = n+ + n−

)
= kin (n+ + 1, n− − 1)Peq

(
n+ + 1 | N̄ = n+ + n−

)
(24)

or in terms of the free energy:

kout (n+, n−) = kin (n+ + 1, n− − 1) exp

(
−∆F (n+, n−)

kBT

)
, (25)

with ∆F (n+, n−) = F (n+ + 1, n+ + n−) − F (n+, n+ + n−). Therefore, if one of the two rates is given, the
reverse rate can be determined by the Boltzmann factor. Here we consider the rate kin to be diffusion-limited such
that

kin (n+, n−) =
n+

τd (n−)
=

6D n+

(Vtot − vn−)
2/3

=
6DV

1/3
+

v
φ+, (26)

with τd as the average time it takes for a molecule to diffuse through a volume V+ and D as the diffusion constant.
The rate from (26) also provides a simple way to characterize the time scale of phase separation. In particular,
we can define it as the diffusion time of a single protein through the total system volume Vtot, i.e., τD = τd(0) =

V
2/3
tot /(6D). We will later make use of τD when we analyze how time scales affect noise buffering by liquid-liquid

phase separation.

1.2 Suppression of gene expression noise by liquid-liquid phase separation

Based on our theoretical considerations from the previous sections, we are now ready to investigate how phase sepa-
ration can buffer gene expression variability. We will first introduce a canonical model of stochastic gene expression
and subsequently show how this model can combined with our model of liquid-liquid phase separation.
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1.2.1 Two-stage model of gene expression with extrinsic noise

We describe gene expression by a two-stage model, where mRNA and protein copy numbers, denoted by Nr and
Np, are described by coupled birth-and-death processes

∅ λr−−−→ Nr
Nr/τr−−−−−→ ∅

∅ λpNr−−−−→ Np
Np/τp−−−−−→ ∅

(27)

with λr and λp as the rate constants associated with transcription and translation and τr and τp as mRNA and
protein half-life times. The noise strength of Np at steady state is given by [1]

η2 (Np) =
1

〈Np〉
+

1

〈Nr〉
τr

τr + τp
. (28)

Additional to intrinsic fluctuations of transcription and translation, gene expression is significantly affected by so-
called extrinsic variability[2]. The latter stems from cell-to-cell differences in factors affecting gene expression such
as ribosome copy numbers or the ATP availability. In the experimental system considered here, the dominant source
of extrinsic variability stems from plasmid copy variations, which can be incorporated into the model by considering
the transcription rate to be randomly distributed across cells, i.e., Λr ∼ p(λr). We want to remark that while our
analysis focuses on this particular model of gene expression, it is straightforward to extend to other scenarios.

For the two-stage model with random transcription rate, one can show that the noise strength is given by

η2 (Np) = η2 (〈Np|Λr〉) +
〈
η2 (Np|Λr)

〉
= η2 (Λr) +

(
1 +

λp

τ−1
p + τ−1

r

)
1

〈Np〉
.

(29)

Throughout this study, we consider the transcription rate λR to be Gamma-distributed with shape- and rate
parameters α and β, i.e.

Λr ∼ Γ(α, β) =
β

Γ(α)
(βλr)

α−1
e−βλr . (30)

In this case, the mean and noise strength of the transcription rate is given by 〈Λr〉 = α/β and η2 (Λr) = α−1,
respectively. Thus, the amount of extrinsic noise in the system is set by α, while the rate parameter β determines
the average protein expression level, i.e., 〈Np〉 = 〈Λr〉 τrλpτp. This provides a way to calculate the mean-noise
relationship of the gene expression network for a fixed extrinsic noise level by evaluating (29) for different β. The
resulting relationship shows the characteristic inverse scaling of the noise strength with mean concentration. For high
concentrations, the SCV saturates at a certain level due to extrinsic noise (Fig. ST3). This mean-noise relationship
is a hallmark of stochastic gene expression [3, 4] and we will next discuss how it is affected by liquid-liquid phase
separation.

1.2.2 Limit of fast phase separation dynamics

We will now investigate how variations in protein concentrations can be suppressed by liquid-liquid phase separation.
As a first step, we consider a simplified scenario that considers phase separation to be fast on the time scale of
protein expression. More precisely, we consider phase separation to equilibrate instantaneously upon changes in
the total protein concentration. This in turn allows us to apply the equilibrium theory presented in Section 1.1.4,
whereas the ensemble distribution P

(
φ̄
)
now corresponds to the stationary distribution of the stochastic gene

network in (eq. (27)). In general, this distribution can be computed by numerically solving a master equation
but also analytical solutions exist under certain conditions. If the mRNA fluctuates much faster than the protein,
for instance, the stationary distribution over protein copy numbers is given by a negative binomial distribution
P
(
N̄ = n̄

)
= NB(r, p) with

P(N̄ = n̄) =

(
n̄+ r − 1

n̄

)
pr(1− p)n̄ (31)

with parameters

r =
1

η2 (Λr)
p =

r

r + 〈N̄〉
. (32)

The corresponding distribution over volume fractions is then given by P
(
Φ̄ = φ̄

)
= P

(
N̄ = φ̄Vtot/v

)
. Figure ST3

illustrates the resulting mean-noise relationships for the considered model. More importantly, we show how this
mean-noise relationship is affected by liquid-liquid phase separation in Figure ST4.
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Figure ST3: Mean-noise relationship (green solid lines) in stochastic gene expression described by the negative binomial
distribution for three different levels of extrinsic noise, η2(Λr) = [0.02, 0.1, 0.5], indicated by the blue dashed lines. The
remaining parameters are set to the same values as for Figure 3B and 3C in the main paper and are noted in Tab. 4.

1.2.3 Influence of fluctuating protein concentrations: out of the equilibrium of phase separation

We next consider the case when the timescales of gene expression and phase separation dynamics become comparable.
To this end, we modify the gene network from (27) to account for phase separation by extending it by the stochastic
exchange reactions from (24). The overall reaction system then becomes

∅ Λr−−−→ Nr
nr/τr−−−−→ ∅

∅ λpnr−−−−→ N+
n+/τp−−−−−→ ∅

N+
kin(n+,n−)−�======�−
kout(n+,n−)

N−

N−
n−/τp−−−−−→ ∅,

(33)

where we now distinguish between proteins in the bulk and droplet phase, denoted by N+ and N−, respectively.
Our goal is to quantify the mean and noise strength of the droplet and bulk phase protein concentration. For a
given set of parameters and a particular realization of the random transcription rate Λr = λr, the dynamics of
system eq. (33) can be described by a master equation of the form

d

dt
π (nr, n+, n−) =π (nr − 1, n+, n−)λr

+ π (nr + 1, n+, n−) (nr + 1) τ−1
r

+ π (nr, n+ − 1, n−)λpnr

+ [π (nr, n+ + 1, n−) (n+ + 1) + π (nr, n+, n− + 1) (n− + 1)] τ−1
p

+ π (nr, n+ + 1, n− − 1) kin (n+ + 1, n− − 1)

+ π (nr, n+ − 1, n− + 1) kout (n+ − 1, n− + 1)

− π (nr, n+, n−)
[
λr + nr

(
τ−1
r + λp

)
+ (n+ + n−) τ−1

p

+ kin (n+, n−) + kout (n+, n−)
]
,

(34)
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Figure ST4: Buffering in the limit of infinitely fast droplet dynamics. A: The negative binomial distribution for two
different mean expression levels. The phase separation properties illustrated in B provide a conversion from the given total
volume fractions to a buffered volume fractions of the bulk phase, which are shown in C. The resultion noise strenght for
negative binomial distribution with varying parameter p, i.e. different mean expression levels, is shown in D. Grey dashed
lines indicate the threshold concentration for phase separation in the thermodynamic limit (see Section 1.1.3). Shaded areas
in A, B and C indicated the range of one standard deviation from mean in each direction of the respective distribtuion. The
two noise characteristics of the two exemplary distributions shown in A and C are marked in D by triangles and circles,
respectively. The red dashed line in D indicates the intrinsic noise limit and the blue dashed line the extrinsic noise limit,
η2(Λr). The parameters are set to the same values as for Figure 3B and 3C in the main paper and are noted in Tab. 4 on
page 14.
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with π(nr, n+, n−) = P(Nr(t) = nr, N+(t) = n+, N−(t) = n− | Λr = λr). In order to compute the means and noise
strengths, we first calculate the conditional moments

〈Φ+ | Λr = λr〉 =

∞∑
n−=0

∞∑
n+=0

∞∑
nr=0

φ+(n+, n+ + n−)π(nr, n+, n−) (35)

σ2(Φ+ | Λr = λr) =

∞∑
n−=0

∞∑
n+=0

∞∑
nr=0

(
φ+(n+, n+ + n−)− 〈Φ+ | Λr = λr〉

)2

π(nr, n+, n−) (36)

〈
Φ̄ | Λr = λr

〉
=

∞∑
n−=0

∞∑
n+=0

∞∑
nr=0

φ̄(n+ + n−)π(nr, n+, n−) (37)

σ2(Φ̄ | Λr = λr) =

∞∑
n−=0

∞∑
n+=0

∞∑
nr=0

(
φ̄(n+ + n−)−

〈
Φ̄ | Λr = λr

〉 )2

π(nr, n+, n−) (38)

and subsequently average these moments over all possible realizations of λr, i.e.,

〈Φ+〉 = 〈〈Φ+ | Λr = λr〉〉 (39)

σ2(Φ+) =
〈
σ2(Φ+ | Λr = λr) + 〈Φ+ | Λr = λr〉2

〉
− 〈Φ+〉2 (40)〈

Φ̄
〉

=
〈〈

Φ̄ | Λr = λr
〉〉

(41)

σ2(Φ̄) =
〈
σ2(Φ̄ | Λr = λr) +

〈
Φ̄ | Λr = λr

〉2〉− 〈Φ̄〉2 . (42)

However, computation of the conditional moments (35-38) via direct numerical integration of (34) is computationally
prohibitive, especially when RNAs and proteins are highly abundant. We, therefore, employ the linear noise
approximation (LNA) [5, 6], which approximates π(nr, n+, n−) in terms of a Gaussian distribution

π(nr, n+, n−) ≈ N (m(t),Σ(t)) , (43)

with approximate moments
m(t) ≈ E [N(t) | Λr = λr]

and
Σ(t) ≈ E

[
(N(t)−m(t))(N(t)−m(t))T | Λr = λr

]
for N(t) = (Nr(t), N+(t), N−(t))T . The moments m(t) and Σ(t) are described by ordinary differential equations
obtained by considering the leading order terms of van Kampen’s system size expansion applied to (34). Once
m(t) and Σ(t) have been solved for, (35-38) can be efficiently evaluated via numerical integration. This provides an
efficient way to compute the relationship between mean and noise strength of the total and bulk phase concentration
when gene expression and phase separation have arbitrary time scales.

We finally remark that full probability distributions over the three species Nr(t), N+(t) and N−(t) are straight-
forward to compute by integrating the Gaussian distribution from (43) with respect to p(λr), for instance using
quadrature methods. This will be required later in Section 2.3 where we compare the theoretical predictions with
the experimental data.
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2 Comparison between theory and experiment

In order to compare the theoretical model to experimental data, we require quantitative knowledge of the kinetic
parameters of phase separation and protein expression. In Section 2.2, we will describe a Bayesian inference
procedure, which we employed to calibrate our model on experimental single-cell data. Subsequently, we will
discuss how we compared the model predictions to the experimental data.

2.1 Experimental time-series data of 2NT-DDX4YFP expression

As described in Materials and Methods, we performed experimental time-lapse experiments in which we tracked
2NT-DDX4YFP expression in 93 cells over multiple hours post transfection. Measurements of 2NT-DDX4YFP
concentrations across the whole nucleus and the bulk phase were taken every ten minutes. Additionally, the
measurements revealed cross sections of the entire nucleus and droplet phase. By considering both a spherical
nucleus and a spherical droplet we estimated the corresponding volumes from the cross section areas. This multiplied
by the measured concentration results in protein copy numbers for each phase, each cell and each time point.

The time-series were manually curated to exclude outlier cells. Moreover, the first eight time points were removed
to ensure that all considered cells have exited mitosis and started expression. Additionally, we only considered time
points where at least 30 data points were available. The complete data set is shown in Fig. ST5, where curated
data points used for subsequent analyses are shown in green. From the resulting data, we computed the mean and
variance of the total and bulk phase 2NT-DDX4YFP copy numbers for each time point (Fig. 4 in the main text),
which we used to determine the model parameters as described in the following Section 2.2.
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Figure ST5: Copy numbers of 2NT-DDX4YFP in the whole nucleus (a) and in the bulk phase of the nucleus (b) for the time-
series experiment. Circles and disks mark each single measured value. Green indicates measurement point that where used
for the Bayesian inference, while red points where not included. Black asterisks mark the end of the respective trajectories.

2.2 Model calibration by Bayesian inference

In total, our model comprises several parameters associated with transcription and translation (〈Λr〉, η2(Λr), τr, λp, τp)
as well as phase separation (φ∗, T, Vtot, v,D). Some of these parameters, however, can be eliminated or determined
directly from the experimental measurements. An estimate of the total system volume Vtot was obtained from the
data by taking the average nuclear volume across all time points and cells. The effective molecular volume v was
calculated as the average of the inverse 2NT-DDX4YFP concentration inside the droplet phase (see also eq. (2)).
Moreover, we found that the surface tension γ has negligible influence on the dynamics of phase separation when
set to realistic values. In particular, it was shown in [7] that the droplet surface tension in vivo was in the order of
1µN/m in which case it had no noticeable effect on the dynamics of our model. We thus set γ = 0 to eliminate this
parameter.
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Furthermore, we can remark that the free energy enters the system dynamics only via the Boltzmann factor, such
that the thermodynamic properties of phase separation are fully captured by the following term:

F̃ (n+, n̄)

kBT
=
F (n+, n̄)

kBT
+

µ

kBT
n̄

=
µ

kBT
n+ + n+ ln

(
n+

(Vtot/v − n̄+ n+)

)
− n+

=

[
φ∗ − ln (φ∗) + ln

(
n+

(Vtot/v − n̄+ n+)

)
− 1

]
n+,

(44)

where we have used eq. (14) in the last step. Thus, we are left with only one free parameters that characterizes
the equilibrium thermodynamic properties of phase separation, i.e., the threshold volume fraction φ∗. To fix the
threshold volume fraction φ∗ we took the concentration of the bulk phase for the first time point of each trajectory,
which exhibited protein droplets and average this value over all trajectories which showed phase separation. In total,
this we are left with six unknown parameters, describing the dynamics of the system, as well as two additional fit
parameters corresponding to the mean and variance of the initial mRNA abundance.

In order to quantitate these parameters from the 2NT-DDX4YFP time-series experiments, we used a Bayesian
inference approach. In particular, we resorted to an efficient moment-based inference scheme [8], which is based on
matching the time course of the experimental moments (e.g., means and variances) with those obtained from the
model using a Markov chain Monte Carlo (MCMC) technique. For more information on this method, the reader
should refer to [8]. We performed the inference scheme on our data using lognormal proposal distributions for
M = 10000 iterations and extracted maximum a posterior (MAP) estimates from it. This procedure was repeated
eight times with randomly drawn initial conditions from which we selected the parameter set with the highest
posterior probability. The resulting parameter values are shown in Table 1 and Table 2. We remark that in our
model, the considered reaction volume corresponds to the nuclear volume instead of the total cell volume. Therefore,
the inferred protein translation and degradation rates have to be understood as effective rates, subsuming nuclear
import and export, respectively. The relatively small protein half life (τp = 1.2h), for instance, is likely due to fast
nuclear export since YFP typically degrades on the time scale of several hours.

parameter Vtot v φ∗ φ∗/v

value 2.1 · 103 µm3 1.5 · 103 nm3 4.9 · 10−3 5.5 µM

Table 1: Directly measured model parameter

parameter D 〈λr〉 η2 (λr) τr λp τp 〈Nr(t = 80min)〉 σ(Nr(t = 80min))

value 0.034 µm2/s 15 min−1 1.3 7.2 h 60 min−1 1.2 h 3.1 · 102 4.5 · 102

Table 2: Inferred model parameter

2.3 Determining the relationship between mean and noise strength from experimental
data

In order to compare between theory and experiment, we determined relationship between mean and noise strength of
the bulk phase 2NT-DDX4YFP concentration from our high-throughput single-cell dataset (Materials and Methods).
To achieve this, we solved for the stationary distributions over protein copy numbers P(nr, n+, n−) of system (33)
for a fixed η2(Λr) = 0.15 and different 〈Λr〉. For each value of 〈Λr〉, we generated corresponding subpopulations from
the experimental data such that the distribution over the total nuclear 2NT-DDX4YFP abundance was consistent
with the theoretically obtained marginal distribution P(N̄ = n̄). To this end, we drew 5 · 103 random transcription
rates for a given 〈Λr〉 and η2(Λr) and for each of them computed the stationary distribution over total protein
copy numbers N̄ , which when using the LNA, is given by a Gaussian distribution. For each transcription rate, we
then sampled 2 · 102 values of N̄ and converted them to volume fractions Φ̄. In total, this gave rise to 106 different
samples of Φ̄ and to each of them, we assigned the experimental measurement with the closest total 2NT-DDX4YFP
volume fraction. Importantly, this producedure ensures that the theoretical and experimental subpopulations are
consistent with each other in terms of the total volume fraction Φ̄ (see Figure ST6). Each of the experimental
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Figure ST6: Sampling subpopulations from the experimental single-cell data. The data used for the top plot is the same as
for Fig 4E of the main text. The sampling procedure is illustrated for four data points indicated by the green and magenta
triangles, squares, diamonds and circles. The middle panel shows scatter plots of all single-cell measurements of φ̄ and φ+

(grey). The blue dots indicate the subsampled measurements corresponding to four particular values of 〈φ̄〉 and η2(φ̄) along
the mean-noise curve as indicated with a triangle, square, diamond and circle, respectively. The size of each dot indicates
how often the respective sample was drawn. The bottom panel shows that the resulting histograms over the samples of φ̄
generated from the model and drawn from the experimental data are consistent.

samples is associated with a corresponding measurement of the bulk phase volume fraction, for which we computed
averages and noise strengths. In summary, this allowed us to determine the relationship between mean and noise
strength of the bulk phase concentration, which we compared to the theoretically predicted one (Figure 4 in the
main text).
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3 Parameter values used for the figures in the main paper

Here we list all the parameter values as they were used for Figure 2 and Figure 3 in the main text.

parameter v Vtot/v T φ∗ γ

value 10−25 m3 104 305 K 10−2 10−6 N/m

Table 3: Model parameters for Figure 2 in their respective SI units.

parameter v Vtot/v T φ∗ γ η2(Λr)

value 10−25m3 105 305 K 10−2 10−6N/m 0.1

Table 4: Model parameters for Figure 3B & 3C and S4 in their respective SI units.

parameter v Vtot/v T φ∗ γ τr λp τp

value 10−25 m3 105 305 K 10−2 0 69.31 10−2 6.931 · 103

Table 5: Model parameters for Figure 3D & 3D in their respective SI units.
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Figure S1. Duplication of the N-terminus in DDX4YFP promotes phase separation 
by reducing saturation concentration. Quantification of the droplet phase and the 
bulk nucleoplasmic phase in transfected HeLa cells containing large droplets formed 
by DDX4YFP (n=15 cells) or 2NT-DDX4YFP (n= 25 cells). Concentration was estimated 
based on mean fluorescence intensity and using a calibration curve made with serial 
dilutions of purified DDX4YFP protein. Images were taken 24 hours after transfection 
using 100x objective. The DNA was stained with 200 ng/ml of Hoechst dye. Scale bar 
= 10 𝜇m. 
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Figure S2. Nuclear compartments formed by 2NT-DDX4YFP have liquid-like 
properties. Growth of 2NT-DDX4YFP droplets through fusion (a) and Ostwald ripening 
(b) quantified by time-lapse microscopy and measurement of droplet volume over time. 
Local polynomial regression line (colored lines) was fitted through each data set. (c) 
2NT-DDX4YFP droplets show fast and complete internal recovery upon photobleaching. 
The protein is enriched in the nucleus (nuc) as evident in the ‘enhanced contrast’ image 
and forms droplets only in that compartment with no evidence for condensate formation 
in the cytoplasm (cyt). Scale bar = 2 𝜇m. 
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Figure S3. 2NT-DDX4YFP droplets dissolve during mitosis. Time-lapse imaging of 
a HeLa cell undergoing mitosis. Histone protein H2B tagged with mCherry expressed 
from a stable plasmid was as a marker for the chromatin and facilitated identification 
of mitotic cells. Scale bar = 10 𝜇m. 
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